
HAL Id: hal-02194897
https://hal.science/hal-02194897

Submitted on 26 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A 5-Gbps FPGA prototype of a (31,29)2 Reed-Solomon
Turbo Decoder

Camille Leroux, Gérald Le Mestre, Christophe Jego, Patrick Adde, Michel
Jezequel

To cite this version:
Camille Leroux, Gérald Le Mestre, Christophe Jego, Patrick Adde, Michel Jezequel. A 5-Gbps FPGA
prototype of a (31,29)2 Reed-Solomon Turbo Decoder. 5th International Symposium on Turbo Codes
and Related Topics, Sep 2008, Lausanne, Switzerland. pp.12. �hal-02194897�

https://hal.science/hal-02194897
https://hal.archives-ouvertes.fr

Abstract— In this paper, the use of single-error-correcting Reed-
Solomon (RS) product codes are investigated in an ultra high-
speed context. A full-parallel architecture dedicated to the turbo
decoding process of RS product codes is described. An
experimental setup composed of a Dinigroup board that includes
six Xilinx Virtex-5 LX330 FPGAs is employed. Thus, a full-parallel
turbo decoding architecture dedicated to the (31, 29)2 RS product
code has been designed and then implemented into a 5Gbps
experimental setup. The purpose of this prototype is to
demonstrate that RS turbo decoders can effectively achieve
information rates above 1Gbps. The results show that the RS turbo
product codes offer a good complexity/performance trade off for
ultra-high throughputs. The major limitation in terms of data rate
of our prototype is the data exchange between the FPGAs of the
board. Indeed, the turbo decoder architecture enables decoding at
information rates until 10Gbps onto FPGA devices.

I. INTRODUCTION

In telecommunications, forward error correction (FEC) is a
system of error control that improves digital communication
quality. Since the early 90’s, channel coding families based on
iterative decoding process are considered to be the most
efficient coding schemes. With the invention of turbo codes [1]
followed by the rediscovery of low-density parity-check
(LDPC) codes [2], it is now possible to approach the
fundamental limit of channel capacity. The turbo code family
refers to two classes of codes: Convolutional Turbo Codes
(CTCs) [1] and Turbo Product Codes (TPCs) [3]. The general
concept of TPC is based on product codes that were constructed
by the serial concatenation of two (or more) systematic linear
block codes. In the last few years, many TPC decoder
architectures have been designed [4, 5]. Product codes using
binary Bose-Chaudhuri-Hocquenghem (BCH) component codes
have generally been chosen [6]. The turbo product code concept
was recently successfully extended to RS component codes [7,
8]. Actually, RS codes are a widely used subclass of non-binary
BCH codes. For this reason, the code construction approach
dedicated to BCH codes can be naturally applied to RS codes. It
is possible to design efficient TPC architectures using RS
component codes from the BCH- TPC architecture know-how
[9].1
 At present, the main challenge for hardware implementation of
turbo decoder is to meet the demand for even higher data rates.
Indeed, the increasing demand of high data rate and reliability
in modern communication systems is pushing next-generation
standards toward error correction schemes allowing high
throughput decoding with near Shannon limit performance.
Thus, data rates above 1Gbps and 10Gbps will be required for

This work was supported with funds from the Brittany Region under the
competitiveness pole InterAccess

the next generation standards of wireless technologies (WIFI,
WIMAX, DVB-H…) and data transmission over Passive
Optical Networks (PON), respectively. In order to achieve high
throughput and to reduce latency, parallel implementations
become mandatory. In 2006, a full-parallel architecture for the
turbo decoding of product codes was proposed in [10]. The
major advantage of this full-parallel architecture is that it
enables the memory block between each half-iteration to be
replaced by simple interconnection networks. Moreover, the
latency of the turbo decoder is strongly reduced. In such a full-
parallel architecture, most of the hardware complexity remains
in the duplicated Soft Input Soft Output (SISO) decoders.

In this paper, the implementation onto FPGA devices of an
ultra high throughput (31,29)2 RS turbo decoder is presented.
The purpose of this prototype is to demonstrate that an RS turbo
decoder can effectively achieve data rates above 1Gbps. To the

authors’ knowledge, this is the first implementation of FEC
decoder onto an FPGA target at information throughputs
superior to 1Gbps. Previously, a BTC decoder included in a
12.4Gbps optical setup was described in [11]. Since only a part
of the transmitted data is actually coded, the information
throughput of the decoder is 156Mb/s. In 2007, a LDPC code
decoder ASIC implementation at an information throughput
equal to 2.4Gbps was proposed in [12].

