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A 3-D ray based model for computing laser fields in dissipative and amplifying media is presented. The eikonal
equation is solved using inverse ray-tracing on a dedicated nonstructured 3-D mesh. Inverse ray-tracing opens
the possibility of using Complex Geometrical Optics (CGO), for which we propose a propagation formalism in
a finite element mesh. Divergent fields at caustics are corrected using an etalon integral method for fold-type
caustics. This method is successfully applied in dissipative media by modifying the ray-ordering and root
selection rules, thereby allowing one to reconstruct the field in the entire caustic region. In addition, we
demonstrate how caustics in the CGO framework can disappear entirely for sufficiently dissipative media,
making the complex ray approach valid in the entire medium. CGO is shown to offer a more precise modeling
of laser refraction and absorption in a dissipative medium when compared to Geometrical Optics (GO). In
the framework of Inertial Confinement Fusion (ICF), this occurs mostly at intermediate temperatures or
at high temperatures close to the critical density. Additionally, GO is invalid at low temperatures if an
approximated expression of the permittivity is used. The inverse ray-tracing algorithm for GO and CGO
is implemented in the IFRIIT code, in the framework of a dielectric permittivity described in 3-D using a
piecewise linear approximation in tetrahedrons. Fields computed using GO and CGO are compared to results
from the electromagnetic wave solver LPSE. Excellent agreement is obtained in 1-D linear and nonlinear
permittivity profiles. Good agreement is also obtained for ICF-like Gaussian density profiles in 2-D. Finally,
we demonstrate how the model reproduces Gaussian beam diffraction using CGO. The IFRIIT code will be
interfaced inline to 3-D radiative hydrodynamic codes to describe the nonlinear laser plasma interaction in
ICF and high-energy-density plasmas.

I. INTRODUCTION

High Energy Density (HED) plasmas created by laser
matter interaction are prone to a variety of Laser
Plasma Instabilities (LPI). In certain regimes, notably
in the case of Inertial Confinement Fusion (ICF), these
microscopic-scale processes may induce macroscopic-
scale perturbations1–3. Notably, overlapping laser beams
may exchange energy by coupling locally to ion acoustic
waves, thereby redistributing the laser energy on large
spatial scales4–6. Additionally, processes that excite elec-
tron plasma waves, such as two-plasmon decay or stimu-
lated Raman scattering, can generate suprathermal elec-
tron populations that may modify the physics of shock
propagation in nefarious or beneficial ways7–9, or preheat
the fuel during its compression3. While these processes
are paramount to understanding and designing exper-
iments, it is challenging to account for their contribu-
tions in hydrodynamic codes. In particular, we mention
that for ICF applications, Cross-Beam Energy Transfer
(CBET) is the first process that should be accounted for
accurately because it redistributes laser energy on large
scales, which modifies other LPI processes.

Modeling LPIs inline in hydrodynamic codes requires
an efficient description of the laser propagation, e.g., ray-
based approaches that retain the capability to estimate
the laser intensity or field distribution in the plasma. In
the vast majority of cases, laser models rely on conven-
tional Geometrical Optics (GO) to describe laser refrac-

tion and collisional absorption10. GO rays are discrete
trajectories in space, without notion of thickness, which
complicates the definition of ray intensity. This has mo-
tivated the development of many methods to compute
inline ray intensities from ray powers: rigid-scale estima-
tion from collisional absorption11, neighboring ray tra-
jectories as elementary cross sections5,12, ray-path-length
ratio to cell volumes as elementary cross sections13, ray
density field estimation14 or Gaussian beamlets15.

Conversely, the notion of ray amplitude exists, but the
computation of ray fields requires one to find all rays that
contribute to a given point and tracking their phase16. In
theory, such a method allows for the exact resolution of
the eikonal equation, that is the first-order term of the
field amplitude expansion in inverse power of the wave
number in the Helmholtz equation. Numerically accu-
rate implementations however involve the use of Inverse
Ray-Tracing (IRT) methods. This framework and its as-
sociated algorithms differ greatly from what is currently
implemented in HED hydrodynamic codes, where light is
traced forward from a lens in a medium whose dielectric
properties are known on a hydrodynamic mesh. Repro-
ducing typical ICF laser fields and CBET from the ray
amplitude and phase was demonstrated recently in offline
calculations, using 2-D interpolation methods to compute
maps of ray phases and amplitudes17 in place of IRT.

