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Abstract— In this paper, the use of single-error-correcting Reed-
Solomon (RS) product codes are investigated in an ultra high-
speed context. A full-parallel architecture dedicated to the turbo 
decoding process of RS product codes is described. An 
experimental setup composed of a Dinigroup board that includes 
six Xilinx Virtex-5 LX330 FPGAs is employed. Thus, a full-parallel 
turbo decoding architecture dedicated to the (31, 29)2 RS product 
code has been designed and then implemented into a 5Gbps 
experimental setup. The purpose of this prototype is to 
demonstrate that RS turbo decoders can effectively achieve 
information rates above 1Gbps. The results show that the RS turbo 
product codes offer a good complexity/performance trade off for 
ultra-high throughputs. The major limitation in terms of data rate 
of our prototype is the data exchange between the FPGAs of the 
board. Indeed, the turbo decoder architecture enables decoding at 
information rates until 10Gbps onto FPGA devices. 

I. INTRODUCTION

In telecommunications, forward error correction (FEC) is a 
system of error control that improves digital communication 
quality. Since the early 90’s, channel coding families based on 
iterative decoding process are considered to be the most 
efficient coding schemes. With the invention of turbo codes [1] 
followed by the rediscovery of low-density parity-check 
(LDPC) codes [2], it is now possible to approach the 
fundamental limit of channel capacity. The turbo code family 
refers to two classes of codes: Convolutional Turbo Codes 
(CTCs) [1] and Turbo Product Codes (TPCs) [3]. The general 
concept of TPC is based on product codes that were constructed 
by the serial concatenation of two (or more) systematic linear 
block codes. In the last few years, many TPC decoder 
architectures have been designed [4, 5]. Product codes using 
binary Bose-Chaudhuri-Hocquenghem (BCH) component codes 
have generally been chosen [6]. The turbo product code concept 
was recently successfully extended to RS component codes [7, 
8]. Actually, RS codes are a widely used subclass of non-binary 
BCH codes. For this reason, the code construction approach 
dedicated to BCH codes can be naturally applied to RS codes. It 
is possible to design efficient TPC architectures using RS 
component codes from the BCH- TPC architecture know-how 
[9].1 
  At present, the main challenge for hardware implementation of 
turbo decoder is to meet the demand for even higher data rates. 
Indeed, the increasing demand of high data rate and reliability 
in modern communication systems is pushing next-generation 
standards toward error correction schemes allowing high 
throughput decoding with near Shannon limit performance. 
Thus, data rates above 1Gbps and 10Gbps will be required for 
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the next generation standards of wireless technologies (WIFI, 
WIMAX, DVB-H…) and data transmission over Passive 
Optical Networks (PON), respectively. In order to achieve high 
throughput and to reduce latency, parallel implementations 
become mandatory. In 2006, a full-parallel architecture for the 
turbo decoding of product codes was proposed in [10]. The 
major advantage of this full-parallel architecture is that it 
enables the memory block between each half-iteration to be 
replaced by simple interconnection networks. Moreover, the 
latency of the turbo decoder is strongly reduced. In such a full-
parallel architecture, most of the hardware complexity remains 
in the duplicated Soft Input Soft Output (SISO) decoders.  

In this paper, the implementation onto FPGA devices of an 
ultra high throughput (31,29)2 RS turbo decoder is presented. 
The purpose of this prototype is to demonstrate that an RS turbo 
decoder can effectively achieve data rates above 1Gbps. To the 

authors’ knowledge, this is the first implementation of FEC 
decoder onto an FPGA target at information throughputs 
superior to 1Gbps. Previously, a BTC decoder included in a 
12.4Gbps optical setup was described in [11]. Since only a part 
of the transmitted data is actually coded, the information 
throughput of the decoder is 156Mb/s. In 2007, a LDPC code 
decoder ASIC implementation at an information throughput 
equal to 2.4Gbps was proposed in [12]. 

