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Abstract

The present paper proposes a definition of a two-phase interface that relies on a probability density function. This definition
enables to introduce a scale separation in the definition this interface and to define fields that characterize the geometry of
the interface. Relying on these fields, we propose a two-phase flow model that is able to account for small and large scale
separation of the interface description by means of supplementary convected geometric variables. The model accounts for
two-scale kinematics and two-scale surface tension. At large scale, the flow and the full geometry of the interface may
be retrieved thanks to the bulk variables and the volume fraction, while at small scale the interface dynamics is accurately
recovered through the interfacial area density fluctuation and the mean curvature.

Introduction

Two-phase flow occur in many industrial processes and can
display multiple flow topologies. For example a jet atom-
ization involves separated phases close to the injector and
dispersed phase downstream with in between a mixed re-
gion where complex elements such as ligaments and rings
detach from the liquid core. These multi-scale phenomena
are out-of-reach for direct numerical simulations in realistic
configurations due to computational costs. This leads to the
derivation of reduced-order models that are used for numeri-
cal simulations.

Two approaches are found in the literature to build reduced-
order models for two-phase flows:

1. coupling two models, a first one for the dispersed flow
by employing an element derived from the Kinetic
Based Moment Method [1] which treats polydispersed
droplets in size, velocity and temperature, and a second
one dealing with the separated phase and the mixed re-
gion with either an hierarchy of diffuse interface models
[2, 3], front tracking methods [4] or some level of LES
on the interface dynamics [5].

2. employing a unified model that encompasses any flow
topology. Works in this direction are found in [3, 6]
where a unified model accounting for micro-inertia and
micro-viscosity associated to bubble pulsation is pro-
posed.

In the present work, the second approach is retained. In [3,
6], a model was designed to account for two-scale kinemat-

ics in the case of a mono-disperse flow with spherical gas
inclusions by means of the Least Action Principle. Our con-
tribution involves mainly three matters: first we propose a
definition of the interface using a Probability Density Func-
tion, second we propose to drop some restricting hypotheses
on the topology of the bubbly flow used in [2, 3], third we
aim at not only accounting for two-scale kinematics but also
for two-scale surface tension effects.

1 Description of a surface by means of a PDF

Our analysis relies on the key idea that the two-phase inter-
face is not a geometric locus. Instead, we propose to use a
probability density function (PDF) f that will characterize
the properties of the interface S . We will use this prob-
abilistic description to distinguish small and large scales of
the interface.

We suppose given a probability density function (PDF)
f : (t,x, ϕ,H) ∈ Ω 7→ [0, 1], with Ω ⊂ [0,+∞) × Rd ×
R × R. The quantity f(t,x, ϕ,H) dxdϕdH represents the
probability that at a position x and the instant t the interface
can be described by a level set function that takes the value ϕ
and the field of interface mean curvature takes the value H .

In the following we shall note ξ = (ϕ,H) and for the sake
of simplicity we shall omit the time dependency of f in the
notations.

Remark 1 It is possible to consider different or additional
interface features like the Gaussian curvature G, or the unit
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Figure 1: Large and small scale interface dynamics

normal n as variables of f .

Thanks to zero-th moments of f we can then define fields
over the whole space that characterize the interface as fol-
lows:

ϕ(x) =

∫
ϕ′f(x, ξ′) dξ′, (1a)

H(x) =

∫
H ′f(x, ξ′) dξ′. (1b)

The set ϕ−1({0}) defines a surface that we consider to be
a probable geometrical locus for the interface S . Similarly,
theH(x) will provide a probable value of the mean curvature
of S when x lies in the vicinity of ϕ−1({0}). Let us note
that thanks to (1a) it is possible to define a unit normal field
x ∈ Rd 7→ n ∈ Rd by setting n(x) = ∇ϕ(x)/‖∇ϕ(x)‖.
Definition (1a) also provides an alternate definition Halt for
the mean curvature with Halt(x) = div(n). In the follow-
ing we shall consider that both definition are equivalent, i.e.
Halt = H .