The computation of field distributions from the ray
field in itself is a strong motivation for developing in-
line IRT methods; however, there are additional advan-
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tages to using this class of algorithms. In standard inline
models, hydrodynamic cells are used as a proxy to com-
pute the laser matter coupling. This method belongs
to the class of rigid-scale techniques, e.g., the hydrody-
namic grid used to determine wavefield quantities has
a fixed scale at a given time step, and does not adapt
to gradients in laser-related quantities. This estimation
method is straightforward to implement, but it possesses
two main shortcomings that lead to unwanted side ef-
fects. First, rigid-scale estimation requires many rays in
each cell in order to avoid noisy estimation or holes in
the reconstructed quantities. This is difficult to ensure
in 3-D and in regions where refraction is important, no-
tably for the reflected wavefield in direct-drive geometries
and glint in indirect-drive geometry. In both cases, these
fields may interact through CBET with the incident laser
beam and, as such, should be modeled with sufficient ac-
curacy. Second, laser caustics, regions prone to nonlinear
effects, are often largely under-resolved by hydrodynamic
grids. This is because (i) caustics are seldom located in
regions of interest for the plasma flow and (ii) they are
only a few wavelengths thick. Even in instances where
a mesh would be sufficiently refined to resolve a caustic
region, one must address the question of divergence of
the GO framework there. This is accounted for in some
hydrocodes by imposing artificial limits on the maximum
reconstructed intensity.

This work aims to tackle several of the aforementioned
problems by implementing three novel components to
an inline laser propagation model: IRT, real-valued and
complex-valued Geometrical Optics (CGO) with Etalon
Integrals (EI), and Adaptive Mesh Refinement (AMR).
First, the question of ray statistics per cell, related to the
correct estimation of forward and reflected wavefields, is
addressed by the use of IRT. The IRT framework allows
one to solve for the eikonal equation directly while also
providing the opportunity to use both GO and CGO.
The implementation of CGO allows one to model a wider
range of beam propagation physics, such as refraction
and absorption modification in strongly dissipative re-
gions, higher field reconstruction accuracy at caustics,
beam diffraction in the case of Gaussian beams written
with a complex initial condition, and interaction with
the cold plasma. The caustic field itself is obtained from
the ray field using an EI method18 that eliminates diver-
gence. The last component is the implementation of a
symmetric tetrahedron-based AMR algorithm within the
IRT framework, which allows one to resolve laser caustics
and sharp boundaries.

The model implementing these novel methods, IFRIIT
(Inline Field Reconstruction and Interaction using In-
verse Tracing), will be interfaced with various 3-D hydro-
dynamic codes in order to study ICF and HED physics in
the presence of CBET and suprathermal electrons gener-
ated by laser plasma instabilities. The inline calculation,
e.g. for CBET, would proceed as follows: (i) a laser mesh
is built from constrained triangulation of the hydrody-
namic inputs (only at initialization), (ii) IRT with either

GO or CGO is used to compute fields at mesh vertices,
using EIs at caustics and CBET gains from the previ-
ous timestep, (iii) CBET gains are recomputed at mesh
vertices and fields are updated as required, (iv) the laser
mesh is adaptively refined in regions of high gain gra-
dients, fields and gains are recomputed as required, (v)
energy deposition is calculated in each tetrahedron and
summed over the hydrodynamic cells. This paper tack-
les the first two points, while the AMR step and CBET
implementation will be presented in a follow up paper.
Furthermore, this paper deals with propagation of scalar
wavefields, i.e. s-polarized waves. The description of
wavefield polarization and its rotation will be tackled in
future work. In the long term, IFRIIT is planned to be
shared as a community code.

The paper is organized as follows: in Sec. II, we
present the implementation of an IRT algorithm in the
framework of GO and CGO ray-tracing. The IRT model
presented in Secs. II A and II B is formulated in the
framework of a 3-D finite-element approach compatible
with the usual inline modeling approaches and approx-
imations. The propagation equations for CGO, as well
as their implementation in a 3-D tetrahedral mesh are
presented in Sec. II C. We then detail in Sec. III the
EI method for field reconstruction at caustics. We no-
tably present modifications to the standard uniform Airy
asymptotics, which allows one to successfully apply the
EI in dissipative media. Finally, in Sec. IV we present the
application of IFRIIT to academic cases of GO and CGO
propagation. These highlight the properties of CGO rays
in various media and illustrate the accuracy of the mod-
ified EI for GO and CGO in simple configurations and
ICF-like plasmas. Finally, our conclusions are presented
in Sec. V.

II. FINITE ELEMENT REAL AND COMPLEX
GEOMETRICAL OPTICS INVERSE RAY-TRACING

A. Inverse Ray-Tracing formulation

In this section, the formulation and implementation of
IRT in the framework of GO and CGO are described.

1. Definition of ray parameters and caustics

Throughout the paper, we will refer to ray trajecto-
ries expressed with parametric equations of real valued
or complex valued ray arguments (ζ1, ζ2, τ), noted as
r = R(ζ1, ζ2, τ) for position and p = P(ζ1, ζ2, τ) for mo-
mentum. These parametric equations are specific to solv-
ing the eikonal equation (see Eq. (10)) using the method
of characteristics, where we make use of three so-called
ray parameters: (ζ1, ζ2, τ).

The first two parameters (ζ1, ζ2) describe the distribu-
tion of initial conditions for the ray on an initial surface
R0(ζ1, ζ2). Parameter τ is a propagation coordinate such
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that the ray reaches a position noted r(τ) = R(ζ1, ζ2, τ)
at τ from initial coordinates R0(ζ1, ζ2) = R(ζ1, ζ2, 0).
In the case of CGO, the ray parameters, initial surface
function R0, and ray position function R are all complex
valued.

