
HAL Id: hal-02194787
https://hal.science/hal-02194787v1

Submitted on 26 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Empirical Study about Software Architecture
Configuration Practices with the Java Spring Framework

Quentin Perez, Alexandre Le Borgne, Christelle Urtado, Sylvain Vauttier

To cite this version:
Quentin Perez, Alexandre Le Borgne, Christelle Urtado, Sylvain Vauttier. An Empirical Study
about Software Architecture Configuration Practices with the Java Spring Framework. SEKE:
Software Engineering and Knowledge Engineering, Jul 2019, Lisbonne, Portugal. pp.465-468,
�10.18293/SEKE2019-202�. �hal-02194787�

https://hal.science/hal-02194787v1
https://hal.archives-ouvertes.fr


An Empirical Study about Software Architecture Configuration Practices
with the Java Spring Framework

Quentin Perez, Alexandre Le Borgne, Christelle Urtado, and Sylvain Vauttier

LGI2P, IMT Mines Ales, Univ Montpellier, Ales, France

{Quentin.Perez,Alexandre.Le-Borgne,Christelle.Urtado,Sylvain.Vauttier}@mines-ales.fr

Abstract

Software architecture modeling plays a key role in soft-
ware development and, beyond, in software quality. The
Spring framework is widely used in industry to deploy soft-
ware. This paper evaluates whether Spring fosters good
practices for architecture definition. It describes the results
of an empirical study, based on a corpus of open-source
Spring projects. Analysis shows that a strong (70%) major-
ity of projects mixes all Spring architecture definition fea-
tures. This can be considered as a pragmatic use of a very
flexible tool. However, few good practice documentation
and tool assistance exist to prevent hazardous architecture
constructions. The paper highlights these situations and
concludes on recommendations to assist developers.

Keywords: Software architecture, architecture deploy-
ment, architecture configuration, empirical software engi-
neering, Spring framework, GitHub open-source project.

1 Introduction

Architecture design is a critical issue that impacts soft-
ware engineering [5]. Architectures are the natural conse-
quence of modularity: They compose software from ele-
mentary components that can easily be developed, tested,
maintained or reused.

Spring is a popular industrial framework designed for ar-
chitecture development in Java. As established by a survey
involving 2044 developers1, it is the most used framework
for web-service development. Spring has evolved over time
with technologies (e.g., adoption of Java annotations) or ap-

1https://zeroturnaround.com/rebellabs/java-tools-and-technologies-
landscape-2016/

plication needs (e.g., automation of deployment). Spring
now provides developers with multiple features, that com-
plement one another and sometimes overlap, for the archi-
tecture definition.

The remainder of this paper is organized as follows. Sec-
tion 2 motivates this work. Section 3 first describes the
features provided by the Spring framework then compares
them with respect to expected qualities. Section 4 describes
the empirical study on developers’ practices. First , the
methodology used for GitHub data extraction is presented.
Then, the statistical analysis is developed before identify-
ing threats to the study’s validity and presenting the imple-
mented tool that supports our study. To conclude, Section 5
presents related works and Section 6 draws perspectives for
this work.

2 Motivations

Architecture models are used in nearly all steps of the
software lifecycle, from its early design, as an abstract, ideal
solution to meet users requirements, to its actual deploy-
ment and execution. Academic research has proposed many
architecture description languages (ADLs) to support archi-
tecture conceptual design [11] whereas industry has pro-
posed frameworks for runtime architecture deployment and
management [4]. The ideal technology should both be flex-
ible and easy to use for software developers and help doc-
ument the architecture, increase component reusability and
maintainability and manage change for software architects.

Defining a software architecture amounts to describe
its components and their connections (the links that sup-
port their interactions). In the case of Java software, this
amounts to define the constituent objects and the reference
bindings to be created at runtime. When no specific archi-

DOI reference number: 10.18293/SEKE2019-202 1



tecture management feature is available, architecture con-
struction is classically hard-coded in the main procedure.
Otherwise, an architecture deployment descriptor can be de-
fined through a framework to set the architecture up. To
compare their modeling capabilities, we have established a
set of expected qualities:
Explicitness. Explicit architecture models are defined with
dedicated elements, clearly separated from source code.
Declarativity. Declarative architecture models are defined
by abstract elements, that specify the expected instantiated
structures, not the instantiation code.
Encapsulation. Encapsulated architecture model defini-
tions are not scattered across source code but gathered into
modules.
Assistance. Assisted architecture design is supported by
tools that verify consistency, use of good practices or archi-
tectural styles, and control evolution to prevent architecture
drift or erosion [13].