The remainder of the paper is organized as follows. Section II
briefly recalls the basic principles of turbo decoding for RS
product codes. The challenging issue of designing high data
rates full parallel turbo decoding architecture is developed in
Section III. Section IV describes an implementation of the
resulting turbo decoder and its experimental setup onto FPGA
devices. Finally, characteristics and performance in terms of
BER of the prototype are detailed in Section V.

II. TURBO DECODING OF RS PRODUCT CODES

A product code is a concatenation of systematic linear block
codes. The product code inherits the properties of the
elementary codes that it is composed of. Let us consider two
identical systematic linear block codes C having parameters (n,
k, dmin), where n, k and dmin stand for code length, number of
information symbols and minimum Hamming distance,
respectively. The parameters of the resulting product code are
given by: np= n2, kp= k2, dmin p = dmin

 2 and Rp= R2 (code rate).
Thus, it is possible to construct powerful product codes using
linear block codes. When C is an RS code over Galois field
GF(2m), we obtain an RS product code over GF(2m). Digital
communication systems usually employ some form of binary
signaling. A binary expansion of the RS product code is then
required for transmission. The extension field GF(2m) forms a
vector space of dimension m over GF(2). A binary image of the

A 5-Gbps FPGA prototype
of a (31,29)2 Reed-Solomon Turbo Decoder

Camille Leroux, Gérald Le Mestre, Christophe Jégo, Patrick Adde and Michel Jézéquel
Institut TELECOM, TELECOM Bretagne, CNRS Lab-STICC

Electronics department, 29238 Brest
Email: firstname.surname@telecom-bretagne.eu

2008 5th International Symposium on Turbo Codes and Related Topics

RS product code is thus obtained by expanding each code
symbol of the product code matrix into m bits using a
polynomial basis. The binary image is a product code with
length mn2, dimension mk2 and minimum distance at least as
large as the symbol level minimum distance.

Turbo decoding process involves sequentially decoding the
rows and columns of the product code matrix and by
exchanging soft information between the decoders until a
reliable decision can be made on the transmitted bits. In this
work, SISO decoding of the RS component codes is performed
at the bit-level using the Chase-Pyndiah algorithm. First
introduced in [3] for binary BCH codes and latter extended to
RS codes in [13], the Chase-Pyndiah decoder consists of a soft-
input hard-output Chase-2 decoder [14] augmented by a soft-
output computation unit.

III. FULL-PARALLEL RS TURBO DECODING ARCHITECTURE

With current technologies, parallel decoding architectures are
the only solution to achieve information rates superior to
1Gbps. An easy architectural solution is to duplicate the
elementary decoders and the corresponding interleaving
memories in order to achieve the given throughput. This results
in a turbo decoder with unacceptable cumulative area. Thus,
smarter parallel decoding architectures have to be designed in
order to better trade off performance and complexity under the
constraint of a high-throughput.

A. Previous work
Many turbo decoder architectures for product codes have been

previously designed. The classical approach involves decoding
all the rows or all the columns of a matrix before the next half-
iteration. When an application requires high speed decoders, an
architectural solution is to cascade SISO elementary decoders
for each half-iteration. In this case, memory blocks are
necessary between each half-iteration to store channel data and
extrinsic information. Each memory block is composed of four
memories of mN2 soft values. Thus, duplicating a SISO
elementary decoder results in duplicating also the memory
block which is very costly in terms of silicon area. In 2002, a
new architecture for turbo decoding product codes was
proposed in [5]. The idea is to store several data at the same
address and to perform semi-parallel decoding to increase the
data rate. However, it is necessary to process these data by row
and by column. Let us consider l adjacent rows and l adjacent
columns of the initial matrix. The l2 data constitute a word of
the new matrix that has l2 times fewer addresses. This data
organization does not require any particular memory
architecture. The results obtained show that the turbo decoding
throughput is increased by l2 when l elementary decoders
processing l data simultaneously are used. Turbo decoding
latency is divided by l. The area of the l elementary decoders is
increased by l2/2 while the memory is kept constant.