The trajectory equations in Hamiltonian form define a
mapping from the ray coordinate phase space (ζ1, ζ2, τ)
to the configuration space (x, y, z). Throughout the pa-
per, we will refer to observation points as real-space co-
ordinates (x′, y′, z′) ∈ R3, where we seek ray parameters
such that R(ζ1, ζ2, τ) = (x′, y′, z′), i.e., complex ray tra-
jectories that intersect real space. The prime symbol
denotes the real part of a complex variable, or directly a
real variable. In general, there can be several solutions
to this problem, e.g., several different rays may reach the
same observation point. Here we mention that rays can
be qualified as different if their ray parameters differ suf-
ficiently (see Sec. II A 2).

The parametric mapping from (ζ1, ζ2, τ) to (x, y, z)
through R implies the use of a Jacobian for the co-
ordinate transformation. This Jacobian may be non-
invertible in some regions, which manifests itself by a
local discontinuity in the number of rays in the map-
ping. This change in number of rays is referred to as a
caustic or catastrophe in ray theory19. As shown in Sec.
II C 4, the framework of GO and CGO near and at caus-
tics breaks down, leading to infinite ray amplitudes. As
will be shown in Sec. III, however, the ray parameters
keep mathematical meaning and can be used to recon-
struct the caustic field16.

2. Implementation of Inverse Ray-Tracing for real valued
and complex valued rays

IRT deals with finding all the ray parameters (ζ1, ζ2, τ)
such that the end point of the corresponding rays is
a desired observation point ro = (xo, yo, zo). This
problem can be seen as a minimization of the quantity
‖R(ζ1, ζ2, τ)− ro‖∞, where R is obtained by integrating
the ray trajectory equations. Various algorithms have
been tested to solve this optimization problem, includ-
ing Broyden’s method20 and Krylov-subspace methods21.
The best performance and accuracy have been found
by employing a multi-dimensional exact Newton method
with a line search algorithm. Here, we present a general
overview of our implementation.

a. Initial guess. The starting point of a Newton it-
eration is a guess ug = (ζg

1 , ζ
g
2 , τ

g), tracing a ray to rg.
For time-dependent calculations, an adequate guess is
the solution values of (ζ1, ζ2, τ) obtained at a previous
hydrodynamic timestep since, in general, hydrodynamic
quantities evolve slowly. At initialization, initial guesses
are obtained by direct tracing of GO rays in the mesh.
This provides a mapping G from the 3-D phase space
(ζ1, ζ2, τ) to the physical space, G : (ζ1, ζ2, τ)→ (x, y, z),
where ζ1 ∈ [ζmin

1 , ζmax
1 ], ζ2 ∈ [ζmin

2 , ζmax
2 ], τ ∈ [τmin, τmax]

are constrained by limits that depend on the configu-

ration. For each observation point ro, we identify local
minima in ‖G−ro‖L2 by applying a 3-D minimum filter22

with a 3x3x3 pixel mask, providing an arbitrary number
of initial guesses ng. A typical number of initial guesses
for a single observation point is in the 5 to 20 range.

b. Newton iteration. For each initial guess, we con-
duct the full Newton iterations as follows:

• The Jacobian J(un) of F(un) = R(un)−ro is com-
puted, where un is the ray parameter vector at
Newton step n and the underline denotes a ma-
trix quantity. We then solve J(un)δn = −F(un)
for the gradient direction δn. Note that the Ja-
cobian is evaluated at each Newton step for best
convergence accuracy.

• A (α, β) Goldstein-Armijo line search algorithm de-
termines the optimal step size K (Ref. 23) such
that we obtain the new iterate un+1 = un +Kδn.

• Convergence is tested by applying stopping criteria
on the nonlinear residual and the step length. The
nonlinear residual criterion, which determines suc-
cessful convergence, is written as ‖F(un)‖∞ ≤ 1Å.
While this may appear to be a strict convergence
criterion, we have found that it is required to iden-
tify duplicate rays.

c. Duplicate removal. The Newton iterations reduce
the ng initial guesses to mg solutions, e.g., rays that
reach ro. Among these, duplicates must be identified.
Since two rays are unique if they differ in ray parame-
ters, rays i and j are supposedly different if |µi − µj | ≥
10−3 [1 + max(|µi|, |µj |)] µm where µ ≡ (ζ1, ζ2, τ) (in mi-
crons). This criterion has been applied for 3ω laser light,
and may need to be scaled for other frequencies. Usually,
ns = 2 solutions remain in configurations of a simple fold
caustic. The procedure is repeated for each observation
point.

d. Jacobian evaluations. The Jacobian of F(un)
cannot be represented symbolically and must be approxi-
mated. Convergence performance of the Newton step has
been observed to depend greatly on the spatial smooth-
ness of the Jacobian function. As such, Krylov-subspace
approximations of the Jacobian have been found to be
inefficient for our purpose36, which motivated our use
of an exact Newton method. In most cases, the initial
guesses are close to the actual solutions. In these condi-
tions, central difference approximations have been found
to lead to faster convergence rates than forward differ-
ences. The jacobians for GO and CGO read:
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, (1)

where we have defined R(un) = (Rx, Ry, Rz) for GO
and R(un) = (R′x, R

′
y, R

′
z, R

′′
x, R

′′
y , R

′′
z ) for CGO, and

have used ∂R/∂τ = p = (px, py, pz) for GO. Here
and throughout the paper, the double prime denotes the
imaginary part (and we recall that the single prime de-
notes the real part).

