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Abstract 

The objective of this work was to assess the relation between the purity of polymeric self-assemblies 
vectors solution and their photodynamic therapeutic efficiency. For this, several amphiphilic block 
copolymers of poly(ethyleneoxide-b-t:-caprolactone) have been used to form self-assemblies with 
different morphologies (micelles, worm-like micelles or vesicles). ln a first step, controlled mixtures of 
preformed micelles and vesicles have been characteriz.ed both by dynamic light scattering and 
asymmetrical flow field flow fractionation (AsFIFFF). For this, a custom-made prograin, STORMS, 
was developed to analyz.e DLS data in a thorough manner by providing a large set of fi tting 
parameters. This showed that DLS only sensed the larger vesicles when the micelles/vesicles ratio was 
80/20 w /w. On the other band, AsAFFF allowed clear detection of the presence of micelles when this 
same ratio was as low as 10/90. Subsequently, the photodynamic therapy efficiency of various 
controlled mixtures was assessed using multicellular spheroids when a photosensitizer, pheophomide 
a, was encapsulated in the polymer self-assernblies. Sorne mixtures were shown to be as efficient as 
monornorphous systems. ln sorne cases, mixtures were found to exhibit a higher PDT efficiency 
compared to the individual nano-objects, revealing a synergistic effect for the efficient delivery of the 
photosensitiz.er. Polymorphous vectors can therefore be superior in therapeutic applications. 

!fil Online supplernentary data available from stacks.iop.org/NAN0/27 /315102/mmedia 

Keywords: polymeric micelles, vesicles, polymersomes, self-assembly, asymmetrical flow field 
flow fractionation, photodynamic therapy, spheroids 
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1. Introduction

With the development of controlled polymerization processes,
polymer engineering has really exploded over the last 20
years. The use of either ring-opening or controlled radical
polymerization enables in simple conditions the formation of
polymer structures with various backbones such as aliphatic
polyesters or polyacrylates. In parallel with this, the discovery
of the enhanced permeability and retention effect (EPR) by
Maeda and Matsumura [1] in the late 80s has further resulted
in the exploration of all these structures as nanovectors in the
field of nanomedicine in oncology [2 7]. The EPR effect is
linked to the presence of cellular disjunctions on the endo-
thelial cells in the vicinity of tumors that lead to the extra-
vasation of nano-objects from the bloodstream and their
favored retention due to a lack of efficient lymphatic system
in the tumors. This results in a passive targeting of 15 200 nm
range nano-objects towards a majority of tumors, therefore
offering the possibility to modify the biodistribution of anti-
cancer drugs, the toxicity of which is responsible for severe
side effects. Among the numerous studies dealing with
polymeric nanovectors for cancer treatment, the outline is
very similar for all publications: formation of the assemblies,
characterization by dynamic light scattering (DLS) and
transmission electron microscopy (TEM), characterization of
the encapsulation of the drug and its release, in vitro cyto-
toxicity and possibly in vivo experiments to prove the better
efficiency of the encapsulated system. In most cases, studies
try to use ‘well-defined’ self-assemblies, meaning that a sin-
gle population of nano-objects is looked for, with varying
polydispersity. However, the use of only DLS and TEM
techniques might be misleading. Indeed, DLS provides an
analysis of the solution in its whole and, if present, several
populations might not be properly visible. TEM only shows a
small portion of the solution and furthermore implies drying
it. In some cases, cryo-TEM can be used to avoid drying [8],
but this remains a difficult technique to master in order to
avoid freezing artefacts and assemblies approaching the
thickness of the ice cannot be analyzed correctly. In order to
provide a better characterization of the nanovector solutions,
we suggested the use of asymmetrical flow field flow frac-
tionation (AsFlFFF) and showed that this technique was
powerful to analyze all populations of self-assemblies possi-
bly present in the solution [9 12]. By using this approach, we
therefore aimed at answering the original question: are well-
defined vectors better for nanomedicine or can controlled
mixtures provide a similar activity or even a synergy to enable
a better therapeutic efficiency? To the best of our knowledge,
no study has so far assessed the issue of nanovectors’ purity,
as opposed for instance to their shape, which is increasingly
examined [13 15].

Photodynamic therapy (PDT) uses a photosensitizer which
is injected into the patient and subsequently irradiated to pro-
duce reactive oxygen species that kill the cells [16]. This
approach has been known for over 30 years and is clinically
used in the treatment of several oncologic [17] and ophthalmic
diseases [18]. Nowadays, the use of PDT has been approved
for clinical treatments in the USA, EU, Canada, Russia and