B. Full-parallel decoding principle
All rows (or all columns) of a matrix can be decoded in

parallel. If the architecture is composed of 2N elementary
decoders, an appropriate treatment of the matrix allows the
elimination of the reconstruction of the matrix between each
decoding. Specifically, let i and j be the indices of a row and a

column of the N2 matrix. In full-parallel processing, the row
decoder i begins the decoding by the soft value in the ith

position. Moreover, each row decoder processes the soft values
by increasing the index by one modulo N. Similarly, the column
decoder j begins the decoding by the soft value in the jth
position. In addition, each column decoder processes the soft
values by decreasing the index by one modulo N. Actually, the
full-parallel decoding of turbo product code is possible thanks
to the cyclic property of RS codes. Indeed, every cyclic shift c’
= (cN-1, c0, .., cN-3, cN-2) of a codeword c = (c0, c1, .., cN-2, cN-1) is
also a valid codeword in a cyclic code. Therefore, only one
clock period is necessary between two successive matrix
decoding operations. The full-parallel decoding of a product
code matrix N2 is detailed in Figure 1. A similar strategy was
previously presented in [15] where memory access conflicts are
resolved by means of an appropriate treatment of the matrix.
However, interleaving memory is still required.

N rows of N
soft values

N columns of N soft values Soft value

index (i+1) = i + 1 mod N

index (j+1) = j - 1 mod N

i

j

Fig. 1. Full-parallel decoding of an RS product code matrix.

The elementary decoder latency depends on the structure of
the decoder (i.e. number of pipeline stages) and the code length
N. Here, as the reconstruction matrix is removed, the latency
between row and column decoding is null.

C. Full-parallel architecture for RS product codes
The major advantage of our full-parallel architecture is that it

enables the memory block of 4mN2 soft values between each
half-iteration to be removed. However, the codeword soft
values exchanged between the row and column decoders have
to be routed. One solution is to use an interconnection network
for this task. In our case, we have chosen an Omega network.
The Omega network is one of several interconnection networks
used in parallel machines [16]. It is composed of log2 N stages,
each having N=2 exchange elements. In fact, the Omega
network complexity in terms of number of interconnections and
of 2x2 switch transfer blocks is N x log2N and N/2 x log2N,
respectively. For example, the equivalent gate complexity of a
31x31 network can be estimated to be 200 logic gates per
exchange bit. Figure 2 depicts a full-parallel architecture for the
turbo decoding of product codes. It is composed of cascaded
modules for the turbo decoder. Each module is dedicated to one
iteration. However, it is possible to process several iterations by
the same module. In our approach, 2N elementary decoders and
two interconnection blocks are necessary for one module. An
interconnection block is composed of two Omega networks
exchanging the R and Riter soft values. Since the Omega
network has low complexity, the full-parallel turbo decoder

complexity essentially depends on the complexity of the
elementary SISO decoder.

Elementary
decoder
for row 1

Elementary
decoder
for row 2

Elementary
decoder

for row N

In
te

rc
on

ne
ct

io
n

bl
oc

k

Elementary
decoder for

column 1

Elementary
decoder for

column 2

Elementary
decoder for
column N

In
te

rc
on

ne
ct

io
n

bl
oc

k

Elementary
decoder
for row 1

Elementary
decoder
for row 2

Elementary
decoder

for row N

In
te

rc
on

ne
ct

io
n

bl
oc

k

Elementary
decoder for

column 1

Elementary
decoder for

column 2

Elementary
decoder for
column N

In
te

rc
on

ne
ct

io
n

bl
oc

k

A module for one iteration

Fig. 2. Full-parallel architecture for decoding of RS product codes.

D. Elementary SISO decoder architecture
The block diagram of an elementary SISO decoder is shown

in Figure 3, where iter stands for the current half-iteration
number. Riter is the soft-input matrix computed from the
previous half-iteration whereas R denotes the initial matrix
delivered by the receiver front-end (Riter=R for the 1st half-
iteration). Witer is the extrinsic information matrix. αiter is a
scaling factor that depends on the current half-iteration and is
used to weight the influence of the extrinsic information during
the first iterations.

SISO
decoding

Riter

R

Diter

Fiter

αiter

Riter+1
Witer

delay

delay

R

Fig. 3. Block diagram of the turbo-decoder at the iter-th half-iteration

The decoder architecture is structured in three pipelined stages
identified as reception, processing and transmission units [5].
During each stage, the N soft values of the received word Riter
are processed sequentially in N clock periods. The reception
stage computes the initial syndromes Si and finds the Lr least
reliable bits in the received word. The main function of the
processing stage is to build and then to correct the Nep error
patterns obtained from the initial syndrome and to combine the
least reliable bits. Moreover, the processing stage also has to
produce a metric (Euclidean distance between error pattern and
received word) for each error pattern. Finally, a selection
function identifies the maximum likelihood codeword d and the
competing codewords c (if any). The transmission stage
performs different functions: computing the reliability for each
binary soft value, computing the extrinsic information and
updating the received soft values. The N soft values of the
codeword are thus corrected sequentially. The decoding process
needs to access the R and Riter soft values during the three

decoding phases. For this reason, these words are implemented
in six Random Access Memories (RAM) of size qmN controlled
by a finite state machine.