We note 1A the characteristic function of a set A ⊂ Rd and
R+ = [0,+∞). Considering that the interface S separates
two different fluid, we can define α the volume fraction of
the fluid 1 as

α(x) =

∫
1R+(ϕ′)f(x, ξ′) dξ′. (2)

Let us underline that the approach that is described above al-
lows to retrieve the classic definition of an interface by a sur-
face. Indeed, given a surface defined by a level set function
x 7→ ϕ̄, defining the measure

f(x′, ξ′) dx′dξ′ = δ(ϕ′ − ϕ̄(x′))δ

(
H ′ − div

(
∇ϕ̄(x′)

‖∇ϕ̄(x′)‖

))
allows to retrieve ϕ = ϕ̄ and H = div (∇ϕ̄/‖∇ϕ̄‖). Nev-
ertheless, we emphasize that there is no physical reason to
consider such case. Indeed, a sharp interface is just a model
for finitely fine transition zone.

The PDF f is supposed to be able to encompass all the
scales l of S , l ∈ ]0,+∞[. If obtained by a DNS, it
would be then limited to the mesh minimum size, such that
l ∈ ]lDNS ,+∞[.

2 Two-scale description of a surface

Filtering of the PDF
We now want to introduce a separation between large and
small scales of the interface S . Let lc > l be the cutoff

characteristic length scale, such that l ∈ ]l, lc] (resp. l ∈
]lc,+∞[) corresponds to the small (resp. large) scales of S .

We introduce a new PDF fc characterizing all the scales of
S up to the cutoff length scale lc, l ∈ ]lc,+∞[. Let us note
Bc(x) = {x′ / ‖x − x′‖ < lc/2}. Since fc does not ac-
count for any scale below lc, we propose to operate a spatial
averaging over Bc(x) by considering the distribution defined
by

1

|Bc(x)|

∫
1Bc(x)(x

′)f(x′, ξ) dx′.

In order to define fc we propose further filter the values of f :
since fc has undergone a spatial averaging, it seems reason-
able to upper-bound the possible mean curvatureH described
by fc with a value Hmax. Consequently we choose to set

fc(x, ξ)=
1

|Bc(x)|

∫
Bc(x)

1R+(Hmax−H ′)f(x′, ξ) dx′. (3)

For the sake of consistency, we assume in the following that
when lc → 0 and Hmax → +∞ we have fc → f in some
sense. Furthermore, we propose to define Hmax by the cur-
vature of the ball of radius lc/2, i.e. Hmax = 2/lc.

Using the moments of fc, we can define a filtered level setϕc,
filtered mean curvature Hc and a filtered volume fraction, αc
by setting

ϕc(x) =

∫
ϕ′fc(x, ξ

′) dξ′, (4a)

Hc(x) =

∫
H ′fc(x, ξ

′) dξ′ (4b)

αc(x) =

∫
1R+(ϕ′)fc(x, ξ

′) dξ′. (4c)

We now notice that α =
∫
1R+(ϕ′)(f − fc + fc) dξ′, which

yields a natural decomposition of α as

α = α̃+ αc, with α̃ =

∫
1R+(ϕ′)(f − fc) dξ′/ (5)

Thus α is the superposition of a contribution coming from fc
and a fluctuating part α̃. Let us emphasize that α̃ ∈ [−1, 1]
while α ∈ [0, 1] and αc ∈ [0, 1]. Figure 2 illustrates this
remark by showing the effect of the spatial averaging on the
ball Bc(x). In such example, α equals either 1 or 0, αc ∈
[0, 1] but α̃(x) < 0 when α(x) = 0.

We can now also define the interfacial density area inside
the ball Bc by integrating the local mean curvature, H over
Bc(x), more precisely we set

Σ(x) =
1

|Bc(x)|

∫
ϕ′=0

H ′f(x′, ξ′)1Bc(x)(x
′)dx′dξ′. (6)
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Figure 2: Filtering of the volume fraction using the spatial
averaging on the ball Bc, α = 0 α = 1.