The remainder of the paper is organized as follows. Section II 
briefly recalls the basic principles of turbo decoding for RS 
product codes. The challenging issue of designing high data 
rates full parallel turbo decoding architecture is developed in 
Section III. Section IV describes an implementation of the 
resulting turbo decoder and its experimental setup onto FPGA 
devices. Finally, characteristics and performance in terms of 
BER of the prototype are detailed in Section V. 

II. TURBO DECODING OF RS PRODUCT CODES

A product code is a concatenation of systematic linear block 
codes. The product code inherits the properties of the 
elementary codes that it is composed of. Let us consider two 
identical systematic linear block codes C having parameters (n, 
k, dmin), where n, k and dmin stand for code length, number of 
information symbols and minimum Hamming distance, 
respectively. The parameters of the resulting product code are 
given by: np= n2, kp= k2, dmin p = dmin

 2 and Rp= R2 (code rate). 
Thus, it is possible to construct powerful product codes using 
linear block codes. When C is an RS code over Galois field 
GF(2m), we obtain an RS product code over GF(2m). Digital 
communication systems usually employ some form of binary 
signaling. A binary expansion of the RS product code is then 
required for transmission. The extension field GF(2m) forms a 
vector space of dimension m over GF(2). A binary image of the 
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RS product code is thus obtained by expanding each code 
symbol of the product code matrix into m bits using a 
polynomial basis. The binary image is a product code with 
length mn2, dimension mk2 and minimum distance at least as 
large as the symbol level minimum distance. 

Turbo decoding process involves sequentially decoding the 
rows and columns of the product code matrix and by 
exchanging soft information between the decoders until a 
reliable decision can be made on the transmitted bits. In this 
work, SISO decoding of the RS component codes is performed 
at the bit-level using the Chase-Pyndiah algorithm. First 
introduced in [3] for binary BCH codes and latter extended to 
RS codes in [13], the Chase-Pyndiah decoder consists of a soft-
input hard-output Chase-2 decoder [14] augmented by a soft-
output computation unit. 

III. FULL-PARALLEL RS TURBO DECODING ARCHITECTURE

With current technologies, parallel decoding architectures are
the only solution to achieve information rates superior to 
1Gbps. An easy architectural solution is to duplicate the 
elementary decoders and the corresponding interleaving 
memories in order to achieve the given throughput. This results 
in a turbo decoder with unacceptable cumulative area. Thus, 
smarter parallel decoding architectures have to be designed in 
order to better trade off performance and complexity under the 
constraint of a high-throughput. 

A. Previous work
Many turbo decoder architectures for product codes have been

previously designed. The classical approach involves decoding 
all the rows or all the columns of a matrix before the next half-
iteration. When an application requires high speed decoders, an 
architectural solution is to cascade SISO elementary decoders 
for each half-iteration. In this case, memory blocks are 
necessary between each half-iteration to store channel data and 
extrinsic information. Each memory block is composed of four 
memories of mN2 soft values. Thus, duplicating a SISO 
elementary decoder results in duplicating also the memory 
block which is very costly in terms of silicon area. In 2002, a 
new architecture for turbo decoding product codes was 
proposed in [5]. The idea is to store several data at the same 
address and to perform semi-parallel decoding to increase the 
data rate. However, it is necessary to process these data by row 
and by column. Let us consider l adjacent rows and l adjacent 
columns of the initial matrix. The l2 data constitute a word of 
the new matrix that has l2 times fewer addresses. This data 
organization does not require any particular memory 
architecture. The results obtained show that the turbo decoding 
throughput is increased by l2 when l elementary decoders 
processing l data simultaneously are used. Turbo decoding 
latency is divided by l. The area of the l elementary decoders is 
increased by l2/2 while the memory is kept constant. 

