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We studied the harmonic magnetodynamic behavior (without free space wave propagation) of a resonant surface metamaterial, 

made of many identical and regularly arranged LC cells. The circuit model gives the exact solution, but it is not numerically efficient 
for simulating very large structures (e.g. 1000×1000 cells giving 106 unknowns with a full 106×106 matrix). For the first time, we 
highlight the modal characteristics of the spatial solutions, which makes it possible to explain their frequency and spatial related 
properties. From these results, we show under what assumptions it is possible to significantly lighten the system of equations, which 
opens the way to develop more efficient numerical methods. 
 

Index Terms— LC metamaterials, resonance, circuit analysis, modal analysis, homogenization, matrix reduction, integral equations. 
 

I. INTRODUCTION: TYPICAL DEVICE 
HE TYPICAL device that we consider was first proposed in 
[1], with 8×8 resonant LC cells arranged on a plane 

surface (Fig. 1). The goal and originality of the present work 
are to explain the frequency behavior of this kind of devices 
and to propose efficient numerical methods to simulate them 
even for arrangements with a far greater number, N, of cells 
(e.g. 1000×1000, N=106). 

 
Fig. 1.  Experimental setup applied to wireless power coupling studies [1]. 
Natural frequency of the isolated cell: 𝑓0 = 1/(2𝜋�𝑀𝑖𝑖𝐶). 

II. CIRCUIT ANALYSIS TECHNIQUE (REFERENCE SOLUTION) 
Parasitic capacitive effects are negligible with the frequency 

range and geometric dimensions considered here. For quite 
small systems, the reference solution is then easy to obtain 
using the circuit analysis technique. We get a complex, full 

N×N matrix with main terms around the diagonal:  

�𝑅 +
1
𝒋𝜔𝜔

� 𝐼𝑖 + 𝒋𝜔� 𝑀𝑖𝑖𝐼𝑗
𝑁

𝑗=1
= −𝒋𝜔�𝑀𝑖𝑖𝐼𝑠 + 𝑀𝑖𝑖𝐼𝑟�. (1) 

 The mutual inductors (matrix 𝑀𝑖𝑖 and vectors 𝑀𝑖𝑖 and 𝑀𝑖𝑖) 
may be analytically [2, 3] or numerically computed. It is then 
possible to obtain the cell currents 𝐼𝑖(𝜔) and the flux in the 
receiver as a function of the angular frequency 𝜔 . For the 
present preliminary approach, we suppose that the excitation 
current Is is known, and that there is no current in the receiver 
(Ir=0). The method may be applied for other choices by 
considering the corresponding circuit equations. 

For small structures, circuit analysis gives the exact 
reference solutions, but it is not practicable for large ones (a 
1000×1000 cell metamaterial gives a 106×106 full matrix). 
Moreover, it does not give insight into understanding how the 
device works. The modal approach, applied below for the first 
time in this context, provides this understanding. 

III. MODAL APPROACH 

A. 1D Theory. 
To simplify the explanations, we first establish here the 

modal characteristics of the solutions for 2D field problems 
with 1D metamaterials, made of N=2n+1 cells (Fig. 2); then 
the corresponding expressions for extension to a real 3D 
situation with 2D metamaterials will be given. 

 
Fig. 2.  2D problem with a 1D linear metamaterial 
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Fig. 3.  Typical source flux 𝜙𝑖𝑖 along the metamaterial (top), and its n=181 
Fourier coefficients (bottom). With the data in Fig. 6 (size of the source 
coil >> D), the 18 lowest spatial frequencies give 99.8% of the L2-norm. 

Let us develop, in spatial discrete Fourier series, the 
N=2n+1 discrete values of the source flux, 𝜙𝑖𝑖 = 𝑀𝑖𝑖𝐼𝑠, (Fig. 
3) and the solution for the current, 𝐼𝑖 . For the cell i located at 
the abscissa xi of the metamaterial (Fig. 2), we get: 

𝜙𝑖𝑖 = � 𝝓𝑘𝑘𝒆
𝒋2𝜋𝜋𝑥𝑖𝐿

𝑛

𝑘=−𝑛
;   𝐼𝑖 = � 𝑰𝑘𝒆

𝒋2𝜋𝜋𝑥𝑖𝐿
𝑛

𝑘=−𝑛
 (2) 

where 𝝓𝑘𝑘 and 𝑰𝑘  are the Fourier coefficients. Then the 
𝒋𝜔 ∑ 𝑀𝑖𝑖𝐼𝑗 

𝑗  term of the circuit equation (1), which gives the 
flux in cell number i due to all cell currents 𝐼𝑗  (𝑗 = 1,𝑁), can 
be directly evaluated from these modal expressions  by:  