Evaluation of JGO requires tracing 5 rays since the
last column is known from one ray only. In the CGO
case, 12 rays are required. Derivatives are evaluated
with a central difference formula, with steps dσi =
U1/3 max(1, |uin|) µm, where U is the machine precision
(dimensionless) and uin (in microns) is the ith element of
the Newton function vector un = (ζ1, ζ2, τ) for GO and
un = (ζ ′1, ζ

′
2, τ
′, ζ ′′1 , ζ

′′
2 , τ
′′) for CGO.

e. Trajectories and amplitudes. The Newton step is
conducted on ray trajectories without integration of the
phase and amplitude equations. Consequently, all rays
converging to an observation point are found, including
depleted and low-amplitude rays. This approach is ef-
ficient because the amplitude and phase integration is
costly. Retaining low-amplitude rays is also advanta-
geous for accurate CBET computations since these rays
may have otherwise been neglected. After obtaining the
ns solutions for a given observation point, the fields are
computed by integrating the phase and amplitude equa-
tions along the solution rays (see Sec. II C).

The exact Newton solver implemented in IFRIIT is
based on the SUNDIALS libraries25.

B. Mesh configuration

The GO and CGO trajectories in IFRIIT are resolved
within an independent mesh that describes the hydrody-
namic quantities and the dielectric permittivity ε of the
medium. This section details the 3-D mesh configuration
and its integration in the IRT framework.

1. Spatial tesselation of input points

The dielectric permittivity of the medium in 3-D is
represented by a piecewise linear function. This simple
approximation retains model efficiency since the formula-
tion aims at inline modeling and tracing of a large num-

ber of rays for the IRT framework. We make the distinc-
tion here between the input points, which may be ver-
tices from a hydrodynamic mesh or a user-supplied point
cloud, and the laser mesh, which is the mesh constructed
in the model for the IRT step. Further references to the
mesh or to cells alone refer to the laser mesh.

Each cell is chosen to be a tetrahedron, which enables
one to make a unique determination of the subgrid gra-
dient from the hydrodynamic quantities at vertices. The
observation points of the IRT algorithm are chosen to
be the cell vertices, which enables one to define subgrid
variations of laser-based quantities such as fields and gain
rates. This will facilitate the formulation of inline LPI
models.

The mesh is a triangulation of the input points, taken
here to be Delaunay at initialization. It relates point
numbers to cells, and defines cell neighborhoods through
faces and point neighborhoods with respect to the De-
launay distance. This triangulation may be constrained
when the input points are from hydrodynamic calcula-
tions, thus ensuring that tetrahedrons belong only to one
parent hydrodynamic cell. For time-dependent calcula-
tions, there is no need to update the triangulation as
long as the topology of the hydrodynamic mesh is not
modified, which is the case in most hydrodynamic codes
(Euler, Lagrange and Arbitrary Lagrangian Eulerian ap-
proaches).

2. Bounding mesh for ray-entry calculations

The boundary of the simulation domain is formed by
the convex hull of the initial triangulation; however, rays
are defined on initial ray surfaces outside the simula-
tion domain. Since the IRT framework involves tracing
rays with different initial conditions at each Newton step
(see Sec. II A 2), a large number of intersection calcula-
tions between the outside rays and the simulation domain
boundary are required. A ray-entry calculation involves
iteration over all external faces (i.e., faces of tetrahedrons
on the convex hull of the simulation domain) to verify
that the ray propagating in vacuum intersects inside a
given face. Given the potentially large number of tetra-
hedrons that shares a face with the domain boundary,
this approach is inefficient. As such, we implement a sec-
ond, less refined mesh, to act as a ray-entry buffer. This
mesh is referred to as bounding mesh.

The bounding mesh is a cube encompassing the sim-
ulation domain and typically composed of 30 points per
face. Tetrahedrons in the bounding mesh connect to the
convex hull of the simulation domain. An example of a
simulation domain and bounding mesh is given in Fig. 1
in a simplified 2-D geometry. Since there are far fewer ex-
ternal faces in the bounding mesh, ray-entry calculations
are greatly sped up. The medium in the bounding mesh
is a vacuum, e.g., ε = 1. Dielectric permittivity gra-
dients are present in bounding mesh tetrahedrons that
share a vertex with the simulation domain convex hull.
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FIG. 1. Schematic illustration of the laser mesh in 2-D. Ver-
tices belonging to the simulation domain are shown as red
circles. Vertices belong to the bounding box are shown as
blue squares. Black lines represent a Delaunay triangulation.
External edges, used to calculate the ray entry, are shown as
blue lines. Contrary to this simple example, the mesh used
in IFRIIT is entirely 3-D.