B. Full-parallel decoding principle
All rows (or all columns) of a matrix can be decoded in

parallel. If the architecture is composed of 2N elementary 
decoders, an appropriate treatment of the matrix allows the 
elimination of the reconstruction of the matrix between each 
decoding. Specifically, let i and j be the indices of a row and a 

column of the N2 matrix. In full-parallel processing, the row 
decoder i begins the decoding by the soft value in the ith 

position. Moreover, each row decoder processes the soft values 
by increasing the index by one modulo N. Similarly, the column 
decoder j begins the decoding by the soft value in the jth 
position. In addition, each column decoder processes the soft 
values by decreasing the index by one modulo N. Actually, the 
full-parallel decoding of turbo product code is possible thanks 
to the cyclic property of RS codes. Indeed, every cyclic shift c’ 
= (cN-1, c0, .., cN-3, cN-2) of a codeword c = (c0, c1, .., cN-2, cN-1) is 
also a valid codeword in a cyclic code. Therefore, only one 
clock period is necessary between two successive matrix 
decoding operations. The full-parallel decoding of a product 
code matrix N2 is detailed in Figure 1. A similar strategy was 
previously presented in [15] where memory access conflicts are 
resolved by means of an appropriate treatment of the matrix. 
However, interleaving memory is still required. 

N rows of N 
soft values 

N columns of N soft values Soft value 

index (i+1) = i + 1 mod N

index (j+1) = j - 1 mod N

i

j

Fig. 1. Full-parallel decoding of an RS product code matrix. 

The elementary decoder latency depends on the structure of 
the decoder (i.e. number of pipeline stages) and the code length 
N. Here, as the reconstruction matrix is removed, the latency
between row and column decoding is null.

C. Full-parallel architecture for RS product codes
The major advantage of our full-parallel architecture is that it

enables the memory block of 4mN2 soft values between each 
half-iteration to be removed. However, the codeword soft 
values exchanged between the row and column decoders have 
to be routed. One solution is to use an interconnection network 
for this task. In our case, we have chosen an Omega network. 
The Omega network is one of several interconnection networks 
used in parallel machines [16]. It is composed of log2 N stages, 
each having N=2 exchange elements. In fact, the Omega 
network complexity in terms of number of interconnections and 
of 2x2 switch transfer blocks is N x log2N and N/2 x log2N, 
respectively. For example, the equivalent gate complexity of a 
31x31 network can be estimated to be 200 logic gates per 
exchange bit. Figure 2 depicts a full-parallel architecture for the 
turbo decoding of product codes. It is composed of cascaded 
modules for the turbo decoder. Each module is dedicated to one 
iteration. However, it is possible to process several iterations by 
the same module. In our approach, 2N elementary decoders and 
two interconnection blocks are necessary for one module. An 
interconnection block is composed of two Omega networks 
exchanging the R and Riter soft values. Since the Omega 
network has low complexity, the full-parallel turbo decoder 



complexity essentially depends on the complexity of the 
elementary SISO decoder. 
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Fig. 2. Full-parallel architecture for decoding of RS product codes. 

D. Elementary SISO decoder architecture
The block diagram of an elementary SISO decoder is shown

in Figure 3, where iter stands for the current half-iteration 
number. Riter is the soft-input matrix computed from the 
previous half-iteration whereas R denotes the initial matrix 
delivered by the receiver front-end (Riter=R for the 1st half-
iteration). Witer is the extrinsic information matrix. αiter is a 
scaling factor that depends on the current half-iteration and is 
used to weight the influence of the extrinsic information during 
the first iterations.  

