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The last two decades have witnessed a rapid development of microelectromechanical systems
(MEMS) involving gas microflows in various technical fields. Gas microflows can, for example,
be observed in micro heat exchangers designed for chemical applications or for cooling of electronic
components, in fluidic microactuators developed for active flow control purposes, in micronozzles
used for the micropropulsion of nano- and picosatellites, in micro gas chromatographs, analyzers or
separators, in vacuum generators and in Knudsen micropumps, as well as in some organs-on-a-chip
such as artificial lungs. These flows are rarefied due to the small MEMS dimensions, and the rarefaction
can be increased by low-pressure conditions. The flows relate to the slip flow, transition, or free
molecular regimes, and can involve monatomic or polyatomic gases and gas mixtures. Hydrodynamics
and heat and mass transfer are strongly impacted by rarefaction effects, and temperature-driven
microflows offer new opportunities for designing original MEMS for gas pumping or separation.
Accordingly, this Special Issue of Micromachines, entitled “Gas Flows in Microsystems” contains
14 papers (1 review and 13 research articles), which focus on novel theoretical and numerical models
or data, as well as on new experimental results and techniques, for improving knowledge on heat and
mass transfer in gas microflows.

A few papers of this Special Issue have addressed fundamental issues on gas microflow modeling.
Many microfluidic systems involving gases operate in the slip or early transition regimes, and the
bulk flow can then be modeled in these slightly rarefied regimes by continuum approaches. In the
Knudsen layer close to the walls, however, local thermodynamic disequilibrium takes place and specific
approaches are required. An effective mean free path model was implemented by Bhagat et al. [1] in
OpenFOAM, an open source computational fluid dynamics (CFD) code based on the Navier-Stokes
equations. A hybrid Langmuir-Maxwell-Smoluchowski velocity slip and temperature jump boundary
condition was used with a Knudsen layer formulation and tested on the backward facing step channel.
Comparison with direct simulation Monte Carlo (DSMC) demonstrated a significant improvement
over existing CFD solvers. Pressure drop in microchannels is a fundamental quantity to control for
many engineering problems. In a number of devices, the entrance region is not negligible and should
be taken into account. Duan et al. [2] proposed a semi-analytical model based on the momentum
equation coupled with first-order slip boundary conditions. A good accuracy of this model, within 5%,
was demonstrated in the slip flow regime by comparison with CFD simulations, as well as with
experimental and numerical data from the literature. Even in non-rarefied regimes, the determination
of friction factors is not straightforward, as demonstrated by Rehman et al. [3] who determined the
average friction factor in gas flows along adiabatic microchannels with rectangular cross-section.
From an experimental and numerical analysis, covering a large range of the Reynolds number from
200 to 20,000, they pointed out the role of minor loss coefficients and demonstrated that they should
not be considered as constant. Gas microflows can also be encountered in gas microbearings where
the aerodynamic lubrication performance has a critical impact on the stability of the bearing-rotor
system in micromachines. The interactive effects of gas rarefaction and surface roughness on the
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static and dynamic characteristics of ultra-thin film gas lubrication in journal microbearings were
investigated by Wu et al. [4] under various operative conditions and structure parameters. On the
basis of the fractal geometry theory and the Boltzmann slip correction factor, the authors demonstrated
that high values of the eccentricity ratio and bearing number tend to significantly increase the principal
stiffness coefficients, and the fractal roughness surface considerably affects the ultra-thin film damping
characteristics compared to smooth surface bearing. Controlling gas damping at microscale is also
of high interest for the development of new compliant resonant microsystems. Mirzazadeh and
Mariani [5] developed simple analytical solutions to estimate the dissipation in the ideal case of air flow
between infinite plates, at atmospheric pressure, for application to comb-drive actuators. The results
of numerical simulations were also reported to assess the effect of the finite size of actual geometries
on damping.

These fundamental papers underline the importance of experimental data for validating simplified
or more complex models. Unfortunately, the amount of experimental data on gas microflows is very
limited, compared to the high number of numerical studies. The main difficulty, as explained in the
review by Brandner [6], is due to the fact that conventional measurement techniques (for temperature,
pressure, etc.) cannot be adapted to gas microflows, due to their intrusiveness and/or low signal
delivery, especially when timely and spatially correlated measurements are required. In that review,
the potential of nuclear magnetic resonance and magnetic resonance imaging for analyzing gas
microflows is discussed. Some issues linked to the intrusiveness of sensors, even highly miniaturized,
are also treated in the paper by Mironov et al. [7], in which the interaction between a Pitot microtube
and a supersonic microjet is investigated.

The last series of papers published in this Special Issue are devoted to specific microsystems
designed for the control or the analysis of gas microflows. One specific phenomenon experienced in
rarefied gas flows is thermal transpiration, which allows the design of thermally driven pumps without
any moving mechanical part. These so-called Knudsen pumps are very appealing for a number of
applications requiring the control of a pressure, a flow rate, or the intake of a gas sample. Lopez Quesada
et al. [8] provided some guidelines for the design of Knudsen micropumps based on architectures
adapted to target applications which can require a high vacuum, a high flowrate, or a compromise
between these two parameters. Their work is based on kinetic modeling and simulations, but takes
into account some manufacturing constraints. Zhang et al. [9] focused their numerical analysis on
the behavior of N»,—O; gas mixtures in a more classic design of the Knudsen pump. The thermal
transpiration efficiency is related to the molecular mass of the gas and, even with a molecular mass
close to that of O,, N, was submitted to a stronger thermal transpiration effect. In addition, the lighter
gas, N, could effectively promote the motion of the heavier gas, O,. If separation of gas species from
a mixture is of practical interest at a microfluidic level, it is also the case of mixing. Meskos et al. [10]
numerically investigated the mixing process of two pressure-driven rarefied gas flows between parallel
plates and evaluated the mixing length using a DSMC approach. They proposed a simple approach to
control the output mixture composition, by only adding a splitter in an appropriate location of the
microsystem’s mixing zone. This mixer was working in a steady state, differently from the option
analyzed by Noél et al. [11] who proposed a new multi-stage design of pulsed micromixer. For example,
they demonstrated that, for a 1 s pulse of pure gas (formaldehyde) followed by a 9 s pulse of pure
carrier gas (air), an effective mixing up to 94-96% was obtained at the exit of the micromixer. There is
currently a high demand for compact, accurate, and rapid gas detectors. Several papers in this Special
Issue are focused on this subject. Khan et al. [12] developed a toluene detector based on deep ultraviolet
(UV) absorption spectrophotometry. They implemented two types of hollow-core waveguides, namely,
a glass capillary tube with aluminum-coated inner walls and an aluminum capillary tube, and obtained
limits of detection of 8.1 ppm and 12.4 ppm, respectively. Rezende et al. [13] proposed a micro milled
microfluidic photoionization detector of volatile organic compounds. The device does not require
any glue, which facilitates the easy replacement of components, and the estimated detection limit is
0.6 ppm for toluene without any amplification unit. Finally, Lara-Ibeas et al. [14] developed a compact
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prototype of gas chromatograph equipped with a preconcentration unit, able to detect sub-ppb levels
of benzene, toluene, ethylbenzene, and xylenes (BTEX) in gaseous mixtures. Detection limits of
0.20, 0.26, 0.49, 0.80, and 1.70 ppb were determined for benzene, toluene, ethylbenzene, m/p-xylenes,
and o-xylene, respectively.

We wish to thank all authors who submitted their papers to this Special Issue. We would also like
to acknowledge all the reviewers for dedicating their time to provide careful and timely reviews to
ensure the quality of this Special Issue.
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