These gradients are arbitrary and purely depend on how
the bounding mesh is setup. Consequently, all gradients
in the bounding mesh are manually set to zero, which
creates discontinuities in ε at the boundary between the
bounding mesh and the simulation domain, which are
discussed in Sec. II C 8.

3. Subgrid scheme for hydrodynamic quantities

The triangulated mesh uniquely defines constant gra-
dients in cells, such that the ray trajectories are of or-
der 2 in space, e.g. ray coordinates can vary quadrati-
cally with arclength τ (see Sec. II C 3). This provides
sufficient trajectory accuracy while retaining the perfor-
mances required for inline modeling. Considering a quan-
tity Λ known at vertices i ∈ [1, 4] of spatial coordinates
ri = (xi, yi, zi) ∈ R3 in a cell, we define the transforma-
tion matrix A:

A =



x2 − x1 x3 − x1 x4 − x1

y2 − y1 y3 − y1 y4 − y1

z2 − z1 z3 − z1 z4 − z1


 , (2)

where vertex 1 is chosen arbitrarily. This allows one to
define a constant gradient GΛ of quantity Λ within the
tetrahedron from the values at the vertices:

∇Λ = GΛ = (A−1)T .




Λ2 − Λ1

Λ3 − Λ1

Λ4 − Λ1


 . (3)

The subgrid representation of Λ in the cell is then:

Λ(r) = Λ1 + (Re(r)− r1).GΛ , (4)

where r is a complex valued coordinate.

4. Subgrid scheme for the dielectric permittivity

As will be detailed in Sec. II C, the CGO framework
does not make use of the ε′′ � ε′ assumption. In order
to derive the trajectory equations from the eikonal equa-
tion, the permittivity function must satisfy the Cauchy-
Riemman equations, which prevents the use of the usual
definition for ε (Eq. (4)). Consequently, the subgrid per-
mittivity for CGO is written as:

ε(r) = ε1 + (r− r1).Gε , (5)

where ∇ε = Gε is a constant in each cell, and the overline
denotes complex conjugation. Throughout the paper, the
dot product involving complex quantities is defined as
a.b =

∑
aibi. Decomposing the dielectric permittivity

into real and imaginary parts yields:

ε′(r′ + ır′′) = ε′1 + (r′ − r1).G′ε − r′′.G′′ε , (6)

ε′′(r′ + ır′′) = ε′′1 + (r′ − r1).G′′ε + r′′.G′ε . (7)

In real valued GO (r′′ = 0), ε′ is a function of G′ε and
ε′′ is a function of G′′ε . These equations illustrate how
this no longer holds in CGO, where the ray position in
complex space modifies the real part of the permittivity
seen by the ray through G′′ε and vice versa.

The trajectory equations for GO and CGO rays are
solved in each tetrahedron separately using the assump-
tion that Gε is locally constant. When reaching a cell
interface, the neighbor tetrahedron is determined from
topology and the integration is continued in the next
tetrahedron.

C. Propagation equations for real and complex rays

We now present the propagation equations of GO and
CGO along with their implementation in IFRIIT. Some
derivations are only given for CGO and are straightfor-
ward to simplify for GO. First, we derive the eikonal and
transport equations in Sec. II C 1, required to describe
the ray trajectory, phase, and field equations given for
GO in Sec. II C 2 and CGO in Sec. II C 3. Computation
of the ray amplitude term, uniquely dependent on the ray
trajectory, is given for both GO and CGO in Sec. II C 4.
The CGO ray trajectory equation in a linear permittivity
profile is derived in Sec. II C 5, and the corresponding in-
tegrations for complex arc-length and complex phase are
given in Secs. II C 6 and II C 7, respectively. Transition of
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the ray from one tetrahedron to the next involves a com-
plex momentum discontinuity, expressed in Sec. II C 8.
Finally, initialization of complex momentum for CGO is
given in Sec. II C 9.

1. Eikonal and transport equation

Both the GO and CGO formalisms deal with solutions
of the Helmholtz equation, obtained from the Maxwell
equations for monochromatic s-polarized electromagnetic
waves26:

∆u(r) + k2
0ε(r)u(r) = 0 , (8)

where k0 = ω0/c is the vacuum wave number and u is
the scalar electric field.

The eikonal and transport equations are obtained by
performing a Debye expansion:

u(r) =
∑

m

Am(r)

(ık0)m
exp [ık0ψ(r)] , (9)

where ψ is a phase and Am an amplitude. In the most
generic description, the phase and amplitude terms may
be complex-valued. Note also that with these notations,
the phase has units of distance and the amplitude term
Am has units of u times an inverse distance to the power
m (such that A0 has units of u).