Japan. The FDA approved the use of PDT in Barrett´s oeso-
phagitis, obstructive tracheobroncheal carcinoma using the
photosensitizer porfimer sodium (®Photofrin), and the use of
5-aminolevulinic acid, 5-ALA (®Levulan, ®Kerastick) for
actinic keratosis while verteporfrin (®Visudyne) may be
applied for macular degeneration. In addition to the above, the
EU also approved the use of meta-tetrahydroxy-phenyl chlorin
(mTHPC, ®Foscan) for the palliative treatment of advanced
cases of head and neck carcinomas. The strong asset of this
technique is the possibility to irradiate only the area to be
treated. However, the biodistribution of the photosensitizer is
not selective and the patient thus remains photosensitive for
several days and has to avoid sun exposure. Interestingly,
encapsulating the photosensitizer in nanovectors has been
shown to avoid this general sensitization by a modification of
the biodistribution in favor of the tumor by the EPR effect
[19, 20] and has thus been studied for over a decade [16, 21],
mainly in liposomes, polymer or silica nanoparticles and only
in a few cases in polymer self-assemblies [11, 22 27].
Therefore, in this study, we first describe the encapsulation of
an already validated photosensitizer, namely Pheophorbide a
(Pheo), in different polymer self-assemblies of distinct shapes.
These are subsequently used in mixtures of preformed nano-
vectors to assess PDT efficiency in 3D tumor models and
thereby answer the central question of this work.

2. Materials and methods

2.1. Chemicals

All poly(ethyleneoxide-b-ε-caprolactone) (PEO-PCL) copo-
lymers were bought from Polymer Source Inc. (Dorval
Montréal, Canada), Pheo from Wako (Osaka, Japan). Dif-
ferent polymers were used with different molar masses which
are mentioned in their denomination: PEO-PCL 5000-11000,
PEO-PCL 5000-4000, PEO-PCL 2000-7000, PEO-PCL
2000-4800. PrestoBlue and cell culture medium were pur-
chased from Invitrogen Life Technologies (Saint Aubin,
France). Penicillin, streptomycin and PBS were from Sigma-
Aldrich (Saint Quentin Fallavier, France). Ultrapure water
was obtained from an ELGA Purelab Flex system (resistivity
higher than 18.2MΩ.cm) and was filtered on 0.2 μm RC
filters just before use.

2.2. Polymersome formation by film rehydration

A 20mg ml 1 polymer solution (PEO-PCL 5000-11000,
PEO-PCL 2000-7000 or PEO-PCL 2000-4800) in chloroform
was prepared and the solvent was evaporated on a rotary
evaporator to form a regular film, which was further dried
under vacuum for 4 h. The film was then rehydrated with 2 ml
of milliQ water and heated at 65 °C for 30 min and at 65 °C
for 1 h under sonication. The solution was then extruded on a
mini-extruding system from Polar Avanti Lipids through a
polycarbonate membrane with a cut-off of 0.4 μm.



2.3. Micelle preparation by the ‘Acetone cosolvent’ method

20 mg of PEO-PCL 5000-4000 were dissolved in 0.4 ml of
acetone. This was added dropwise in 10 15 min to 5 ml
ultrapure water under stirring. The solution was left standing
for two days for acetone to evaporate.

2.4. Loading of the nano-objects with Pheo

For micelles, Pheo was added to the acetone solution during
the preparation of the self-assemblies. For polymersomes, a
0.5 mg ml 1 Pheo solution in acetone was used and an ade-
quate volume (80 160 μl depending on the system) added to
the aqueous solution (2 ml) of polymersomes. The solution
was left standing for two days to remove acetone. The chosen
ratio of Pheo/polymer 1/30 mol mol 1 enabled us to obtain a
full Pheo encapsulation, as shown in our earlier studies [10].

2.5. Mixture preparation

All nanovector stock solutions were used at a concentration
of 5 mg ml 1. The mixtures of nanovectors were made by
mixing different volumes of the pure systems at ambient
temperature. The resulting solution was stirred for one minute
and characterized. The ratios presented throughout the
manuscript are therefore either those of initial solution
volumes or nanovector weight ratios. For the PDT experi-
ments, the resulting solution was then further diluted in order
to obtain the desired Pheo concentration.

2.6. Dynamic light scattering (DLS)

DLS was carried out at 25 °C on a Malvern (Orsay, France)
Zetasizer NanoZS. Solutions were analyzed in triplicate
without being filtered in order to characterize the plain sam-
ples. Data were analyzed by the general-purpose non-negative
least squares (NNLS) method. The typical accuracy for these
measurements was 10 20% for systems exhibiting a poly-
dispersity index lower than 0.4.

The Malvern DLS data were further analyzed by a cus-
tom-made program named STORMS in order to obtain a
more precise characterization of the solutions. This program
has been designed with Matlab and enables the fitting of DLS
correlograms using different sets of parameters, corresp-
onding to all hypotheses that have to be made during the
treatment. Indeed, going from correlograms to size results
implies three levels of hypotheses: the first consisting in the
transformation of autocorrelation data to diffusion coefficient,
the second extracting the size of the scattering object from
diffusion coefficient depending on its geometry, and finally
using a model enabling the transformation of the intensity-
relative population to a number-relative one. For each step,
STORMS provides the choice of different parameters. For the
nano-objects presented here, the protocol used a NNLS fit-
ting, assumed a spherical shape for all objects, and the chosen
scattering model was that corresponding to a mixture of
micelles and vesicles (maximum micelle size fixed at a radius
of 25 nm). Different sets of the range of decay rates and the
regularization parameter were used, α = 5, range = 2 being

the default. Unless stated, this treatment provided residuals
lower than 5 × 10 3 for all analyses.