� 𝑀𝑖𝑖𝐼𝑗
𝑁

𝑗=1
= � 𝑀𝑖𝑖� 𝑰𝑘𝒆

𝒋2𝜋𝜋
𝑥𝑗
𝐿

𝑛

𝑘=−𝑛

𝑁

𝑗=1
 

= � �𝑰𝑘𝒆
𝒋2𝜋𝜋𝑥𝑖𝐿 � 𝑀𝑖𝑗𝒆

𝒋2𝜋𝜋
𝑥𝑗−𝑥𝑖
𝐿

𝑁

𝑗=1
�

𝑛

𝑘=−𝑛

= � �ℳ𝑘,𝑖 . 𝐼𝑖,𝑘�
𝑛

𝑘=−𝑛
 

 

(3) 

 

where the "modal mutual inductances", ℳ𝑘,𝑖 , are complex 
numbers, function of the mode, k, and cell position, i:  

ℳ𝑘,𝑖 =  � 𝑀𝑖𝑖𝒆
𝒋2𝜋𝜋

𝑥𝑗−𝑥𝑖
𝐿

𝑁

𝑗=1
. (4) 

The mutual values, 𝑀𝑖𝑖 , are highly dominating for neighbor 
cells: as a result, ℳ𝑘,𝑖  is almost a real number, and a constant 
except near edges. Fig. 4 illustrates a 2D configuration.  

The modal form of circuit equation (1), written for the N 
modal currents, 𝑰𝑘, becomes (i=1, N): 

� �𝑅 +
1
𝒋𝜔𝜔

+ 𝒋𝜔ℳ𝑘,𝑖� 𝑰𝑘𝒆
𝒋2𝜋𝜋𝑥𝑖𝐿

𝑛

𝑘=−𝑛

= −𝒋𝜔� 𝝓𝑘𝑘𝒆
𝒋2𝜋𝜋𝑥𝑖𝐿   

𝑛

𝑘=−𝑛
 . (5) 

In this form, the matrix is better conditioned than in (1) but is 
still full. In fact, each mode, 𝝓𝑘𝑘, of the source field excites 
almost all modes of the cell currents. The edge effects and 
corresponding variations of ℳ𝑘,𝑖 cause these mode mixtures.  

 

Fig. 4.  Example of variations of ℳ𝑘𝑙𝑙 (9) as a function of the relative position 
of the cell (xi,yi) on a 2D metamaterial of Fig. 1 type, 15×15 cells: 2D-mode 
k=l=0, given in % of the modal reference ℳ00

∞ (10). ℳ00𝑖 are real numbers. 

B. 1D infinite metamaterial. 
However, if we consider the theoretical case of a 

metamaterial without edges (geometrically infinite), the 
mutual mode, k’, no longer depends on the position of the cell 
considered. Indeed, the summations in (4) turn into spatial 
convolutions between the mutual impedances, 𝑀𝑖𝑖 , and the 
modal functions of spatial frequencies,  𝑓𝑠 = 𝑘′/2𝑛′𝐷 . This 
leads to the new concept of “infinite modal mutual induc-
tances”, ℳ𝑘′

∞, which are real numbers (j-evenness of 𝑀𝑖𝑖): 

ℳ𝑘′
∞ =  ℳ∞(𝑓𝑠) = lim

𝑚→∞
� 𝑀𝑖𝑖𝒆𝒋2𝜋𝑓𝑠�𝑥𝑗−𝑥𝑖�

𝑖+𝑚

𝑗=𝑖−𝑚
. (6) 

There is, theoretically, a number (2𝑛′ + 1)  of modes that 
tends toward infinity, with spatial frequencies between 0 and 
1/2D (the 2 factor comes from Shannon's theorem). 
Numerically, it is necessary to limit the number of modes 
being calculated, which is equivalent to considering a 
repetitive structure of finite size, 𝐿′ = 2𝑛′𝐷  (foldover 
distortion). We can choose, for example, n’=n, taking for 𝐿′ 
the size, 𝐿, of the real metamaterial. 

In this case, we will find the same number of modal 
resonances and we have the same number of degrees of 
freedom, 𝑁′ = 𝑁 = 2𝑛 + 1, but the problem is not exactly the 
same. The numerical solution obtained with a finite number of 
modes corresponds, in fact, to the infinite system with 
antiperiodic excitation in Fig. 5. 

 
Fig 5.  Infinite anti-periodic configuration corresponding to modal numerical 
solutions. 