Substitution of this ansatz in the Helmholtz equation
and equating terms in inverse powers of (ık0)m leads, at
order 0, to the eikonal equation:

(∇ψ)2 = ε(r) , (10)

and at order 1, to the first transport equation:

2(∇A0.∇ψ) +A0∆ψ = 0 . (11)

The eikonal equation belongs to the Hamilton-Jacobi
variety and is, in general, solved using the method
of characteristics to obtain the trajectory equations in
Hamiltonian form16. Note here that we have assumed
s-polarized light. An extension of the model to more
generic polarization configurations is envisioned as fol-
lows: Away from turning points, Eq. (8) can be used
to propagate the p-polarized component. Doing so, the
electric field vector can be tracked in a local ray-centered
coordinate system such as the one employed in Parax-
ial Complex Geometrical Optics15. This would allow for
more accurate computation of LPI processes and eventu-
ally account for polarization rotation due to CBET.

2. Geometrical Optics ray trajectory, phase, and field

One of the differences between GO and CGO arises
in the expression of the dielectric permittivity ε(r) =

ε′(r) + ıε′′(r). In GO, ray trajectories are localized in
real space, which requires the assumption ε′′(r) � ε′(r).
In that case, solutions to the eikonal equation are sought
in the form of ψ(r) = ψ(0)(r) + ψ(1)(r), where ψ(0)(r)
is real valued, ψ(1)(r) is imaginary, and |ψ(1)| � |ψ(0)|.
Substituting the phase ansatz into the eikonal equation
(10) and equating terms of the same order yields:

(∇ψ(0))2 = ε′(r) , (12)

2∇ψ(0).∇ψ(1) = ıε′′(r) , (13)

(∇ψ(1))2 = 0 . (14)

Solving Eq. (12) using the method of character-
istics yields the real-space GO trajectory and phase
equations16:

dr′

dτ ′
= p′ , (15)

dp′

dτ ′
=

1

2
∇ε′(r′) , (16)

dψ(0)

dτ ′
= ε′(r′) , (17)

where p′ = ∇ψ(0) is the real ray momentum.

Using the unperturbed ray momentum ∇ψ(0) = dr′

dτ ′ ,

Eq. (13) becomes dψ(1)/dτ ′ = ıε′′/2, which can be inte-
grated to give the phase correction term:

ψ(1) =
1

2

∫ τ ′

0

ıε′′(r′(τ̃ ′))dτ̃ ′ . (18)

Finally, the GO electric-field amplitude is16:

|u|GO = |A0(τ ′)| exp

(
−k0

1

2

∫ τ ′

0

ε′′(r′(τ̃ ′))dτ̃ ′

)
. (19)

In the case of plasmas, the quantity in the exponen-
tial is the well-known Inverse Bremsstrahlung absorption
term (and eventually CBET amplification term) used in
GO-based ray-tracing codes. The ray amplitude term
|A0(τ ′)| accounts for local field amplification through
convergence/divergence of the ray tube and is discussed
further in Sec. II C 4.

3. Complex Geometrical Optics ray trajectory, phase, and
field

In the CGO framework, no assumption is made on the
amplitude of ε′′. The eikonal and transport equations
(Eqs. (10) and (11)) are solved by seeking complex val-
ued ray phases, momenta, and positions. The CGO tra-
jectory and phase equations are:



7

FIG. 2. Integration path chosen for the CGO IRT. Rays are
propagating from the lens plane (at τ = 0) to the bounding
mesh boundary (τ ′B) and simulation box boundary (τ ′S) along
the real axis. This first part of the contour minimizes ray shift
into complex space, which facilitates convergence of the IRT
algorithms. The jump conditions between vacuum and the
boundary of the simulation mesh is applied at τ ′S. Integration
is then carried along a straight line of slope α = τ ′′o /(τ

′
o − τ ′S)

to τo.

dr

dτ
= p ,

dp

dτ
=

1

2
∇ε(r) , (20)

dψ

dτ
= ε(r) , (21)

where the ray parameter τ is also complex valued.
Integration of these equations against the complex pa-

rameter requires a choice of path in complex space. Since
the subgrid representation of ε(r) satisfies the Cauchy-
Riemman equations in each cell, any choice of a path
for τ will lead to identical results, within numerical pre-
cision. In terms of numerical implementation, we have
found that a straight-line integration in the simulation
domain minimizes trajectory errors and is more straight-
forward to formulate. The integration path is shown in
Fig. 2.

4. Determination of ray amplitude

The ray amplitude term A0 is the solution of the first-
order transport equation (Eq. (11)). It can be reduced
to an ordinary differential equation in τ by using the ray
trajectory equations:

2
dA0

dτ
+A0∆ψ = 0 , (22)

where we have used ∇ψ = p and ∇A0.p = dA0/dτ .
Integration against the arc-length yields:

A0(τ) = A0
0 exp

(
−1

2

∫ τ

0

∆ψ(τ̃)dτ̃

)
, (23)

with A0
0 the initial ray amplitude at τ = 0. This equa-

tion can be further simplified by noting that ∆ψ = ∇.p

and ∇.p = d lnD(τ)/dτ , where D(τ) is the determinant
of the Jacobian of the transformation from the spatial
coordinates (x, y, z) to the ray coordinates (ζ1, ζ2, τ):

D(τ) =

(
∂r

∂ζ1
× ∂r

∂ζ2

)
.p , (24)

where we have used ∂r/∂τ = p. Substituting for Eq.
(24) in Eq. (23) and integrating yields the equation for
the ray amplitude16:

A0(τ) = A0
0

(
D0

D(τ)

)1/2

, (25)

where D0 = D(0) is the initial ray divergence. Note
that in GO, the Jacobian determinant D is real valued,
while in CGO the derivatives in Eq. (24) must be taken
with respect to complex variable r and complex argu-
ments ζ. As such, the square root in Eq. (25) possesses
two branches in CGO. In the presence of a caustic, the
phase of the reflected wavefield must be shifted by −π/2.
This shift justifies a root selection for the two branches of√
D(τ) such that the phase of the reflected ray is shifted

by −π/2 compared to that of the incoming ray.