IV. IMPLEMENTATION OF AN RS TURBO DECODER
IN AN ULTRA HIGH RATE COMMUNICATIONS SETUP

The purpose of this prototype is to demonstrate that an RS
turbo decoder can effectively achieve information rates until
5Gbps.

A. 5Gbps experimental setup
The experimental setup is composed of a Dinigroup board

[17] that includes six Xilinx Virtex-5 LX330 FPGAs. A Xilinx
Virtex-5 LX330 FPGA contains 51,840 slices that can emulate
up to 12 million gates of logic. It should be noted that Virtex-5
slices are organized differently from previous generations. Each
Virtex-5 slice contains four Look Up Tables (LUTs) and four
flip-flops instead of two LUTs and two flip-flops in previous
generation devices. The board is hosted on a 64- bit, 66MHz
PCI bus that enables communication at full PCI bandwidth with
a computer.

Figure 4 shows the different components of the digital
communication setup implemented onto six FPGAs. One FPGA
is dedicated to the component implementation of the
transmission part. The five other FPGAs are dedicated to the
implementation of the RS turbo decoder. One decoding iteration
was implemented onto each FPGA resulting in a 5 full-iteration
turbo decoder. Each decoding module corresponds to a full-
parallel architecture dedicated to the decoding of a matrix of 31
x 31 coded soft values. We recall here that a coded soft values
over GF(32) is mapped onto 5 LLR values, each LLR being
quantized on 5 bits. The decoding process needs to access the
31 coded soft values from each of the matrices R and Riter
during the three decoding phases of a half-iteration as explained
in section III. For these reasons, 31 x 5 x 5 x 2 = 1,550 bits have
to be exchanged between the decoding modules during each
clock period f0=37.5MHz. The Dinigroup board offers 200 chip
to chip LVDS for each FPGA to FPGA interconnect.
Unfortunately, this number of LVDS is insufficient to enable
the transmission of all the bits between the decoding modules.
To solve this implementation constraint, we have chosen to add
SERializer/DESerializer (SERDES) modules for the parallel-to-
serial conversions and for the serial-to-parallel conversions in
each FPGA. Indeed, SERDES is a pair of functional blocks
commonly used in high speed communications to convert data
between parallel data and serial interfaces in each direction.
SERDES modules are clocked with f1 = 8f0 = 300MHz and
operate at 8:1 serialization or 1:8 deserialization. In this way, all
data can be exchanged between the different decoding modules.
Thanks to 200 chip to chip LVDS and the SERDES modules,
data are exchanged between the different FPGAs at a
throughput of 58,125Gbps while the working frequency and the
information rates are only 37.5MHz and 5Gbps, respectively.