SISO 
decoding 

Riter 

R 

Diter 

Fiter 

αiter 

Riter+1 
Witer 

delay 

delay 

R

Fig. 3. Block diagram of the turbo-decoder at the iter-th half-iteration 

The decoder architecture is structured in three pipelined stages 
identified as reception, processing and transmission units [5]. 
During each stage, the N soft values of the received word Riter 
are processed sequentially in N clock periods. The reception 
stage computes the initial syndromes Si and finds the Lr least 
reliable bits in the received word. The main function of the 
processing stage is to build and then to correct the Nep error 
patterns obtained from the initial syndrome and to combine the 
least reliable bits. Moreover, the processing stage also has to 
produce a metric (Euclidean distance between error pattern and 
received word) for each error pattern. Finally, a selection 
function identifies the maximum likelihood codeword d and the 
competing codewords c (if any). The transmission stage 
performs different functions: computing the reliability for each 
binary soft value, computing the extrinsic information and 
updating the received soft values. The N soft values of the 
codeword are thus corrected sequentially. The decoding process 
needs to access the R and Riter soft values during the three 

decoding phases. For this reason, these words are implemented 
in six Random Access Memories (RAM) of size qmN controlled 
by a finite state machine. 

IV. IMPLEMENTATION OF AN RS TURBO DECODER
IN AN ULTRA HIGH RATE COMMUNICATIONS SETUP

The purpose of this prototype is to demonstrate that an RS 
turbo decoder can effectively achieve information rates until 
5Gbps. 

A. 5Gbps experimental setup
The experimental setup is composed of a Dinigroup board

[17] that includes six Xilinx Virtex-5 LX330 FPGAs. A Xilinx
Virtex-5 LX330 FPGA contains 51,840 slices that can emulate
up to 12 million gates of logic. It should be noted that Virtex-5
slices are organized differently from previous generations. Each
Virtex-5 slice contains four Look Up Tables (LUTs) and four
flip-flops instead of two LUTs and two flip-flops in previous
generation devices. The board is hosted on a 64- bit, 66MHz
PCI bus that enables communication at full PCI bandwidth with
a computer.

Figure 4 shows the different components of the digital 
communication setup implemented onto six FPGAs. One FPGA 
is dedicated to the component implementation of the 
transmission part. The five other FPGAs are dedicated to the 
implementation of the RS turbo decoder. One decoding iteration 
was implemented onto each FPGA resulting in a 5 full-iteration 
turbo decoder. Each decoding module corresponds to a full-
parallel architecture dedicated to the decoding of a matrix of 31 
x 31 coded soft values. We recall here that a coded soft values 
over GF(32) is mapped onto 5 LLR values, each LLR being 
quantized on 5 bits. The decoding process needs to access the 
31 coded soft values from each of the matrices R  and Riter 
during the three decoding phases of a half-iteration as explained 
in section III. For these reasons, 31 x 5 x 5 x 2 = 1,550 bits have 
to be exchanged between the decoding modules during each 
clock period f0=37.5MHz. The Dinigroup board offers 200 chip 
to chip LVDS for each FPGA to FPGA interconnect. 
Unfortunately, this number of LVDS is insufficient to enable 
the transmission of all the bits between the decoding modules. 
To solve this implementation constraint, we have chosen to add 
SERializer/DESerializer (SERDES) modules for the parallel-to-
serial conversions and for the serial-to-parallel conversions in 
each FPGA. Indeed, SERDES is a pair of functional blocks 
commonly used in high speed communications to convert data 
between parallel data and serial interfaces in each direction. 
SERDES modules are clocked with f1 = 8f0 = 300MHz and 
operate at 8:1 serialization or 1:8 deserialization. In this way, all 
data can be exchanged between the different decoding modules. 
Thanks to 200 chip to chip LVDS and the SERDES modules, 
data are exchanged between the different FPGAs at a 
throughput of 58,125Gbps while the working frequency and the 
information rates are only 37.5MHz and 5Gbps, respectively. 
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Fig. 4. 5Gbps experimental setup for turbo decoding of a (31,29)2 RS product code 