Equation (25) expresses the conservation of energy in a
ray tube formed by a ray bundle of infinitely small cross
section. As such, it expresses the contribution of refrac-
tion to the ray amplitude, i.e., the focusing or divergence
of the field in density gradients and at discrete inter-
faces. This term becomes unity when integrating on an
elementary cross section, which yields the conventional
definition of ray power used in GO ray-tracing codes. It
remains important however for the purpose of electric
field computation.

5. Trajectory equation in linear dielectric permittivity
profile

The trajectory equations (20) can be integrated analyt-
ically for a medium with constant permittivity gradient
Gε:

r(τ) = r0 + p0τ +
τ2

4
Gε , (26)

p(τ) = p0 +
τ

2
Gε , (27)

where r0 ≡ r(0) and p0 ≡ p(0).

Let us consider a complex ray traced from τ = 0 to
τ = τ ′(1 + ıα), where here α = τ ′′/τ ′. The real and
imaginary parts of the trajectory equations are:
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r′(τ) = r′0 + τ ′(p′0 − αp′′0) +
τ ′2

4

[
(1− α2)G′ε − 2αG′′ε

]
,

r′′(τ) = r′′0 + τ ′(p′0α+ p′′0) +
τ ′2

4

[
(1− α2)G′′ε + 2αG′ε

]
,

p′(τ) = p′0 +
τ ′

2
(G′ε − αG′′ε ) ,

p′′(τ) = p′′0 +
τ ′

2
(G′′ε + αG′ε) . (28)

These separated trajectory equations are useful for il-
lustrating how complex rays propagate. We recall that
complex rays have physical meaning only when they in-
tersect real space, e.g., for r′′(τ) = 0. In general, the
initial complex momentum p′′0 is non zero, and relates to
the initial phase (see Sec. II C 9). The inital complex po-
sition r′′0 depends on the complex valued ray parameters
(ζ1, ζ2) obtained by the IRT. We highlight a few proper-
ties of complex rays that can be observed from Eq. (28):

• CGO rays propagate with α = 0 only in the lit side
(e.g., in front of caustics) of media with ε′′ = 0.

• CGO rays with real valued initial position and mo-
mentum shift into complex space when α 6= 0. This
is the case even in constant density media since
the vacuum/plasma interface is a discontinuity in
ε that shifts ray momentum in complex space (see
Sec. II C 8).

• Ray position is affected by G′′ε , implying that ε′′

gradients (e.g., from Inverse Bremsstrahlung colli-
sion frequencies or CBET gain rates) shift ray po-
sitions.

• A CGO ray in vacuum may be complex valued if
its initial condition is also complex, as is the case
for, e.g., a Gaussian beam (see Sec. IV C).

6. Equation integration in tetrahedrons

Propagation of a GO or CGO ray within a tetrahedron
involves determining (i) the arc-length τc at which the ray
exits the cell, and (ii) the corresponding exit face. For
a given Newton step, the slope parameter α = τ ′′/τ ′ is
fixed. As such, the only unknown in Eqs. (28) is τ ′c. Since
the tetrahedron boundaries are known in physical space,
inversion of the ray equations to find τ ′c is conducted on
the real part of the ray trajectory r′. In general, this
equation is second order in τ ′, so that there are at most
two solutions per face, corresponding to eight solutions
for a given tetrahedron. Selection of the solution then
follows Fermat’s principle: the correct solution provides
a minimum strictly positive travel time27.

Resolution of the ray trajectory equation is conducted
in a non-Cartesian local coordinate system where the

three spatial axes are three arbitrary edges of the tetrahe-
dron. We define the ray position r̂ = (x̂, ŷ, ẑ), momentum

p̂, and gradient Ĝε in the local coordinate system as:

r̂ = A−1r , p̂ = A−1p , Ĝε = A−1Gε , (29)

where A is the matrix defined in Eq. (2).
In this coordinate system, {x̂′ = 0,∀(ŷ′, ẑ′) ∈ [0, 1]}

is the face formed by nodes (2,3,4), {ŷ′ = 0,∀(x̂′, ẑ′) ∈
[0, 1]} is the face formed by nodes (1,3,4), {ẑ′ =
0,∀(x̂′, ŷ′) ∈ [0, 1]} is the face formed by nodes (1,2,4),
and {∀(x̂′, ŷ′, ẑ′)\ x̂′ + ŷ′ + ẑ′ = 1} is the face formed by
nodes (1,2,3). Multiplying both sides of Eq. (28) by A−1

gives:

r̂′(τ) = r̂′0 + τ ′(p̂′0 − αp̂′′0) +
τ ′2

4

(
(1− α2)Ĝ

′
ε − 2αĜ

′′
ε

)
.