 2
00

 L
VD

S
sig

na
ls

SE
RD

ES
 m

od
ul

e

elementary
decoder

for row N

elementary
decoder for
column N

in
ter

co
nn

ec
tio

n
bl

oc
k

in
ter

co
nn

ec
tio

n
bl

oc
k

elementary
decoder
for row 1

elementary
decoder
for row 2

elementary
decoder for
column 1

elementary
decoder for
column 2

SE
RD

ES
 m

od
ul

e

SE
RD

ES
 m

od
ul

e

 2
00

 L
VD

S
sig

na
ls

elementary
decoder

for row 1
elementary

decoder
for row 2

elementary
decoder

for row N

elementary
decoder for
column 1

elementary
decoder for
column 2

elementary
decoder for
column N

in
ter

co
nn

ec
tio

n
bl

oc
k

SE
RD

ES
 m

od
ul

e

in
ter

co
nn

ec
tio

n
bl

oc
k

elementary
decoder
for row 1

elementary
decoder
for row 2

elementary
decoder

for row N

elementary
decoder for
column 1

elementary
decoder for
column 2

elementary
decoder for
column N

in
ter

co
nn

ec
tio

n
bl

oc
k

SE
RD

ES
 m

od
ul

e

in
ter

co
nn

ec
tio

n
bl

oc
k

SE
RD

ES
 m

od
ul

e

global clock f0 = 37.5 MHz, f1 = 300 MHz

WGN

WGN

WGN

WGN

WGN

Transmitter part

LFSR

LFSR

LFSR

LFSR

LFSR

PRG

encseq

encseq

encseq

encseq

encseq

RS
 p

ar
all

el
en

co
de

r

(31,29)2 RS encoder AWGN channel
σ2

FPGA
XC5VLX330 turbo decoder iteration 1

FPGA
XC5VLX330

FPGA
XC5VLX330

turbo decoder iteration 4 turbo decoder iteration 5 FPGA
XC5VLX330

 2
00

 L
VD

S
sig

na
ls

SERDES module

elementary
decoder
for row 1

elementary
decoder
for row 2

elementary
decoder

for row N

elementary
decoder for
column 1

elementary
decoder for
column 2

elementary
decoder for
column N

in
ter

co
nn

ec
tio

n
bl

oc
k

in
ter

co
nn

ec
tio

n
bl

oc
k

SE
RD

ES
 m

od
ul

e

 2
00

 L
VD

S
sig

na
ls

elementary
decoder
for row 1

elementary
decoder
for row 2

elementary
decoder

for row N

elementary
decoder for
column 1

elementary
decoder for
column 2

elementary
decoder for
column N

in
ter

co
nn

ec
tio

n
bl

oc
k

in
ter

co
nn

ec
tio

n
bl

oc
k

SE
RD

ES
 m

od
ul

e

 200 LVDS signals

SERDES module
FPGA

XC5VLX330

FPGA
XC5VLX330

tu
rb

o
de

co
de

r i
ter

ati
on

 2
tu

rb
o

de
co

de
r i

ter
at

io
n

3

Fig. 4. 5Gbps experimental setup for turbo decoding of a (31,29)2 RS product code

A. The transmission part of the prototype
A Pseudo Random Generator (PRG) sends out 145 (29*5)

pseudo random data streams at each clock period (f0). This
module is composed of flip-flops and XOR gates that generate
145 parallel outputs. A (31,29)2 RS encoder processes the 145
data streams in parallel. The original proposed encoding
scheme uses both sequential and parallel encoders. k
sequential encoders process k rows and a parallel encoder
processes n columns. Sequential encoders are conventional
implemented by a set of linear feedback shift registers
(LFSR). Alternatively, a linear block code can be encoded by
multiplying the information vector k by the generator matrix.
This can be easily implemented by an XOR gate arborescence
which is a parallel combinatorial encoder. The classical
sequential approach requires a kn memory block between row
and column encoding. The original proposed encoding scheme
avoids the use of memory between row and column
processing. Moreover, the depicted architecture decreases the
latency from kn to only one symbol. 29 conventional
sequential encoders are cascaded with one parallel encoder.
4805 encoded data (equivalent to a matrix 31 x 31 of 5-bit
symbols) are generated in 31 clock periods (f0). The noise
generator models 155 uncorrelated White Gaussian Noise
(WGN) samples and adds them to the previously encoded
data. We have chosen to integrate an AWGN channel from a
white Gaussian noise generator adapted to hardware
implementation. High accuracy, speed and low-cost hardware
are reached by combining the Box-Muller and Central limit
methods [18]. Each output sample is a 5 bit vector resulting in
775 (155*5) bits to be sent in one clock period (f0). The Signal
to Noise Ratio (SNR) is controllable via a computer that
calculates the equivalent variance square root σ and sends it to
the transmission part thanks to a PCI bus.

B. The transmission part of the prototype
One decoding iteration was implemented onto one FPGA

resulting in a prototype that contains 5 full-iteration turbo
decoders as previously explained. Full-parallel decoder
architecture has been detailed in section III. It was observed
that most of the complexity remains in the duplicated SISO
decoders. A complexity analysis detailed in [19] allowed us to
select a configuration to be implemented on the SISO decoder.
All the soft information within the decoder is quantized and
processed with q = 5 bits (1 sign bit and 4 reliability bits). The
SISO decoder architecture is structured in three pipelined
stages identified as reception, processing and transmission
units as described in subsection III.D. Each stage processes N
= 31 symbols in N = 31 clock periods (f0). In our architecture,
the number of least reliable bits in a received word Riter is
equal to three (Lr = 3). The processing unit computes the
syndrome of the Nep=8 error patterns and their metric values.
It also sequentially selects the decided word d and one
competing codeword c. Finally, the transmission unit
calculates extrinsic information Witer and soft output Riter+1.
The multi-stage dynamically reconfigurable interconnection
network omega is based on a circular permutation principle.
The connecting scheme consists of circularly shifted input
data. One decoding iteration need 2N = 62 SISO decoders and
2 interconnection omega networks. Between two half-
iterations, two omega networks are required to transmit R and
Riter values. However, the communication resources represent
less than 1 % of the total complexity of one decoding
iteration. A PRG module is also implemented onto each
FPGA of the reception part. It generates the exact same data
as in the transmitter in order to compare data before and after
each decoding iteration. A BER block is used to measure the
error rate comparing data from the PRG and the hard full-
parallel decoder output Diter. The number of errors and the