A. The transmission part of the prototype
A Pseudo Random Generator (PRG) sends out 145 (29*5)

pseudo random data streams at each clock period (f0). This 
module is composed of flip-flops and XOR gates that generate 
145 parallel outputs. A (31,29)2 RS encoder processes the 145 
data streams in parallel. The original proposed encoding 
scheme uses both sequential and parallel encoders. k 
sequential encoders process k rows and a parallel encoder 
processes n columns. Sequential encoders are conventional 
implemented by a set of linear feedback shift registers 
(LFSR). Alternatively, a linear block code can be encoded by 
multiplying the information vector k by the generator matrix. 
This can be easily implemented by an XOR gate arborescence 
which is a parallel combinatorial encoder. The classical 
sequential approach requires a kn memory block between row 
and column encoding. The original proposed encoding scheme 
avoids the use of memory between row and column 
processing. Moreover, the depicted architecture decreases the 
latency from kn to only one symbol. 29 conventional 
sequential encoders are cascaded with one parallel encoder. 
4805 encoded data (equivalent to a matrix 31 x 31 of 5-bit 
symbols) are generated in 31 clock periods (f0). The noise 
generator models 155 uncorrelated White Gaussian Noise 
(WGN) samples and adds them to the previously encoded 
data. We have chosen to integrate an AWGN channel from a 
white Gaussian noise generator adapted to hardware 
implementation. High accuracy, speed and low-cost hardware 
are reached by combining the Box-Muller and Central limit 
methods [18]. Each output sample is a 5 bit vector resulting in 
775 (155*5) bits to be sent in one clock period (f0). The Signal 
to Noise Ratio (SNR) is controllable via a computer that 
calculates the equivalent variance square root σ and sends it to 
the transmission part thanks to a PCI bus. 

B. The transmission part of the prototype
One decoding iteration was implemented onto one FPGA

resulting in a prototype that contains 5 full-iteration turbo 
decoders as previously explained. Full-parallel decoder 
architecture has been detailed in section III. It was observed 
that most of the complexity remains in the duplicated SISO 
decoders. A complexity analysis detailed in [19] allowed us to 
select a configuration to be implemented on the SISO decoder. 
All the soft information within the decoder is quantized and 
processed with q = 5 bits (1 sign bit and 4 reliability bits). The 
SISO decoder architecture is structured in three pipelined 
stages identified as reception, processing and transmission 
units as described in subsection III.D. Each stage processes N 
= 31 symbols in N = 31 clock periods (f0). In our architecture, 
the number of least reliable bits in a received word Riter is 
equal to three (Lr = 3). The processing unit computes the 
syndrome of the Nep=8 error patterns and their metric values. 
It also sequentially selects the decided word d and one 
competing codeword c. Finally, the transmission unit 
calculates extrinsic information Witer and soft output Riter+1. 
The multi-stage dynamically reconfigurable interconnection 
network omega is based on a circular permutation principle. 
The connecting scheme consists of circularly shifted input 
data. One decoding iteration need 2N = 62 SISO decoders and 
2 interconnection omega networks. Between two half-
iterations, two omega networks are required to transmit R and 
Riter values. However, the communication resources represent 
less than 1 % of the total complexity of one decoding 
iteration. A PRG module is also implemented onto each 
FPGA of the reception part. It generates the exact same data 
as in the transmitter in order to compare data before and after 
each decoding iteration. A BER block is used to measure the 
error rate comparing data from the PRG and the hard full-
parallel decoder output Diter. The number of errors and the 



total number of decoded data are then transmitted to the 
computer for a SNR value thanks to the PCI bus. 