In a similar manner, we define Σc the filtered interfacial area
density, Σc, as

Σc(x) =
1

|Bc(x)|

∫
ϕ′=0

H ′fc(x
′, ξ′)1Bc(x)(x

′)dx′dξ′.

(7)

Consequently, using similar lines as for the volume fraction,
Σ can be split into two contributions, Σc and a fluctuating
part Σ̃ defined by

Σ̃ = Σ− Σc. (8)

As opposed to the volume fraction, the interfacial area den-
sity, being defined with respect to the Bc, is not affected by
the spatial averaging on Bc. Therefore, we have

0 ≤ Σc ≤ Σ 0 ≤ Σ̃ ≤ Σ. (9)

In the same lines, we define the filtered mean curvature Hc

and decompose the mean curvature into two contributions,

H = Hc + H̃. (10)

As a result of the filtering proposed in Equation (3) on the
mean curvature maximum value, we have

Hc < Hmax = 2/lc (11)

It is possible to characterize the difference between α and αc.
Indeed, we have

f(x)− fc(x) =
1

|Bc|

∫
Bc(x)

(f(x)− fc(x′))dx′. (12)

Since x′ ∈ Bc(x), if we suppose that f is smooth with re-
spect to the space variable, a Taylor expansion yields

f(x)− fc(x′) =
∂f

∂x
lcr +O

(
l2c
)

(13)

where x− x′ = lcr, r ∈ Bc(0). Thus

f(x)− fc(x) = O
(
l2c
)
, (14)

and finally we obtain

α(x) = αc(x) +O
(
l2c
)

(15)

Two-scale two-phase flow interface
We now turn to the derivation of a two-phase flow model us-
ing our two-scale interface description. We assume that the
pressure and velocity of each component are at equilibrium.
We consider a set of bulk variables: the total density ρ, the
mass fraction of fluid 1 Y and the velocity v, then we con-
sider variables that characterize the position geometry of the
interface. In classic approaches like [7] this characterization
is achieved by using the volume fraction which can only cap-
ture large scale interface features: small scales are lost. Such
model cannot account accurately for complex two-phase flow
topology variations across several scales.

Our goal is two-fold: first we aim at enriching the description
of the interface by solving supplementary geometric vari-
ables such as the interfacial density area, Σ and the mean
curvature H . Second, we propose to account for a two-scale
kinematic evolution.

We suppose the two-phase flow interface to be defined by
a PDF f that describes all the scales of the interface. Let
us consider a cut-off length scale lc. We can now express
variables that characterize the interface in terms of f and fc.

The Lagrangian energy L of the system is the difference be-
tween the kinetic energy, K and the potential energy, U , of
the system. We separate bulk and interfacial contribution of
the potential energy, denoting the bulk potential Ub and the
interfacial energy Ui. The bulk kinetic energy contribution
K is defined through the bulk variables only, and therefore
no distinction between small and large scales are needed.

K =
1

2
ρ‖v‖2 (16)

We suppose that the bulk potential energy takes the form

Ub = ρe(ρ, Y, α).

Let us note that Ub depends on bulk variables but also on α.

In order to account for surface tensions effects we also add
a potential interfacial energy Ui. If we have access to all
scales of the interface, we can express the potential interfacial
energy by

Ui =
1

2
σ‖∇α‖ (17)

where σ is the surface tension coefficient of the mixture and
α, defined in Equation (2), is accounting for small and large
scales. After filtering small scales, ∇αc cannot describe
small scale surface tension. By (4c) and (5), we have

∇α =∇αc +∇α̃. (18)

This suggests that the interfacial energy, accounting for scale
separation can be expressed as

Ui =
1

2
σ‖∇αc‖+W, (19)

whereW is a subscale interfacial energyW that we intend to
model using the geometric characterization of the interface.
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We suppose that small scale interfacial energy variations are
involved when there is a variation of the fluctuation of inter-
facial density area Σ̃. Under such variations we suppose that
surface tension forces are oriented along the normal n to the
interface and proportional to the local mean curvature. We
also assume that for small scales the interface can only un-
dergo displacement δhn that are oriented along the normal
to the interface. The infinitesimal energy variation involved
with the infinitesimal work of such forces read the interface
δhn, reads