total number of decoded data are then transmitted to the
computer for a SNR value thanks to the PCI bus.

V. CHARACTERISTICS AND PERFORMANCE
OF THE (31,29)2 RS TURBO DECODER

A. Characteristics of the 5Gbps experimental setup
The total occupation rate of the FPGA that contains the

transmission part is 79%. This corresponds to 164,953 Virtex-
5 slice LUT-Flip Flop pairs. In addition, DSP resources for
the transmission part take up 155 out of 192 (80%). No
BlockRAM of 18Kbs are assigned. The PRG module needs
only 1,900 slice Flip-Flops and 145 slice LUTs. The (31,29)2
RS encoder module occupies 10,728 slice Flip-Flops and
4,471 slice LUTs. It represents only 5 % and 2% in terms of
slice Flip-Flops and slice LUTs of the total design complexity,
respectively. It means that the most important module of the
transmission part in terms of complexity is the AWGN
channel hardware emulator. This is due to the fact that the
AWGN channel is composed of 155 uncorrelated White
Gaussian Noise (WGN) elements. Thus, computational
resources of the channel module take up 57,741 slice Flip-
Flops and 148,560 slice LUTs. The total occupation rate are
about 28% and 72% of a Xilinx Virtex-5 LX330 FPGA for
slice Flip-Flops and slice LUTs, respectively. Moreover, 155
DSP resources are necessary for the 155 multiplication
operations between each WGN sample and the variance
square root value σ given by the computer. The rest of the
FPGA is occupied by one SERDES module.
 One decoding iteration was implemented on each of the
five other FPGAs. These FPGAs are occupied by the same
design. The total occupation rate of each FPGA that contains
one decoding iteration module, two SERDES modules, one
PRG module and one error estimation module is 46%. This
corresponds to 97,383 Virtex-5 slice LUT-Flip Flop pairs.
Note that the decoding module represents only 50 % in terms
of slices of the total design complexity. Actually, a decoding
module for one iteration is composed of 31 x 2 = 62
elementary decoders and 2 interconnection blocks. Each
elementary decoder uses information quantized on 5 bits with
Nep = 8 error patterns and only 1 competing codeword. These
reduced parameter values allow a decrease in the required area
for a performance degradation which remains around 0.5dB as
we will show in the next subsection. Thus a (31, 29) RS
elementary decoder occupies 729 slice LUTs, 472 slice Flip-
Flops and 3 BlockRAM of 18Kbs. An interconnection block
occupies only 2,325 slice LUTs. Computation resources of
one decoding iteration module take up 29,295 slice Flip-Flops
and 49,848 slice LUTs. It means that the occupation rates are
about 14% and 24% of a Xilinx Virtex-5 LX330 FPGA for
slice registers and slice LUTs, respectively. In addition,
memory resources for the decoding module take up 186
BlockRAM of 18kbits. It represents 32% of the total
BlockRAM available in the Xilinx Virtex-5 LX330 FPGA.
Note that one BlockRAM of 18kbits is allocated by the Xilinx
tool ISE to memorize only 31x5x5 = 775 bits in our design.
The occupation rate of each BlockRAM of 18kbits is then
only about 4%. As input data are clocked with f0=37.5 MHz