V. CHARACTERISTICS AND PERFORMANCE                     
OF THE (31,29)2 RS TURBO DECODER

A. Characteristics of the 5Gbps experimental setup
The total occupation rate of the FPGA that contains the

transmission part is 79%. This corresponds to 164,953 Virtex-
5 slice LUT-Flip Flop pairs. In addition, DSP resources for 
the transmission part take up 155 out of 192 (80%). No 
BlockRAM of 18Kbs are assigned. The PRG module needs 
only 1,900 slice Flip-Flops and 145 slice LUTs. The (31,29)2 
RS encoder module occupies 10,728 slice Flip-Flops and 
4,471 slice LUTs. It represents only 5 % and 2% in terms of 
slice Flip-Flops and slice LUTs of the total design complexity, 
respectively. It means that the most important module of the 
transmission part in terms of complexity is the AWGN 
channel hardware emulator. This is due to the fact that the 
AWGN channel is composed of 155 uncorrelated White 
Gaussian Noise (WGN) elements. Thus, computational 
resources of the channel module take up 57,741 slice Flip-
Flops and 148,560 slice LUTs. The total occupation rate are 
about 28% and 72% of a Xilinx Virtex-5 LX330 FPGA for 
slice Flip-Flops and slice LUTs, respectively. Moreover, 155 
DSP resources are necessary for the 155 multiplication 
operations between each WGN sample and the variance 
square root value σ given by the computer. The rest of the 
FPGA is occupied by one SERDES module. 
 One decoding iteration was implemented on each of the 
five other FPGAs. These FPGAs are occupied by the same 
design. The total occupation rate of each FPGA that contains 
one decoding iteration module, two SERDES modules, one 
PRG module and one error estimation module is 46%. This 
corresponds to 97,383 Virtex-5 slice LUT-Flip Flop pairs. 
Note that the decoding module represents only 50 % in terms 
of slices of the total design complexity. Actually, a decoding 
module for one iteration is composed of 31 x 2 = 62 
elementary decoders and 2 interconnection blocks. Each 
elementary decoder uses information quantized on 5 bits with 
Nep = 8 error patterns and only 1 competing codeword. These 
reduced parameter values allow a decrease in the required area 
for a performance degradation which remains around 0.5dB as 
we will show in the next subsection. Thus a (31, 29) RS 
elementary decoder occupies 729 slice LUTs, 472 slice Flip-
Flops and 3 BlockRAM of 18Kbs. An interconnection block 
occupies only 2,325 slice LUTs. Computation resources of 
one decoding iteration module take up 29,295 slice Flip-Flops 
and 49,848 slice LUTs. It means that the occupation rates are 
about 14% and 24% of a Xilinx Virtex-5 LX330 FPGA for 
slice registers and slice LUTs, respectively. In addition, 
memory resources for the decoding module take up 186 
BlockRAM of 18kbits. It represents 32% of the total 
BlockRAM available in the Xilinx Virtex-5 LX330 FPGA. 
Note that one BlockRAM of 18kbits is allocated by the Xilinx 
tool ISE to memorize only 31x5x5 = 775 bits in our design. 
The occupation rate of each BlockRAM of 18kbits is then 
only about 4%. As input data are clocked with f0=37.5 MHz 

resulting in an input data rate of Tin=5.715Gbps. However, 
taking into account the code rate R=0.875, the output 
information rate becomes Tout=5Gbps. In conclusion, the 
implementation results showed that a turbo decoder dedicated 
to the (31, 29)2 RS product code can effectively be integrated 
to our 5Gbps experimental setup. 
 The prototyping board used for our experimental setup is 
the major limitation in terms of information rate. Indeed, the 
board offers only 200 chip to chip LVDS for each FPGA to 
FPGA interconnect. But, it is insufficient to exchange 1,550 
bits between the FPGAs in one clock period. To solve this 
constraint, we have implemented SERDES modules that 
operate at 8:1 serialization or 1:8 deserialization. This 
configuration requires to clock the SERDES with a frequency 
f1=8f0. It means that we have to take the ratio between f0 and f1 
into account to find the frequencies. Values equal to 37.5MHz 
and 300MHz have been finally selected for f0 and f1, 
respectively. However, one parallel decoding iteration 
decoding can be worked until a frequency f0 equal to 85MHz 
onto a Xilinx Virtex-5 LX330 FPGA. As input data are 
clocked with f0 = 85MHz, an information rate of 10Gbps is 
obtained. In particular, it means that a turbo decoder dedicated 
to the (31,29)2 RS product code can effectively be integrated 
to the physical layer of a 10Gbps optical access network. 