2.7. Transmission electron microscopy (TEM)

TEM experiments were performed with a Hitachi HT7700
microscope (accelerating voltage of 75 kV). Small amounts of
particle suspensions in water were deposited onto a dis-
charged copper grid coated with a carbon membrane and
wiped with absorbent paper. A few drops of uranyl acetate
solution were deposited onto the grid for 30 s, and the grid
was then dried under a lamp for three minutes.

2.8. Asymmetrical flow field flow fractionation

The AsFlFFF instrument was an Eclipse 2 System (Wyatt
Technology Europe, Dernbach, Germany). The AsFlFFF
channel, designed with a 250 μm thick Mylar spacer had a
trapezoidal shape with a length of 17.3 cm, an initial breadth
of 1.65 cm, and a final breadth of 0.30 cm. The accumulation
wall was an ultrafiltration membrane of regenerated cellulose
with a 5 kDa cut-off (Wyatt Technology Europe, Dernbach,
Germany). An Agilent 1100 Series Isocratic Pump (Agilent
Technologies, Waldbronn, Germany) with an in-line vacuum
degasser and an Agilent 1100 Autosampler delivered the
carrier flow and handled sample injection into the AsFlFFF
channel. A 0.1 μm in-line filter (VVLP, Millipore, Germany)
was installed between the pump and the AsFlFFF channel.
The products were detected with 18 angles Multi-Angle Light
Scattering (MALS) DAWN-Heleos II (Wyatt Technology,
Santa Barbara, CA, US), an Optilab Rex Refractometer
(Wyatt Technology, Santa Barbara, CA, US), and a UV
detector Agilent 1100 (λ = 214 nm or 412 nm). The MALS
detectors were normalized with bovine serum albumin (BSA).
Calibration of scattering intensity was performed with HPLC-
grade filtered toluene. Water, which was filtered with 0.02%
sodium azide before use, (vacuum filtration system using
Gelman filters of 0.1 μm) was used as an eluent.

During focusing, the cross flow was fixed at 0.5ml min 1.
After 1 min, 10 to 60 μl of sample were injected at 0.2 mlmin 1

for two minutes. After injection, one minute of focus was
maintained before the elution started. In elution mode, for the
nano-object mixtures, the cross flow was first fixed to
0.4 ml min 1 for 20min then changed over 5min to 0.15ml
min 1 and kept constant for 25min. For PEO-PCL 2000-4800,
a 190 μm thick Mylar spacer was used and the cross flow rate
was initially set to 0.5ml min 1. The cross flow rate then
decreased linearly for 10min to 0.15mlmin 1 and was main-
tained for 15min. In all cases, cross flow was then stopped at the
end of the elution period in order to eliminate all particles pre-
sent in the AsFlFFF system.

2.9. Generation of tumor spheroids

Human HCT-116 and FaDu spheroids were produced by the
non-adherent technique as previously described [28, 29].
Briefly, 10 000 FaDu head and neck cancer cells or 1 000
HCT-116 colorectal cancer cells in suspension were seeded in
300 μl of cell culture medium in ultra-low attachment 96-well



plates (Corning, Fisher Scientific, Illkirch, France). Spheroids
were cultivated for 5 days before incubation with the nano-
objects at 37 °C in a humidified atmosphere containing
5% CO2.

2.10. Photodynamic therapy (PDT) of 3D tumor spheroids

Tumor spheroids were incubated 30min with free or encap-
sulated Pheo 1 μM before the first illumination. Spheroids were
then photo-irradiated for 8 min using an overhead projector
lamp with a band-pass filter (λ > 400 nm). The total energy
received was 8.2 J cm 2 for the 8 min duration. Then, 8 min
illuminations were performed at 24 h intervals over three days.
Spheroids treated by photodynamic therapy were observed 6 h
after the last illumination by optical microscopy (Olympus
BX53 equipped with a x5M plane N objective in phase con-
trast). Optical observation took place over three days. PDT
efficiency was evaluated over this time by measuring the sur-
face of the living spheroids, which was extracted from the
picture with image J software as previously described [30].
Experiments were made in hexaplicate and three randomly
selected pictures of each sample were analyzed. Unless spe-
cified, all data were expressed as mean ± SEM.

3. Results and discussion

Poly(ethyleneoxide-b-ε-caprolactone) (PEO-PCL, scheme 1)
known to form various self-assemblies depending on the
hydrophilic/hydrophobic balance is a routinely used copo-
lymer for drug delivery vectors, owing to its well identified
biocompatibility. Different molar masses of this polymer
(table 1) were used (PEO-PCL 5000-11000, PEO-PCL 5000-

4000, PEO-PCL 2000-7000, PEO-PCL 2000-4800), which
produced nanovectors of various morphologies [11, 12].