resulting in an input data rate of Tin=5.715Gbps. However,
taking into account the code rate R=0.875, the output
information rate becomes Tout=5Gbps. In conclusion, the
implementation results showed that a turbo decoder dedicated
to the (31, 29)2 RS product code can effectively be integrated
to our 5Gbps experimental setup.
 The prototyping board used for our experimental setup is
the major limitation in terms of information rate. Indeed, the
board offers only 200 chip to chip LVDS for each FPGA to
FPGA interconnect. But, it is insufficient to exchange 1,550
bits between the FPGAs in one clock period. To solve this
constraint, we have implemented SERDES modules that
operate at 8:1 serialization or 1:8 deserialization. This
configuration requires to clock the SERDES with a frequency
f1=8f0. It means that we have to take the ratio between f0 and f1
into account to find the frequencies. Values equal to 37.5MHz
and 300MHz have been finally selected for f0 and f1,
respectively. However, one parallel decoding iteration
decoding can be worked until a frequency f0 equal to 85MHz
onto a Xilinx Virtex-5 LX330 FPGA. As input data are
clocked with f0 = 85MHz, an information rate of 10Gbps is
obtained. In particular, it means that a turbo decoder dedicated
to the (31,29)2 RS product code can effectively be integrated
to the physical layer of a 10Gbps optical access network.

B. (31,29)2 RS turbo product code performance
In [19], a complexity analysis of the BCH SISO elementary

decoder leads to a low complexity decoder architecture for an
acceptable performance degradation. As the architecture of an
RS SISO elementary decoder is similar, an equivalent
complexity analysis was done. Table 1 gives the
characteristics of the prototype dedicated to the turbo
decoding of a (31,29)2 RS product code. The characteristics of
an optimal Chase-Pyndiah algorithm in terms of BER
performance are also given for comparison. By analysis the
algorithm, five parameters appear to directly affect the
complexity. The objective is to reach a better
complexity/performance trade off in an ultra high-throughput
context.

Optimal algorithm
features

Prototype
features

arithmetic representation floating-point 5bits fixed-point
number of iterations iter = 8 iter = 5

number of error patterns Nep = 16 Nep = 8
number of least reliable bits Lr = 4 Lr = 3

number of competing codewords c = 16 c = 1
value of the scaling factor αiter 0.2< αiter < 0.8 αiter={0.25;0.5;1}

Table 1. characteristic comparison between prototype and optimal algorithm

The value of the scaling factor αiter depends on the current
iteration in optimal Chase-Pyndiah algorithm. Keeping αiter to
a power of 2 for each iteration enables to remove a
multiplication operation that becomes a simple bit shifting.
Therefore, the elementary decoder area is decreased by 8% for
a loss of BER performance inferior to 0.1dB. Similarly, eight
iterations are classically done for the turbo process. However,
significant gains are obtained during the first 5 iterations. The
quantification level q has also a notable impact on decoding
process and has to be chosen considering the potential loss in

terms of performance. The same remark can be done for Nep,
Lr and c. The complexity analysis led to a low complexity RS
SISO elementary decoder (-30%) to be duplicated in the full-
parallel turbo decoder.

Simulated performance of optimal Chase-Pyndiah
algorithm and measured performance of full-parallel turbo
decoder for the (31, 29)2 RS product code are presented in
Figure 5. Performance is evaluated by Monte-Carlo simulation
and hardware emulation using our 5Gbps experimental setup,
respectively. A cluster of computer working in parallel has
given a reliable estimation for the optimal Chase-Pyndiah
algorithm until a BER of 10-8. As the hardware emulation
speeds up the simulations by a few orders of magnitude,
prototype performance has been measured until a BER of 10-

13. The impact of decoding parameters on the performance is
clearly shown. Indeed, we observe a degradation of 0.5dB in
terms of BER performance for the prototype at BER= 10-7.
Moreover, an error floor phenomenon occurs at lower SNR. It
is not due to the asymptotic theoretical bound because we
have applied the simple criterion introduced in [8]. This
criterion improves by construction the binary minimum
distance of the product code and thus the asymptotic
performance. The parameter set that has been selected for our
full-parallel turbo decoding architecture can explain this error
floor. In particular, the number of Nep error patterns affects the
BER performance for lower SNRs.

2 3 4 5 6
Eb/N0 (dB)

1E-13

1E-12

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

B
it

E
rr

or
 R

at
e

uncoded BPSK
prototype performance (5 iter.)
optimal algorithm performance (8 iter.)

Fig. 5. (31,29)2 RS turbo product code performance

VI. CONCLUSION

The use of RS product codes for forward-error correction in
ultra high-speed context has been investigated in this article.
We have designed a full-parallel turbo decoding architecture
dedicated to the (31, 29)2 RS product code and a 5Gbps
experimental setup. The purpose of this prototype is to
demonstrate that an RS turbo decoder can effectively achieve
information rates above 1Gbps. The turbo decoder
architecture enables decoding of TPCs at information rates
until 10Gbps onto FPGA devices. A first application can be
envisioned in the fiber optic communication systems: 10Gbps
data transmission over passive optical networks. Moreover,
enhancing the study to a larger code ((63, 61)2 RS product

code) can increase throughput until 40Gbps and also be
envisioned for 40Gbps line rate transmission over optical
transport networks.