B.  (31,29)2 RS turbo product code performance
In [19], a complexity analysis of the BCH SISO elementary

decoder leads to a low complexity decoder architecture for an 
acceptable performance degradation. As the architecture of an 
RS SISO elementary decoder is similar, an equivalent 
complexity analysis was done. Table 1 gives the 
characteristics of the prototype dedicated to the turbo 
decoding of a (31,29)2 RS product code. The characteristics of 
an optimal Chase-Pyndiah algorithm in terms of BER 
performance are also given for comparison. By analysis the 
algorithm, five parameters appear to directly affect the 
complexity. The objective is to reach a better 
complexity/performance trade off in an ultra high-throughput 
context.  

Optimal algorithm
features 

Prototype 
features 

arithmetic representation floating-point  5bits fixed-point
number of iterations iter = 8 iter = 5 

number of error patterns Nep = 16 Nep = 8 
number of least reliable bits Lr = 4 Lr = 3 

number of competing codewords c = 16 c = 1 
value of the scaling factor αiter 0.2< αiter < 0.8 αiter={0.25;0.5;1}

Table 1. characteristic comparison between prototype and optimal algorithm 

The value of the scaling factor αiter depends on the current 
iteration in optimal Chase-Pyndiah algorithm. Keeping αiter to 
a power of 2 for each iteration enables to remove a 
multiplication operation that becomes a simple bit shifting. 
Therefore, the elementary decoder area is decreased by 8% for 
a loss of BER performance inferior to 0.1dB. Similarly, eight 
iterations are classically done for the turbo process. However, 
significant gains are obtained during the first 5 iterations. The 
quantification level q has also a notable impact on decoding 
process and has to be chosen considering the potential loss in 



terms of performance. The same remark can be done for Nep, 
Lr and c. The complexity analysis led to a low complexity RS 
SISO elementary decoder (-30%) to be duplicated in the full-
parallel turbo decoder.  

Simulated performance of optimal Chase-Pyndiah 
algorithm and measured performance of full-parallel turbo 
decoder for the (31, 29)2 RS product code are presented in 
Figure 5. Performance is evaluated by Monte-Carlo simulation 
and hardware emulation using our 5Gbps experimental setup, 
respectively. A cluster of computer working in parallel has 
given a reliable estimation for the optimal Chase-Pyndiah 
algorithm until a BER of 10-8. As the hardware emulation 
speeds up the simulations by a few orders of magnitude, 
prototype performance has been measured until a BER of 10-

13. The impact of decoding parameters on the performance is
clearly shown. Indeed, we observe a degradation of 0.5dB in
terms of BER performance for the prototype at BER= 10-7.
Moreover, an error floor phenomenon occurs at lower SNR. It
is not due to the asymptotic theoretical bound because we
have applied the simple criterion introduced in [8]. This
criterion improves by construction the binary minimum
distance of the product code and thus the asymptotic
performance. The parameter set that has been selected for our
full-parallel turbo decoding architecture can explain this error
floor. In particular, the number of Nep error patterns affects the
BER performance for lower SNRs.
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Fig. 5. (31,29)2 RS turbo product code performance 

VI. CONCLUSION

The use of RS product codes for forward-error correction in 
ultra high-speed context has been investigated in this article. 
We have designed a full-parallel turbo decoding architecture 
dedicated to the (31, 29)2 RS product code and a 5Gbps 
experimental setup. The purpose of this prototype is to 
demonstrate that an RS turbo decoder can effectively achieve 
information rates above 1Gbps. The turbo decoder 
architecture enables decoding of TPCs at information rates 
until 10Gbps onto FPGA devices. A first application can be 
envisioned in the fiber optic communication systems: 10Gbps 
data transmission over passive optical networks. Moreover, 
enhancing the study to a larger code ((63, 61)2 RS product 

code) can increase throughput until 40Gbps and also be 
envisioned for 40Gbps line rate transmission over optical 
transport networks. 
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