Polymeric nano-objects were formed as previously
described, using either a cosolvent approach where a polymer
organic solution is added to pure water, or film rehydration
followed by sonication/extrusion processes [11, 12]. They
were characterized by transmission electron microscopy
(TEM) and dynamic light scattering (DLS) (table 2). The
morphology of each nano-structure was reported, showing
that micelle-like, vesicular or worm-like self-assemblies were
obtained. For PEO-PCL 2000-4800, our earlier studies have
shown that self-assembly in water led to the formation of
mixed morphologies (worm-like systems and vesicles),
impeding a correct DLS analysis. The characterization of this
system by AsFlFFF revealed the presence of three different
populations of nano-objects centered around 80, 270 and
460 nm, which was also confirmed by TEM [12].

Controlled mixtures of nanovectors were obtained by
mixing different ratios of these preformed nano-objects. As a
typical case, mixtures of PEO-PCL 5000-4000 micelles/
PEO-PCL 5000-11000 vesicles were obtained and thoroughly
characterized by DLS or by AsFlFFF. DLS was performed
using a custom-made program STORMS enabling fine
adjustment of parameters to optimize fitting of the data (see
supplementary information). DLS analysis is presented in
figure 1 for different weight ratios of PEO-PCL 5000-11000.

PEO-PCL 5000-4000 micelles exhibited a size of 22 nm
and the PEO-PCL 5000-11000 vesicles measured 88 nm. In
these conditions, a micelle population of PEO-PCL 5000-
4000 was detected but almost invisible as soon as PEO-PCL
5000-11000 content was higher than 20 wt%, when analyzed
by intensity averages with the STORMS program. This is not
surprising since the scattered intensity of an object is related
to its size to the sixth [31], but this experiment is an unam-
biguous demonstration of this behavior.

When the same experiments were analyzed by the com-
mercial Malvern software, the micelles were already invisible
at 20 wt%. The advantage of the custom-made software
STORMS is the possibility of modulating most parameters in

Scheme 1. PEO PCL chemical structure.

Table 1. Formation of polymer nano objects.

Polymer Mn of PEO block (g mol−1) Mn of hydrophobic block (g mol−1) fhydrophilic
a (%) Preparation method

PEOPCL 2000 4800 2000 4800 29.4 Film rehydration
PEOPCL 2000 7000 2000 7000 22.2 Film rehydration
PEOPCL 5000 11 000 5000 11 000 31.2 Film rehydration
PEOPCL 5000 4000 5000 4000 55.5 Acetone cosolvent

a
Weight fraction of hydrophilic part.

Table 2. DLS characterization of polymer self assemblies.

Polymer DH (nm) intensity average DH (nm) Number average PDI Morphology

PEOPCL 5000 11 000 100 88 0.25 vesicles
PEOPCL 5000 4000 28 22 0.17 micelles
PEOPCL 2000 7000 198 82 0.24 worm like systems



order to obtain perfect fitting of the correlograms, with resi-
duals lower than 5 × 10 3. A comparison of the results from
Malvern and STORMS software is provided in supplementary
information (figures S1-5 and tables S1-2). Interestingly, the
number averaged analysis by STORMS did not show a
double population but suggested a smooth increase of size
with increasing ratio of PEO-PCL 5000-11000.

Thorough analysis was performed on the 80/20 wt%
PEO-PCL 5000-4000 micelles/PEO-PCL 5000-11000 vesi-
cles mixture to examine whether DLS analysis could show the

presence of both populations, even in the number mean
analysis. For this, several parameters were systematically
changed in STORMS program: the regularization parameter
(alpha), the distribution range, the expansion parameter
(leading to the favored use of first points of the correlograms)
and the weighting parameter (each point of the correlogram
being addressed a different weight depending on its value).
The results are presented in table 3. With the varying para-
meters, all intensity related results were stable. For number-
relative analyses, the results obtained for pure micelles or
vesicles were also stable, with a mean value of 21 ± 1 for
micelles and 73 ± 7 for vesicles. For the 80/20 mixture, the
situation was more complicated with a result clearly switching
between ca. 22 32 and 60 64 nm depending on the fitting
parameters. This unmistakably shows that DLS analysis
cannot give unequivocal results even with a solution of
controlled composition. Thus, unambiguous results cannot be
expected using this approach for unknown solutions exhibit-
ing several populations. In such system, the presence of a
single population in DLS cannot be considered as a proof of
the purity of the nano-objects. A similar example involving
PEO-PCL 5000-11000 vesicles and PEO-PMMA 5000-
11 900 micelles is presented in figures S4 and S5.

The same PEO-PCL 5000-4000 micelles/PEO-PCL
5000-11000 vesicles mixtures were then analyzed by
AsFlFFF and the fractograms are shown in figure 2. This
technique enabled the separation of both populations before
their detection. Micelles were observed at an analysis time of
ca. 14 min whereas vesicles eluted at ca. 26 min (figures 2(a)
(d)). Thus, in this case, the ratio between micelles and vesicles
can be directly observed from the refractive index signal.
Zooming on MALLS signal fractogram between 11 and
17 min shows that quantities of micelles as low as 10 wt%
were still observable without any doubt (figures 2(e) and (f)).
Compared to the obtained DLS performance on the same
sample, AsFlFFF allowed successfully separating and quan-
tifying very dissimilar nano-objects in a single chromato-
graphic injection.