ACKNOWLEDGMENT
The authors thank E. Boutillon for providing the WGN IP.
They are grateful to R. Le Bidan for providing the optimal bit
error performance of iterative decoding of a (31, 29)2 RS
product code.

REFERENCES
[1] C. Berrou, A. Glavieux, P. Thitimajshima, “Near Shannon limit error

correcting coding and decoding: Turbo Codes”, IEEE International
Conference on Communication ICC93, vol. 2/3, May 1993.

[2] R. G. Gallager, “Low Density Parity Check Codes”, IRE Trans. Inform.
Theory, Jan. 1962, pp. 21-28.

[3] R. Pyndiah, A. Glavieux, A. Picart, S. Jacq, “Near optimum decoding of
product codes”, GLOBECOM94, November 1994.

[4] P. Adde, R. Pyndiah, and O. Raoul, “Performance and complexity of
block turbo decoder circuits,” in ICECS’96 Third International
Conference on Electronics, Circuits and Systems, Oct. 1996.

[5] J. Cuevas Ordaz, P. Adde, S. Kerouédan, R. Pyndiah, “New architecture
for high data rate turbo decoding of product codes”, GLOBECOM02,
Nov. 17-21, Vol. 2, 2002.

[6] R. Pyndiah, P. Adde, R. Zhou, “Block Turbo Codes: Ten years later”,
IEE Seminar on Sparse Graph Codes, October 2004.

[7] R. Zhou, A. Picart, R. Pyndiah, A. Goalic, “Reliable transmission with
low complexity Reed Solomon block turbo codes”, ISWCS Conference,
2004.

[8] R. Le Bidan, R. Pyndiah, and P. Adde, “Some results on the binary
minimum distance of Reed-Solomon codes and block turbo codes,” in
Proc. IEEE Int. Conf. Commun. ICC’07, Glasgow, Scotland, June 2007.

[9] E. Piriou, C. Jego, P. Adde, R. Le Bidan, M. Jezequel, “Efficient
architecture for Reed Solomon block turbo code”, in IEEE Int. Symp. on
Circuits and Systems ISCAS’06, 21-24 May 2006.

[10] C. Jego, P. Adde, and C. Leroux, “Full-parallel architecture for turbo
decoding of product codes”, in Electronics Letters, vol. 42, no. 18, 31
August 2006.

[11] A. Darabiha, A. C. Carusone, and F. R. Kschischang, “A 3.3-gbps bit-
serial block-interlaced min-sum ldpc decoder in 0.13-um cmos,” in
Custom Integrated Circuits Conference, 2007. CICC ’07. IEEE, 16-19
Sept. 2007.

[12] T. Mizuochi and all, “Experimental demonstration of net coding gain of
10.1 db using 12.4 Gbps block turbo code with 3-bit soft decision,” in
Optical Fiber Communications Conference, 23-28 March 2003.

[13] O. Aitsab and R. Pyndiah, “Performance of Reed-Solomon block turbo
codes,” in Proc. IEEE Global Telecommun. Conf. GLOBECOM96,
London, UK, Nov. 1996, pp. 121–125.

[14] D. Chase, “A class of algorithms for decoding block codes with channel
measurement information,” IEEE Trans. Inform. Theory, vol. 18, no. 1,
pp. 170–182, Jan. 1972.

[15] Zhipei Chi; Parhi, K.K., “High speed VLSI architecture design for block
turbo decoder”, ISCAS 2002, IEEE International Symposium on Volume
1, May 2002, pp. 901-904.

[16] D. H. Lawrie, “Access and alignment of data in an array processor”,
IEEE Trans. Cornput., vol. C-24, no. IO, pp. 1145-1155, Dec. 1975

[17] [Online] Available: http://www.dinigroup.com/DN9000k10PCI.php
[18] J. L. Danger, A. Ghazel, E. Boutillon, and H. Laamari, “Efficient FPGA

implementation of gaussian noise generator for communication channel
emulation,” ICECS 2000, IEEE International Symposium on, Dec. 2000.

[19] C. Leroux, C. Jego, P. Adde, and M. Jezequel, “Towards Gbps turbo
decoding of product code onto an FPGA device,” in IEEE Int. Symp. on
Circuits and Systems ISCAS’07, 27-30 May 2007, pp. 909–912.