The purpose of this study is to compare the different
kinds of architecture descriptors provided by Spring and to
run an empirical analysis to determine whether industrial
practice is influenced by architecture model qualities.

3 Spring Features and their Qualities

Since Spring 4 (2013), three closely related architecture
definition features are offered to developers:
XML descriptors. Architectures are defined by several
XML descriptors that are parsed and interpreted at runtime
by the Spring container. Architecture components are de-
clared by the <bean> tag, which must define an identifier
(id) and the instantiated class (class). Listing 1 defines a
small home automation architecture composed of an Or-
chestrator object connected to a Lamp and a Clock. Con-
nections are defined by binding bean properties to bean ref-
erences, as declared by property tags. Bean properties cor-
respond to component dependencies (actually instance at-
tributes). These component dependencies are supplied by
the Spring container using the declared beans in the XML
descriptor (dependency injection).
Configuration classes. Architectures can alternatively be
defined by specific Java classes, identified by the @Config-
uration annotation (see Listing 2). Configuration classes are
automatically detected by the Spring container and executed
to build the architecture. Beans are declared by methods
annotated by @Bean. This enables to program all the nec-
essary pre- or post- bean instantiation treatments required
to manage complex settings. Connections are handled by
passing bean references to bean constructors, as for the my-
Orchestrator bean in Listing 2, or to bean property setters.
In Listing 2, the clock1 and lamp1 methods are thus used
to retrieve the bean references passed to the myOrchestra-
tor constructor. Being genuine Java, configuration classes

leverage IDE tools and compile-time verification, as type-
safe bean connections and scoped identifiers.
Self-annotated classes. Architecture definition is inte-
grated to the code of the supporting classes thanks to anno-
tations. The @Component annotation identifies the classes
that will be automatically instantiated by the container to
create architecture beans (see Listings 3 and 4)2. Simi-
larly, the @Autowired annotation, which can be associated
to attributes, setters or constructors, identifies dependencies
(i.e., connections) that will automatically be supplied by the
container, using corresponding existing beans (retrieved by
name or type). On the one hand, self-annotated classes are
the most declarative way to define architectures. On the
other hand, architecture definitions are scattered through
and mixed with source code.

Moreover, Spring also supports any combination of the
aforementioned architecture definition features.

Feature Quality Analysis. XML descriptors and configu-
ration classes enable explicit and encapsulated architecture
definitions. Regarding modularity, configuration classes
leverage the object-orientation of Java. Considering these
three qualities, configuration classes are the best choice and
self-annotated classes the worst. This analysis is coherent
with technical literature that recommends to limit the use of
self-annotated classes to small projects [8, 14, 15]. Besides,
self-annotated classes define architectures only with single-
ton classes. Rather than a limitation, this constraint is in-
tended to enforce strong cohesion between class and archi-
tecture structures. Two antagonist approaches of architec-
ture definition are thus supported: architectures that are or-
thogonal (generic and flexible) or integrated (to avoid archi-
tectural drifts) to the code of classes. Self-annotated classes
therefore are recommended for projects that are subject to
frequent changes [1, 2, 14]. When it comes to choosing
features for architecture definition, technical literature only
provides scarce guidance, often considering this choice as
a matter of developers’ tastes [16, 17, 15]. Furthermore, to
our knowledge, the qualities of architecture definition mix-
ing features have not yet been studied. We expect that these
feature combinations result from rational decisions of ex-
perienced developers that use the most adapted feature to
different parts of architectures.

4 Empirical Study of Developers’ Practices
when Using Spring Framework

Data Extraction. A corpus of 524 projects has been ex-
tracted from GitHub. In order to consider only significant,
quality projects, we applied the selection criteria proposed

2Specialized annotations, like @Service, @Repository and @Con-
troller, have been derived from @Component to identify the roles of beans
in specific architecture kinds, like web-service architectures.