In order to assess PDT efficiency, Pheo was loaded
within PEO-PCL 5000-4000 micelles, PEO-PCL 5000-11000

Figure 1. DLS analyses of PEO PCL 5000 4000 micelles (5 4)/
PEO PCL 5000 11 000 vesicles (5 11) mixtures for different PEO
PCL 5000 4000/PEO PCL 5000 11 000 weight ratios.

Table 3. DLS analysis of PEO PCL 5000 4000, PEO PCL 5000 11000 mixture at 80/20 wt/wt.

Alpha Range Expansion Weightinga

PEO PCL
5000

4000 Int

PEO PCL
5000

11000 Int
80/20

mixture Int

PEO PCL
5000 4000
number

PEO PCL
5000 11000
number

80/20 mix
ture number

10 2 1 g 30 100 102 20 68 62
10 2 1 1 28 100 104 20 74 26
10 2 0 g 30 100 102 20 68 64
5 2 1 g 28 100 104 22 70 22
10 1 1 g 28 100 104/28 22 80 28
5 2 0 1 28 100 104 22 88 32
10 2 0 1 22 100 104 22 74 26
20 2 0 g 30 102 102 20 66 60
8 2 0 g 28 100 102 20 70 64
8 2 1 g 30 100 102 20 68 62

a
1 means that all points are used with the same weight, g that the weight of each point is linked to its value.
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Figure 3. Typical wide field optical images of spheroids. (a) intact spheroid, (b) damaged FaDu spheroid (PEO PCL 2000 7000/PEO PCL 
5000 11 000), (c) damaged HCT 116 spheroid (PEO PCL 5000 11000/PEO PCL 5000 4000). 
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Figure 4. Spheroid size evolution upon POT process. Left column, FaDu cells; right column, HCT 116 cells. Top line, [polymer] = 100 µM, 

[Pheo] = 3.33 µM. Bottom line, [polymer] = 200 µM, [Pheo] = 6.67 µM 

vesicles and PEO-PCL 2000-7000 worm-like systems. For 
this, the nano-objects were loaded directly during their for­
mation for micelles or by post-addition for the vesicles 
formed by film rehydration/sonication/extrusion. lt is note­
worthy that for all systems described here our earlier studies 
on polymeric micelles have shown that the polymer /Pheo 
ratio can be adjusted so as to keep the size and morphology of 
the self-assemblies intact [10, 11, 32) .  For this reason, this 
ratio in this work was kept at 30/1 moljmol. For polymer­
somes, the influence of Pheo on the self-assemblies was 
checked by DLS (figure S6) and showed that these rernained 
intact Human spheroids of colon cancer (HCT-116) or head 
and neck cancer (FaDu) were formed, incubated with the 
Pheo-loaded nano-objects and irradiated to induce formation 
of reactive oxygen species leading to cell death [11). PDT 
efficiency was evaluated by following the growth of the 

spheroids depending on the treatment This was done by an 
optical method described in the experimental part and vali­
dated in an earlier study [30). Typical images of spheroids are 
presented in figures 3 and S7, showing different cases of 
intact or damaged spheroids. Spheroid growths after PDT 
treatrnent are shown in figure 4 for single polymer nano­
object solutions: PEO-PCL 5000-4000 micelles, PEO-PCL 
5000-11000 vesicles, PEO-PCL 2000-4800 vesicular/worm­
like system and PEO-PCL 2000-7000 worm-like nano­
objects. 

All vector types, regardless of their size or shape, led to an 
increase of PDT efficiency compared to non encapsulated Pheo 
(figure S8). Severa} points can be extracted from figure 4. First, 
compared to each other, all Pheo-loaded vectors exhibited 
sirnilar activities, the only exception being the PEO-PCL 5000-
11000 vesicles on FaDu cell line at 200 µM which were less 
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Figure 5. Spheroid size evolution upon POT process. Left column, FaDu cells; right column, HCT 116 cells. (a) (b) PEO PCL 5000 11000 
vesicles/PEO PCL 5000 4000 micelles mixtures. (c) (d) PEO PCL 5000 11000 vesicles/PEO PCL 2000 7000 worm like systems 
mixtures. (e) (f) PEO PCL 2000 7000 worm like systems/PEO PCL 5000 4000 micelles mixtures. The ratios are weight fractions. 

efficient than the others in decreasing siz.e of the twnor 
spheroids (figure 4(a)). PEO-PCL 2000-4800 nano-objects 
which consiste.d of mixe.d worm-like and vesicular systems 
also fol lowed the general same trend, showing in this case an 
apparent absence of influence of the monomorphism of the 
vector solution. 

Secondly, increasing Pheo concentration from 3.33 µM to 
6.67 µM led to a better PDT efficiency. lndeed, the use of a 
Pheo concentration at 3.33 µM (figures 4(a) (b) provide.d an 
arrest in the spheroid growth whereas at 6.67 µM (figures 4(c) 
(d) a ternporary decrease in size was observed.