δW = γHδh, (20)

where γ is a constant characterizing the surface tension prop-
erties of the mixture. In [6], relationships realted to geomet-
ric variables describing the interface have been derived when
the interface is subjected to a small displacement δhn. These
relations can be expressed as follows

δΣ̃ = −2HΣ̃δh, δα = Σ̃δh, (21)

where δ characterizes an infinitesimal variation. Let us em-
phasize that (21) involves α, and not α̃. This is due to the fact
that the small scale interface is only accurately described by
α as shown in Figure 2. Therefore the inifinitesimal variation
of small scale interfacial energy takes the form

δW =
1

2
γ
δΣ̃

Σ̃
. (22)

This suggests that

W =
1

2
γ ln

(
Σ̃

Σ0

)
(23)

where Σ0 is defined as the interfacial density area of Bc(0),
Σ0 = 6/lc, i.e. the interfacial density area associated to the
maximal curvature that can be capture at any point x by αc.
The limit case Σ̃(x)→ 0 in (23) has to be discarded as in this
case there is no interface in the vicinity of x. We propose to
detect such situations using the values ofH . This suggests to
adopt an alternate definition for W by considering

W =
γ̂(H)

2
ln

[
Σ̃

Σ0

]
, (24)

γ̂(H) =

{
γ if H ≥ Hmax,
0 otherwise.

(25)

We now turn to the definition of the small scale kinetic energy
Ki by setting

Ki =
1

2
m(Dth)

2
. (26)

The coefficient m has the dimension of a mass. Injecting the
Equation (21), it yields

Ki =
1

2
m

(Dtα)
2

Σ̃2
. (27)

We thus propose to define the interfacial energy as

Ki + Ui =
1

2
σ‖∇α‖ (28)

=
1

2
m

(Dtα)
2

Σ̃2
+

1

2
σ‖∇αc‖ − γ̂(H) ln

(
Σ̃

Σ0

)
(29)

where Equation (28) gives the form of the interfacial energy
in terms of geometric variables that cover the whole range
of scales whereas Equation (29) shows the decomposition of
the interfacial energy induced by the introduction of a cutoff
length scale and therefore is defined with respect to filtered
and fluctuating geometric quantities.

Relation (15) suggests that we can substitute α by αc in the
bulk potential energy. Therefore when accounting for a scale
separation between small and large scale, the Lagrangian of
the system is now a function of

(
ρ, Y,v, αc, Σ̃

)
and can be

written as

L
(
ρ, Y,v, αc, Σ̃

)
=

1

2
ρv2 +

1

2
m

(Dtαc)
2

Σ̃2

+
1

2
σ‖∇αc‖ − γ̂(H) ln

(
Σ̃

Σ0

)
− ρe(ρ, Y, αc). (30)

From now on, we shall assume the mean curvature x 7→ H
to be a fixed given field. Discarding this restriction will be
the matter of future works. To simplify notation, we will
now drop the notations for fluctuating and filtered quantities
on the volume fraction and the interfacial density area and
suppose m, σ and γ to be constant.

3 Extremization of the Action

We now follow classic lines of the Least Action Principle.
Consider B(t) ⊂ R3 the volume occupied by the fluid for
t ∈ [t0, t1]. Let X ∈ B(t0) be the Lagrangian coordinates
associated with the reference frame at instant t = t0, then we
note (t,X) 7→ ϕL the position of the fluid particle whose
position is X at t = t0. If (t,x) 7→ b is any Eulerian field
it can be associated with the Lagrangian field (t,X) 7→ bL

by setting b(ϕL(X, t), t) = bL(X, t). The flow can be fully
characterized by (t,x) 7→ (ρ,v, Y, α,Σ) or equivalently by
x 7→ (Y, α,Σ) and (t,X) 7→ ϕL if ϕL complies with the
mass conservation equation.