This modal approach will only be accurate if 𝐿 ≫ 𝐷 (size of 
the elementary cell), if the flux excitation is "far from the 
edges", and if the resulting solutions are such that the cell 
current in the material, 𝐼𝑖 , also decreases very strongly towards 
its edges. 
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In practice, the infinite sum (6) converges very quickly and 

only the mutual inductances of the first 5 to 10 neighboring 
cells should be considered. The computation of 
ℳ∞(𝑓𝑠) (analytically or numerically, according to the 
complexity of the elementary cell configuration) is to be 
carried out only once for a given metamaterial because the 
result does not depend on the excitation. The function to be 
identified is generally quite regular; it is enough to calculate it 
for some spatial frequencies between 0 and 1/2D and to build 
a polynomial interpolation. We give an example below (Fig. 6) 
for which a polynomial interpolation of degree 4 gives, for all 
modes, a relative error less than 10-4 in comparison with the 
numerical values of the limit (6). 

 

Data (see Fig. 2) for the 
numerical results of Fig. 3, 
Fig. 6, Fig. 7, and Fig. 9: 

Metamaterial: 
D = 10 mm; d = 9 mm   
wire φ = 1 mm 
N = 361 
R=1 mΩ; C=1.95 µF 
Source and receiver: 
h = h’ = 100 mm 
𝒟 = 150 mm 
𝒟′ = 100 mm 
Depth: 1 m 

Fig. 6.  Infinite modal mutual inductance ℳ𝑘
∞  (6) as a function of spatial 

frequency,  𝑓𝑠, for the 1D metamaterial in Fig. 2.  

The circuit equations (1) are then translated by decoupled 
modal equations (N equations at 1 unknown): that is, each 
modal component, k, of the source flux, 𝝓𝑘𝑘, excites only the 
same mode, k, of the current: 

�𝑅 +
1
𝒋𝜔𝐶

+ 𝒋𝜔ℳ𝑘
∞� 𝑰𝑘 = −𝒋𝜔𝝓𝑘𝑘   𝑘 = −𝑛…𝑛 . (7) 

The modal equation (7) highlights an electric resonance 
frequency, 1/(2𝜋�ℳ𝑘

∞𝐶) , for each spatial mode, k, the 
fastest spatial variations correspond to the lowest electric 
resonance frequencies.  

The solution in the receiver's plan can also be written in 
modal form. This makes it possible to explain a phenomenon, 
initially demonstrated experimentally; the presence of the 
metamaterial also makes it possible to transfer energy when 
the receiver winding is largely off-center with respect to the 
source [5].  

 
Fig. 7.  Flux in the receiver of Fig 2 as a function of its xr position: 8 main 
resonant modes. 

For this purpose, by a judicious choice of the source electric 
frequency, it is enough to excite the spatial mode in which the 
lobe is in front of the receiver (Fig. 7). 

C. Corresponding expressions for a 2D metamaterial. 
For a 2D metamaterial, the discrete Fourier series have 2 

indexes k and l, corresponding to both tangential directions x 
and y (Fig. 8). The main results can be preserved by adopting 
the necessary changes. We can then get: 

𝜙𝑖𝑖 = � � 𝝓𝑘𝑘,𝑠𝒆
𝒋2𝜋𝜋𝑥𝑖𝐿𝑥

𝑛𝑥

𝑘=−𝑛𝑥

𝒆
𝒋2𝜋𝜋𝑦𝑖𝐿𝑦

𝑛𝑦

𝑙=−𝑛𝑦

, 
 

(8) 

ℳ𝑘,𝑙,𝑖 =  � 𝑀𝑖𝑖𝒆
𝒋2𝜋𝜋

𝑥𝑗−𝑥𝑖
𝐿𝑥 𝒆

𝒋2𝜋𝜋
𝑦𝑗−𝑦𝑖
𝐿𝑦

𝑁

𝑗=1
,  

 

(9) 

ℳ𝑘,𝑙
∞ = � 𝑀𝑖𝑖𝒆

𝒋2𝜋𝜋
𝑥𝑗−𝑥𝑖
𝐿𝑥 𝒆

𝒋2𝜋𝜋
𝑦𝑗−𝑦𝑖
𝐿𝑦

∞

𝑗=−∞

. (10) 

 
Fig. 8.  2D resonant solutions (12×12 cells, f0=10MHz) obtained with the 
complete circuit equations [4]. Colors represent the cell current modulus, Ii.. 

IV. NUMERICAL EXAMPLE (1D METAMATERIAL) 
In our numerical examples, we chose an excitation and a 

metamaterial, symmetrical with respect to x = 0, with an odd 
number of cells (N = 2n + 1 = 361), and small enough for the 
exact solution obtained by the circuit method to be adopted as 
a reference solution (181 unknowns). For the modal method, 
symmetry leads to a priori 𝝓−𝑘𝑘 = 𝝓𝑘𝑘;  𝑰−𝑘 = 𝑰𝑘, and so on.  

Fig. 3 (top) shows the typical patterns of the excitation flux 
through the cells of the 1D metamaterial with the data given in 
Fig. 6, and Fig. 3 (bottom) shows its spectral decomposition as 
a function of the spatial frequency. 