2



<beans
xmlns="http://www.springframework.org/schema/beans">
<bean class="my.smartHome.Clock" id="clock1" />
<bean class="my.smartHome.Lamp" id="lamp1" />
<bean class="my.smartHome.Orchestrator" id="myOrchestrator">

<property name="time" ref="clock1" />
<property name="light" ref="lamp1" />

< /bean>
< /beans>

Listing 1: XML descriptor bean configuration

@Configuration
public class BeansConfiguration{
@Bean
public Clock clock1(){return new Clock();}
@Bean
public Lamp lamp1(){return new AdjustableLamp();}
@Bean
public Orchestrator myOrchestrator()
{return new Orchestrator(clock1(),lamp1());}

}

Listing 2: Annotation-based bean configuration

// Clock.java file extract
@Component
public class Clock implements Time {/*...*/}
// Lamp.java file extract
@Component
public class Lamp implements Light {/*...*/}

Listing 3: Annotated components

// Orchestrator.java file extract
@Component
public class Orchestrator{
@Autowired
private Time time;
@Autowired
private Light light;

}

Listing 4: Autowired configuration

in Jarczyk et al. [7], like the numbers of forks and stars.
We thus extracted the last commit of projects with 100 stars
or more, forked at least 10 times, written in Java, con-
taining the “Spring” keyword and created after 2010-01-01
(i.e., after Spring release 3). For reproducibility purposes,
our metadata is available online3.
Empirical Analysis. To understand the state-of-practice,
we first analyzed which Spring features where used in the
studied corpus. Surprisingly, a majority of Spring projects
mixes architecture definition features (' 69.3%) and, de-
spite their qualities, configurations classes are only used
in a minority of projects (' 6.5%). They are challenged
by XML descriptors (' 12.6%) and self-annotated classes
(' 11.6%). Apart from routine, in the case of XML descrip-
tors, which are the oldest proposed feature, declarativity
may thus be a key quality in developers’ decisions. Figure 1
presents the distribution of all the combination of architec-
ture definition features, depending on the size of the projects
measured with the Source Lines Of Code (SLOC) metric.
As expected, self-annotated classes alone are only used in
small projects. Surprise comes again from configuration
classes, that are used alone in only rather small projects.
Explicit and encapsulated architecture descriptions do not
appear to be a primary concern. Again, declarative features
are rather used in bigger projects and even the biggest ones.
More interestingly, the biggest project seems to require the
support of all the features together.

To confirm the intuition that project size has an impact
on used features, we evaluate two hypotheses using a non-
parametric statistical Kruskal-Wallis test:

Null hypothesis Alternative hypothesis
H0 : No influence of archi-
tecture definition features on
project size.

H1 : Influence of architecture
definition features on project
size.

3https://github.com/DedalArmy/MISORTIMA/tree
/data-study-spring-deploy-features

Defining risk α = 5%, the result of the test isH ' 93.68
with a p-value of ' 5.196−18. As p-value ≤ α, the null
hypothesis H0 is rejected with a 5% risk. This demon-
strates that architecture definition features have a signifi-
cant influence on project size. As the choice of architec-
ture definition features by the developer obviously does not
determine the size of the project, we can infer that the cor-
relation we measure is the reciprocal relation of the actual
situation: the choice of architecture definition features is in-
fluenced by the size of the project. It would be interesting to
study whether the choice of the technique is done a priori
or evolves, depending on the size of the project.

Finally, we also analyzed isolatedly the use of self-
annotated classes on the corpus of 524 Spring projects, de-
pending of their size, using a chi-square test. This test re-
jects the hypothesis of a relation between project size and
use of self-annotated classes, confirming the intuitive analy-
sis of Figure 1. Usage of self-annotated classes thus seems
definitely motivated by declarative convenience rather than
sound modeling capabilities.

Figure 1: Distribution of architecture definition features re-
garding SLOC

3



Threats to Validity. One of the major issues regarding
validity of our study is its generalization. This paper fo-
cuses exclusively on the Spring framework although Spring
is only one among many architecture definition frameworks.
This focus might bias the study. It would thus be interesting
to explore developers’ practices while they use other frame-
works in order to compare results with those of this paper.
Moreover, by using data provided and mined through the
GitHub API we are confronted to the threats already identi-
fied by Kalliamvakou et al. [9].

5 Related Works

Several works on the deployment of component archi-
tecture have already been carried out. Parrish et al. [12]
modeled the deployment of component architectures in a
formal way. It makes it possible to describe several deploy-
ment strategies while ensuring deployment safety in terms
of installation and component compatibility. Dearle [3]
compared the different methods for architecture deployment
and showed that dependency injection, as implemented in
Spring, is a desirable mechanism for component lifecycle
management. Another study has shown that Spring reduces
the developers’ workload, in particular by extra flexibility,
as compared to Java EE [6]. To our knowledge, there is
a lack of research on architecture definition combinations
and different practices in terms of deployment configura-
tion even if a strong technical literature exists on the subject
[8, 14, 15, 16, 17].