Based on these preliminary results, we decided to use the
lowest Pheo concentration of 3.33 µM for the subsequent 

experiments on mixtures (figure 5), in order to maximiz.e the 
probability to discriminate efficiencies between pure solutions 
and cont rol led mixtures of preformed nano-objects. 

Most curves of figure 5 show a c lear difference between 
the control (spheroid without any polymer nor Pheo) and the 
Pheo-encapsulate.d nano-objects, leading to a decrease in the 
spheroid siz.e or at least its stabilization. The only exception is 
the case of PEO-PCL 5000-11 000/PEO-PCL 5000-4000 
mixture on FaDu cells (figure 5(a)), for which only a small 
difference is visible between the control and the PDT treat­
ment Considering the experiments on FaDu cells, the mixtures 
incorporating PEO-PCL 2000-7000 worm-like systems 
(figures 5(c) and (e)) are the most efficient This is however not 
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true for the tests on HCT-116 cells where the micelles/vesicles 
mixture (figure 4(b)) bas a s imilar activity to the others 
(figures 5(d) and (t)). lt seems that nano-object purity does not 
affect distinct cell types similarly. 

Comparing the experiments on FaDu cells to those on 
HCT-116 ones shows different situations. For vesicles/micelles 
mixtures (figures 5(a) and (b)), the PDT efficiency was higher on 
HCT-116 cells. This is consistent with the experiments on single 
polymer nanovectors (figures 4(a) and (b)) for this concentration 
of Pheo. For worm-li.ke and vesicular systems (figures 5(c) and 
(d)), the reverse was observed. Fmally, for micelles/worm-li.ke 
systems mixtures (figures 5(e) and (t)), the PDT efficiency 
appeared close for both cell lines. These comments already show 
that the study of monomorphous nanovectors cannot lead to a 
prediction of the PDT efficiency of their mixture. 

ln order to better visualiz.e mixture effects, the preceding 
results were analyz.ed at day 3, as a fonction of the ratio 

between polymers (figure 6 ). The parameter reported on these 
graphs is the ratio between the spheroid surfaces for the 
polymer mixture considered and the control. A curve with a 
down bell shape is therefore a sign of a mixture which is more 
efficient than either monomorphous nano-object; conversely, 
a curve with an upward bell shape shows that the mixture is 
less efficient. The dotted line is a guide showing the expected 
behavior if no synergy effect was present On this figure, the 
error bars are 95% confidence intervals, ensuring that the 
conclusions drawn are valid. 

Examining figure 6 shows that three different cases are 
present First, the cases of PEO-PCL 2000-7000/PEO-PCL 
5000-4000 on HCT-116 (figure 6(c)), PEO-PCL 5000-11000/ 
PEO-PCL 2000-7000 on either FaDu or HCT-116 cells 
(figure 6(b)) exhibited a change close to the theoretical one. ln 
this case, the mixture is just a superimposition of the effect of 
both nano-objects, with neither increase nor decrease of the PITT 



efficiency. The second case is that of PEO-PCL 5000-11000/
PEO-PCL 5000-4000 on FaDu cells (figure 6(a)), showing that
the mixture was less efficient than the theoretical dotted line. The
explanation of this behavior is however not clear presently.

Finally, the most interesting cases were PEO-PCL 2000-
7000/PEO-PCL 5000-4000 on FaDu cells (figure 6(c)) and
PEO-PCL 5000-11000/PEO-PCL 5000-4000 on HCT-116
cells (figure 6(a)). For these, a synergy effect was observed,
leading to a better PDT efficiency using the mixtures. For
PEO-PCL 2000-7000/PEO-PCL 5000-4000 mixtures on FaDu
cells, the best ratio was 25/75 w/w. In this case, the presence
of both worm-like systems and micelles led to a better PDT
efficiency. Interestingly, the mixture involving PEO-PCL
5000-4000 micelles and PEO-PCL 5000-11000 vesicles was
observed to be more efficient in the case of HCT-116 spheroids
(increase of 60% compared to the absence of synergy), con-
trary to that observed for FaDu (decrease of 60%).

To the best of our knowledge, no other study in the
literature so far has examined the influence of the presence of
different vector morphologies in the same experiment.
However, the influence of size has been studied for a long
time [4, 7, 33, 34] and that of shape is increasingly char-
acterized. Indeed, several studies have suggested that worm-
like nanovectors might be more efficient [13 15, 35 39].
Non-spherical nanovectors have been shown to have a longer
circulation time, and the margination process mandatory for
their exit from bloodstream has been shown to depend on the
shape [37, 39 41]. Additionally, the cell penetration is also
shape-sensitive, the worm-like systems exhibiting an
increased penetration compared to spherical ones [38, 42]. In
our hand, the worm-like PEO-PCL 2000-7000 micelles used
as a monomorphous system were not observed to lead to a
better therapeutic efficiency compared to spherical ones
(either micelles or vesicles). The experiments presented here
measured an overall PDT efficiency including several para-
meters, such as diffusion of the vector within the spheroid,
penetration of the photosensitizer in the cell, generation of
reactive oxygen species under irradiation, and cell death
induction. In order to fully examine the influence of the shape
for PDT vectors, a further complete study would be necessary
to determine the mechanisms of cell penetration. Indeed, in
such systems, the photosensitizer cell penetration could be
either in its encapsulated or free form [43, 44]. However, the
fact that mixtures exhibited either neutral, synergistic or
antagonistic behaviors shows that the vectors are not elimi-
nated at the surface of the spheroids.