For a given transformation of the medium x 7→ (Y, α,Σ) and
(t,X) 7→ ϕL, let (t,x, λ) 7→ (Yλ, αλ,Σλ) and (t,X, λ) 7→
ϕ̃L be a family of medium transformations parametrized
by λ ∈ [0, 1]. We note Ω̃(λ) =

{
(t, ϕ̃L(t,X, λ))|X ∈

B(t0), t ∈ [t0, t1]
}

and we require these fields to satisfy con-
straints pertaining to mass conservation

∂ρλ
∂t

+∇ · (ρλvλ) = 0,
∂ρλYλ
∂t

+∇ · (ρλYλvλ) = 0

(31)
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supplemented by constraints regarding the topology evolu-
tion

DtΣλ + 2H ΣλDthλ = 0, Dtαλ − ΣλDthλ = 0, (32)

and finally classic boundary constraints

(Yλ, αλ,Σλ)(t,x, λ = 0, 1) =(Y, α,Σ)(t,x), (33a)

ϕ̃L(X, t, λ = 0, 1) =ϕL(X, t), (33b)
(Yλ, αλ,Σλ)(t,x, λ)|(t,x)∈∂Ω̃(λ) =g(Y, α,Σ)(t,x),

(33c)

ϕ̃L(X, t, λ)|(t,X)∈∂([t0,t1]×B(t0)) =ϕL(X, t). (33d)

Following standard lines, this family of transformation yields
a family of infinitesimal transformations defined as follows

δλϕ(t,ϕL(t,X)) =

(
∂ϕ̃L

∂λ

)
t,X

(t,X, λ = 0), (34a)

δλb(t,x) =

(
∂b̃

∂λ

)
t,x

(t,x, λ = 0), (34b)

for b ∈ {ρ, Y,v, α,Σ}. Let us now define the Hamiltonian
action A associated with Ω for the family of transformations
(t,x, λ) 7→ (Yλ, αλ,Σλ) and (t,X, λ) 7→ ϕ̃L

A (λ) =

∫
Ω̃(λ)

L(ρλ, Yλ,vλ, Dthλ, αλ,Σλ,∇αλ) dxdt.

(35)

The Least Action Principle states that a physical transforma-
tion of the system verifies

dA

dλ
(0) = 0. (36)

Relation (36) will provide the motion equations of the flow.
In order to obtain a set of partial differential equations, we
need to express dA /dλ . Using definition (34b) we can write

dA

dλ
(0) =

∫
Ω(0)

[
∂L

∂ρ
δλρ+

∂L

∂Y
δλY +

∂L

∂v
δλv

+
∂L

∂(Dth)
δλ(Dth) +

∂L

∂α
δλα+

∂L

∂Σ
δλΣ

+
∂L

∂(∇α)
δλ(∇α)

]
dxdt. (37)

Applying (34b) with the constraints (31) allows to express
following relations between the infinitesimal variations

δλρ = −∇ · (ρδλϕ) , (38a)

δλY = −∇Y T δλϕ, (38b)

δλv = Dt(δλϕ)−
(
δλϕ

T∇
)
v, (38c)

δλ (Dth) =
1

Σ
δλ (Dtα)− Dth

Σ
δλΣ. (38d)

Recasting relations (38) into (37) provides∫
Ω(0)

[AT δϕ + B δα+ C δΣ] dxdt = 0, (39)

AT = ∂t

(
∂L

∂v

)
+∇ · [( ∂L

∂v

)
T vT

]
+ (∇v)T

(
∂L

∂v

)T
+ ∂t

(
1

Σ

∂L

∂Dth
∇α

)
+∇ ·

[
1

Σ

∂L

∂Dth
(∇α)Tv

]
+

1

Σ

∂L

∂Dth
(∇v)T∇α− ρ

(
∇
[
∂L

∂ρ

])T
+
∂L

∂Y
∇Y,

(40a)