6 Conclusion

The empirical analysis we have run on a corpus of 524
projects extracted from the hosting GitHub service about
the usage of the architectural definition features provided
by the Spring framework leaves opened questions. It shows
that usage is strongly related to project size and thus results
from rational developer decisions. However, usage seems
to be motivated by rather practical than quality concerns,
as shown by the predominant use of combined features in-
cluding self-annotated classes in any size of projects. A
first perspective is to study more precisely how Spring fea-
tures are combined according to project size or domain. We
also plan to compare features from other technologies (lan-
guages) and frameworks.

Previous work has shown that it is possible to recover an
explicit architecture documentation by mining Spring XML
configuration files and compiled source code [10]. How-
ever, the relevance of results depend on the quality of the
architecture modeled in the code. The goal of the on-going
work presented in this paper is complementary: fostering
the best architectural qualities when source code is used as
a standalone model in agile processes.

A more practical perspective is to pursue the develop-
ment effort to try and better assist developers in their archi-
tecture deployment activities by visualization and develop-
ment of assistance tools.

References

[1] J. Carnell. Spring Microservices in Action. Manning, 2017.
[2] I. Cosmina, R. Harrop, C. Schaefer, and C. Ho. Pro Spring

5: An in-depth guide to the Spring framework and its tools.
Apress, 5th edition, 2017.

[3] A. Dearle. Software deployment, past, present and future.
In L. C. Briand and A. L. Wolf, editors, FOSE workshop at
29th ICSE, pages 269–284, Minneapolis, USA, May 2007.
IEEE.

[4] S. Ducasse and D. Pollet. Software architecture reconstruc-
tion: A process-oriented taxonomy. IEEE Transactions on
Software Engineering, 35(4):573–591, April 2009.

[5] D. Garlan. Software architecture: A roadmap. In FOSE
track at 20th ICSE, pages 91–101, Limerick, Ireland, June
2000. ACM.

[6] P. Gupta and M. C. Govil. Spring Web MVC framework
for rapid open source J2EE application development: a case
study. IJEST, 2(6):1684–1689, 2010.

[7] O. Jarczyk, B. Gruszka, S. Jaroszewicz, L. Bukowski, and
A. Wierzbicki. GitHub projects. quality analysis of open-
source software. In L. M. Aiello and D. McFarland, edi-
tors, 6th international SocInfo conference, volume 8851 of
LNCS, pages 80–94, Barcelona, Spain, Nov. 2014. Springer.

[8] T. M. Jog. Learning Spring 5.0. Packt, 2017.
[9] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M.

German, and D. Damian. The promises and perils of mining
GitHub. In 11th Working MSR conference, pages 92–101,
Hyderabad, India, May 2014. ACM.

[10] A. Le Borgne, D. Delahaye, M. Huchard, C. Urtado, and
S. Vauttier. Recovering three-level architectures from the
code of open-source java Spring projects. In X. He, editor,
30th international SEKE conference, pages 199–202, San
Francisco, USA, July 2018.

[11] A. Mokni, C. Urtado, S. Vauttier, M. Huchard, and
Z. Huaxi Yulin. A formal approach for managing
component-based architecture evolution. Science of Com-
puter Programming, 127:24–49, Oct. 2016.

[12] A. Parrish, B. Dixon, and D. Cordes. A conceptual foun-
dation for component-based software deployment. JSS,
57(3):193–200, July 2001.

[13] D. E. Perry and A. L. Wolf. Foundations for the study
of software architecture. SIGSOFT Software Engineering
Notes, 17(4):40–52, Oct. 1992.

[14] D. Rajput. Spring 5 design patterns: Master efficient appli-
cation development with patterns such as proxy, singleton,
the template method, and more. Packt, 2017.

[15] A. Sarin and J. Sharma. Getting Started with Spring Frame-
work: A Hands-On Guide to Begin Developing Applications
Using Spring Framework. CreateSpace, 3rd edition, 2016.

[16] C. Walls. Spring in action. Manning, 4th edition, Nov. 2014.
[17] N. S. Williams. Professional Java for Web Applications. Wi-

ley & sons, 2014.

4