A. Tests: Relevant global values and reference solution 
Using the solution obtained by the complete circuit method 

as a reference, we can evaluate the precision of the 
approximated or reduced methods. 

Two global values are especially significant for the Compu-
ted Aided Design approach: First is the L2−norm of cell 
currents: 
 |𝐼2|(𝜔) = ∑ �𝐼𝑖(𝜔)�2𝑁    (11) 
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which expresses the intrinsic reaction of the metamaterial. 
Second is the ratio (12) between the flux through the receiver 
in the 𝑥𝑟  position, respectively with and without the 
metamaterial or its norm 𝜂ℓ2(𝜔) on a length ℓ, which express 
the frequency effect of the metamaterial for the flux 
transmission between the source and the receiver:  

𝜂(𝑥𝑟 ,𝜔) = 1 + � 𝑀𝑟𝑟𝐼𝑗(𝜔)
𝑁

𝑗=1
𝑀𝑟𝑟𝐼𝑠�  (12) 

𝜂ℓ2(𝜔) =
1
ℓ
� �𝜂�

2
(𝑥,𝜔)𝑑𝑑

𝑥𝑟0+ℓ

𝑥𝑟0
. (13) 

The complete reference circuit solution is obtained using 
the same configuration of N=361 cell currents (181×181 full 
matrix). The global frequency behaviors (11) and (13) 
typically have the aspects given in Fig. 9 (blue lines).  

The strong antiresonance observed for energy transmission, 
𝜂ℓ2 (13), to the receiver (Fig. 9, right) is a classic effect of the 
superposition of 2 shifted fields (source and reaction fields); it 
is not linked to the specific properties of the metamaterial. Its 
frequency depends on the distance, h’ (Fig. 2), between the 
metamaterial and the receiver. 

 
Fig. 9.  Typical intrinsic (left) and transfer (right) behaviors (11) and (13).  

B. Modal and reduced modal solutions.  
Even if the number of equations, n, is of the same order of 

magnitude as for the circuit method, the modal method is 
much more efficient because their equations are independent. 
Moreover, we can evaluate and use only the predominant 
modes: if the elementary cell is small with respect to the 
excitation and reception coil dimensions, the amplitude of the 
higher modes is small and their effect on the solution will be 
negligible. In the typical case of Fig. 3, 10% of the existing 
modes contain 99.8% of the L2−norm of the source flux. It is 
then possible to reduce the number of degrees of freedom of 
the solution (low-pass spatial filtering) without substantially 
reducing its accuracy. 

The global behavior of the corresponding reduced modal 
solution with only 37 independent equations is correctly 
described (see inset on Fig. 9, left, yellow line), but the 
resonances are not precisely obtained (peak values and 
frequencies), because the metamaterial is considered infinite 
(cf. §III. B). 

C. Reduced circuit solution 
Following the same logic, we tested a coarse first order 

mesh representation of cell currents, Ii, to reduce the number 
of unknowns (columns of the matrix) of the exact circuit 

equations (1) by the same factor 10. The shape functions of 
this mesh were also used to reduce the number of circuit 
equations (lines of the matrix) by linear combinations (37×37 
full matrix). Like the reduced modal method, this method 
results in a low-pass filtering of the reference solution, but this 
time it is possible to consider the finite dimension of the 
metamaterial. The accuracy is excellent for the frequency band 
of interest (see inset on Fig. 9, left, red line). 

V.  PERSPECTIVES AND CONCLUSION 
The reduction techniques presented here for the 1D case 

may be easily extended for more realistic 2D metamaterials 
(complete tests are in progress).  

The efficiency is even better because the reduction factor 
used (10 in the 1D case presented) applies in each of the two 
directions tangent to the metamaterial, reducing the number of 
unknowns by a factor of 100. In the large size 2D case 
mentioned above (1000×1000 cells, 106×106 full matrix), these 
reduction methods lead to 104 independent equations for the 
modal approximation and to a 104×104 full matrix for the 
reduced circuit method; an ordinary laptop would be sufficient 
to solve it. 

The most original conclusion is that, under the conditions 
we have explained (especially when the sizes of the source 
and receiver coils are larger relative to the size of the 
elementary cell), there are precise reduced forms of the exact 
equations. This result implies that a way to achieve an 
effective homogenization of the metamaterial should be found. 

The magnetic field of the cell currents can be calculated 
using the integral method as the field of a distribution of 
normal dipoles, equivalent to the coarse mesh discretization of  
the cell current used for the reduced circuit method. 

The homogenization step itself will consist of modifying the 
classical integral method to introduce (i) the close interactions 
(known analytically) that the integral method with coarse 
mesh cannot describe precisely, and (ii) the (𝑅 + 1 𝒋𝜔𝜔⁄ ) 
terms of (1).  
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