4. Conclusion

The objective of this work was to characterize mixtures of
polymeric vectors and examine the influence of their purity in
photodynamic therapy efficiency on in vitro 3D tumor mod-
els. For this purpose, we produced and characterized different
PEO-PCL nanovectors with micellar, vesicular and worm-like
morphologies. We clearly demonstrated that batch DLS
should not be used in the presence of mixtures and that
AsFlFFlF was the most adapted and efficient method to

characterize the polymorphism of nano-object solutions.
When assessed in vitro in PDT tests, some controlled mix-
tures of micelles, vesicles or worm-like structures exhibited a
synergistic effect compared to monomorphous nanovectors.
At this point, only assumptions can be made that the presence
of both types of morphologies may improve the diffusion
process. Further work will be necessary to confirm this
hypothesis.
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I. Characteristics of other polymer self- assemblies used 

Polymer  Mn of PEO block  

(g.mol
-1

) 

Mn of hydrophobic 

block (g.mol
-1

) 

fhydrophilic
a
 (%) Preparation 

method 

PEOPMMA 5000-11900 5000 11900 29.6 Acetone cosolvent 
a
 weight fraction of hydrophilic part  

 

Polymer DH (nm) 

intensity 

average 

DH (nm) 

Number 

average 

PDI Morphology 

PEOPMMA 5000-11900 35 25 0.22 micelles 

 

 

II. Development and use of STORMS software 

 The Malvern software is very efficient to acquire experimental data and to analyze them in a 

predefined way. However, changing the parameters of such an analysis and comparing various 

models are not so easy even if one can modify in a step-by-step and repeating way the details of 

each data treatment. Furthermore, the Malvern software is often just a black box: very little 

information is available concerning the various calculations and assumptions made for an analysis. 

 STORMS program is a software purely designed for the analysis of data and offering an easy 

choice in the methods used to extract information from the correlograms, to evaluate the 

distributions in intensity then in number. Implementation of different models describing non 

spherical particles, of mathematical treatment of correlograms, of scattering properties models have 

been made to test various possibilities and adjust the analysis depending on the type of samples. 

Pre-selected parameters were chosen in order to describe easily micelles and vesicles made of 

organic compounds such as surfactants or polymers, or mixtures of them. Finally, a routine of this 

software calculates the theoretical correlogram of a solution containing various particles. This may 

then be analyzed and compared to experimental data. 

 



Figure S1 presents a screen copy showing the overall presentation of the software with the different 

parameters that can be changed. The program uses exported correlograms from Malvern. The fitting 

method can be adjusted, together with the regularization parameter (alpha), the distribution range, 

the expansion parameter (leading to the favored use of first points of the correlograms) and the 

weighting parameter. The geometry of the particle can also be adapted from spheres, ellipsoid, 

nano-rods or worm-like systems. Finally, the morphology of the scattering object can be chosen 

between full spheres, coated spheres, vesicles or mixtures. 

In the right part of the window, the correlogram is shown together with the fitting (red curve), 

followed by the residual, the intensity relative analysis and the number relative one. 

 

Fig S1. STORMS software presentation 

 

 

In a more precise way, STORMS has been written and compiled with MATLAB (version R2015b). 

The Cumulant method was based on the paper of B.J Frisken (Frisken, B. J. (2001). Revisiting the 

method of cumulants for the analysis of dynamic light-scattering data. Appl. Opt., 4087-91) with the 

fitting of the autocorrelation function using the equation: 



                  
        

  
  

     
  
  

      
 

 

where B is the background value,  the amplitude of the autocorrelation function,    the mean value 

of the decay rates and n the nth moment of the distribution function of decay rates, f(). The 

moments about the mean are defined as: 

                  
 

 

   

and are related to the cumulants. 

This analysis leads to the so-called PDI (polydispersity index) is defined as the ratio between the 

second moment of the distribution divided by the square of the mean value of the decay rate. 

Generally speaking, the estimated PDI in STORMS is much larger than the one calculated by the 

MALVERN software since all the experimental points are selected and the second order equation is 

used in STORMS instead of the third one for Malvern. 

Non-Negatively constrained Least Squares (NNLS) algorithm is using a regularization process, called 

the second-order Tikhonov regularizor. The importance of the regularization is modified by a 

parameter , which is estimated through the minimization of a Lagrange function (see Hansen, P. C. 

(2008). Regularization Tools. A Matlab Package for Analysis and Solution of Discrete Ill-Posed 

Problems. www.mathworks.com/matlabcentral/filiexchange and Numer. Algor. 46 (2007) 189-94.).  