B =
∂L

∂α
−∇ ·

[
∂L

∂∇α

]
− ∂t

(
1

Σ

∂L

∂Dth

)

−∇ ·
[

1

Σ

∂L

∂Dth
v

]
,

(40b)

C=
∂L

∂Σ
− 1

Σ

∂L

∂Dth
Dth. (40c)

We can conclude that the Least Action Principles applied to
the Lagrangian energy defined by (30) yields the following
equations of motion

A = 0, B = 0, C = 0. (41)

Let us further express the equations of motions into a more
familiar form. With the definition (30) of L one then has

∂ρL =
|v|2

2
− e− ρ∂ρe, ∂Y L = −ρ∂Y e, (42a)

∂vL = ρv, ∂(Dth)L = mDth, (42b)

∂ΣL = − γ̂
Σ
, ∂αL = −ρ∂αe, (42c)

∂(∇α)L = σ
∇α
‖∇α‖ . (42d)

We obtain

A= ∂t (ρv) +∇ ·
[
ρvvT

]
+ ρ∇v · v + ∂t

(m
Σ
Dth∇α

)
+∇ ·

[m
Σ
Dth (∇α)Tv

]
+
m

Σ
Dth(∇v)T∇α

−ρ∇[1/2|v|2 − e− ρ∂ρe]− ρ∂Y e∇Y,
(43a)

B = ∂t

(m
Σ
Dth

)
+∇ ·

[m
Σ
Dthv

]
+ ρ∂αe+∇ ·

[
σ
∇α
‖∇α‖

]
, (43b)

C = − γ̂
Σ
− m

Σ
(Dth)

2
. (43c)

4 Final form of the system

We define the pressure p of the two-phase medium and the
partial pressures pk of each phase by

p = ρ2 ∂e

∂ρ
, pk = ρ2

k

∂e

∂ρk
, (44)
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where ρ is the mixture density defined as ρ = α1ρ1 + α1ρ2,
αk is the volume fraction of phase k = 1, 2, ρk the partial
density. Then by injecting relations (42a) into (41) one ob-
tains the system

∂ρ

∂t
+∇ · [ρv] = 0, (45a)

∂ρY

∂t
+∇ · [ρY v] = 0, (45b)

∂ρv

∂t
+∇ ·

[
(ρvvT ) +

(
p+

γ̂

2

)
Id

]
(45c)

+∇ ·
[
σ
∇α∇αT

‖∇α‖ −
1

2
σ‖∇α‖Id +

γ̂

Σ
Id

]
= 0,

Dtα−
√
− γ̂
m

Σ = 0, (45d)

Dt

(
1

Σ

)
+

1√
−mγ̂

(
p2 − p1 +∇ ·

[
σ
∇α
‖∇α‖

])
= 0.

(45e)

System (45) is a generalization of the system found in [2,
3] and degenerates towards it when considering the interfa-
cial area density as a function of the volume fraction only.
In the momentum equation (45d), the terms function of the
volume fraction gradient are common terms found in the lit-
erature [8]. Equation (45e) is the transport equation of the
fluctuating interfacial density area. In a steady state regime,
Equation (45e) yields the classic Poisson equation

p2 − p1 +∇ ·
[
σ
∇α
‖∇α‖

]
= 0 (46)

It is important to notice that System (45) is valid for any flow
topology as opposed to the system found in [2, 3] only valid
for dispersed flow.

Conclusions

In the present work, we presented a definition of a two-phase
interface by means of a PDF that departs from the classic ge-
ometrical definition. Then we derived two-phase flow model
accounting for small and large scale separation of the inter-
face description by means of supplementary convected geo-
metric variables.

The Least Action Principle yields a model that accounts for
two-scale kinematics and two-scale surface tension through
the introduction of density area flucutations. This is an exten-
sion of previous work that was able to account for a mono-
disperse spherical bubbly flow at the small scale [3, 6].

In future works, we will try to encompass new effects of
the interface dynamics such as stretching through the evo-
lution of the mean curvature that was assumed constant in
the present work.
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