The CONTIN method, originally developed by S. W. Provencher (Provencher, S. W. (1984) http://s-

provencher.com/pages/contin.shtml and Comput. Phys. Com. 27 (1982) 229-42.) was included in 

STORMS through a routine largely using codes written by I.-G. Marino and available on the web 

(http://www.mathworks.com/matlabcentral/fileexchange/6523-rilt).  

For the calculation of the Mie model, a routine based on the program written by J. Schäfer 

(http://www.mathworks.com/matlabcentral/fileexchange/36831-matscat) was developed. 

STORMS allows one to select and weight the experimental points of each correlogram. In the current 

paper, all these points were kept and had the same weight (except in the tests of table 2). 

 

http://s-provencher.com/pages/contin.shtml
http://s-provencher.com/pages/contin.shtml


 
Figure S2. DLS analysis of PEO-PCL 5000-4000 / PEO-PCL 5000-11000 mixtures. Analysis by Malvern 
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Figure S3. DLS of PEOPCL 5-4 / PEOPCL 5-11 systems, analysis by STORMS. 
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Figure S4. DLS analysis of PEO-PMMA 5000-11900 / PEO-PCL 5000-11000 mixtures. Analysis by 

Malvern program 
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Figure S5. DLS analysis of PEO-PMMA 5000-11900 / PEO-PCL  5000-11000 mixtures. Analysis by 

STORMS 

 

For this synthesis of PEO-PCL 5000-11000 vesicles, the size obtained was larger than the usual one 

(see main text and tables S1 and S2). This can happen if the dried film used before rehydration is not 

regular and too thick. For the purpose of this physical chemistry study however, this was not 

problematic and we proceeded to the study of the mixtures.   

 The corresponding data are provided in tables S1 and S2 for these two systems. 
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Table S1. Comparison of DLS results from STORMS and Malvern softwares for PEO-PCL 5000-4000 / 

PEO-PCL 5000-11000 mixtures. 

 
Table S2. Comparison of DLS results from STORMS and Malvern softwares for PEO-PMMA 5000-

11900 / PEO-PCL 5000-11000 mixtures. 

 For both mixture families, the intensity relative results estimated by the two softwares are 

similar. Small variations are sometimes observed for a second population. For the number relative 

analysis, the behavior is more complex and different results are sometimes obtained, owing to the 

possible different scattering properties concerned. Indeed, Malvern software always considers the 

Mie scattering theory for spherical filled objects. In STORMS, the option considering a mixture of 

micelles (for the object below 25 nm of radius) and vesicles was chosen. 

  

Mixture diam int % int PDI int diam number % number PDI number diam int % Int PDI diam number

PEO PCL 5/4 27.6 89 0.4 21.6 0.17 27 0.26 17.7
60 11

PEO PCL 5/4 97/3 PEO PCL 5/11 32 88 1.3 21 0.23 28 80 0.33 17.8
104 10 468 20

PEO PCL 5/4  93/7 PEO PCL 5/11 182 89 0.6 34 0.3 212 87 0.43 23.7
42 11 34 11

PEO PCL 5/4 90/10 PEO PCL 5/11 110 74 0.42 32 0.25 116 91 0.28 16.6
52 26 23 9

PEO PCL 5/4  87/13 PEO PCL 5/11 103.6 86 0.39 28 0.28 109 0.26 15.5
33.6 14

PEO PCL 5/4  84/16 PEO PCL 5/11 100 0.35 31.2 0.37 115 98 0.22 14.3
17 2

PEO PCL 5/4  80/20 PEO PCL 5/11 104 94 0.28 31 94 0.32 112 0.18 53
34 6 76 6

PEO PCL 5/11 99.6 0.23 88 0.25 106 0.1 60

STORMS MALVERN

mixture diam int % int PDI int diam number % number PDI number diam int % int PDI diam number

PEO PMMA 5/11.9 36 93 8.9 25 0.22 35.5 0.26 20

PEO PMMA 5/11.9 86/14 PEO PCL 5/11 218 91 0.43 33 0.26 221 0.3 20.2

40 9

PEO PMMA 5/11.9 82/18 PEO PCL 5/11 218 93 0.43 36 0.3 222 0.3 116

42 7

PEO PMMA 5/11.9 77/23 PEO PCL 5/11 224 0.42 32 0.33 248 0.27 112

PMMA 5/11.9 74/26 PEO PCL 5/11 220 91 0.62 44 98 0.37 232 0.34 119

50 5

PEOPCL 5-11 576 11.8 276 0.44 475 0.39 145

STORMS MALVERN



Figure S6. Batch DLS analyses of PEO-PCL 5000-11000 and PEO-PCL 2000-7000 polymersomes in the 

absence and the presence of Pheo ([polymer] / [Pheo] = 30) 
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Figure S7: Typical wide-field optical images of HCT 116 and FaDu spheroids following different 
treatments. 

 
 

Figure S8: Effect of unencapsulated Pheo on spheroids ([Pheo]0 = 3.3 M).” Control” describes 
spheroids alone, without any polymer nor Pheophorbide, which is submitted to the same irradiation 
patterns than the other samples  
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