(30)
The eight intersection solutions are obtained by solv-

ing for x̂′(τ) = 0, ŷ′(τ) = 0, ẑ′(τ) = 0, and x̂′(τ)+ ŷ′(τ)+

ẑ′(τ) = 1. Numerical precision issues can lead to erro-
neous solutions for τ ′ when it is comparable to machine
precision, or when a ray’s turning point is too close to
a face. We have found it necessary to impose the addi-
tional constraint that the real-space coordinate must be
outside of the output face at coordinate τ ′ + dτ ′, where
dτ ′ is an infinitesimal arc-length.

Once a solution for τ ′ is found, the complex ray mo-
mentum and position can be updated by substituting for
the solution τ ′ in Eqs. (28). Using the neighborhood
information of the mesh, the ray is then propagated in
the next tetrahedron from the previous output face.

Resolution of the ray equation in the local coordinate
system provides control over the precision, notably when
rays are directly incident on vertices. In that case, var-
ious algorithms are applied to displace rays slightly in-
side the face before computing the arc-length. It must
be noted that reliability of the propagation algorithm in
IRT is paramount since ray trajectories are used to com-
pute Jacobian functions, which in turn are used to find
the rays reaching observation points.

7. Phase equation in tetrahedrons

Once the solution for τ has been found in a tetrahe-
dron, the phase change can be computed analytically by
integrating ε along the complex ray trajectory:

ψτ − ψ0 =

∫ τ

0

ε [r(τ)] dτ , (31)

where ψ0 is the phase at the initial ray position in the
cell. Substituting the sub-grid description of ε from Eq.
(5) and using the expression of r(τ) from Eq. (26), we
obtain:
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ψτ − ψ0 = τ

[
ε0 +

τ

2

(
p0 +

Gετ
6

)
.Gε
]
, (32)

where we have used ε0 = ε1 + (r0 − r1).Gε, with ε0 ≡
ε(τ = 0) the dielectric permittivity at the initial ray posi-
tion, r1 the real-space coordinate of node 1 of the current
tetrahedron, and ε1 the corresponding permittivity.

8. Complex ray refraction at permittivity discontinuities

It is well known that light rays experience momentum
changes at discrete interfaces. The piecewise linear di-
electric permittivity function assumed in IFRIIT is con-
tinuous in real space at interfaces, so that GO rays do
not experience refraction at interfaces. In this section,
we describe how this is not the case for CGO and show
how the ray momentum is modified by discrete interfaces.

The permittivity jump from εA to εB between cells A
and B at the interface point rAB is:

εB − εA = r′′AB.
[
G′′Aε − G′′Bε + ı(G′Bε − G′Aε )

]
, (33)

where we have used Eq. (5) and the matching condition
in physical space that derives from the construction of
the gradients (see Eq. (3)). This equation shows that
unless the ray is in physical space (r′′ = 0) or gradients

in cells A and B are equal (G′Aε = G′Bε and G′′Aε = G′′Bε ),
the permittivity is discontinuous in complex space even
though it is continuous in real space.

We now derive the jump conditions involved with a
complex ray traversing a face with a localized permittiv-
ity jump. These are obtained by solving the complex ray
equation (20) in a linear permittivity layer, expressing
the output position and momentum of the ray as a func-
tion of the layer thickness. By taking the layer thickness
to be zero, we obtain a discrete permittivity jump and
the related momentum jump equations. Consider a ray
at initial position r0 and momentum p0 on the face of
the tetrahedron it is leaving. The face normal is noted q
and is assumed to be outward with respect to the tetra-
hedron. The ray is traveling to position r1 in the input
face of the tetrahedron into which it is entering, such
that r1 = r0 + Lq (with L → 0). The dielectric permit-
tivity is assumed to vary linearly along the face normal:
ε(r) = ε0 + (r− r0).q(ε1 − ε0)/L.

The complex ray trajectory equation at r′(τ1) = r1,
projected along the face normal, is:

−L+ τ1p.q−
τ2
1

4L
(ε1 − ε0) = 0 , (34)

where we have used q.q = 1. Solving this equation for
τ1 yields:

τ1 = −2L[p0.q±
√

(p0.q)2 + (ε1 − ε0)]/(ε1 − ε0) ,
(35)

p1 = p0 + [−p0.q±
√

(p0.q)2 + (ε1 − ε0)]q . (36)

We select the root corresponding to minimum travel
time |τ1/L| to compute the momentum after the permit-
tivity jump p1.

Equation (36) highlights a unique feature of CGO: rays
are never reflected at discrete interfaces, as opposed to
GO rays which would reflect for p′0.q+(ε′1− ε′0) < 0 with
p1 = p0 − 2(q.p0)q. Instead, the CGO solution behind
such an interface would be exponentially damped. When
all quantities are real valued, the jump conditions (Eq.
(36)) are equivalent to Snell refraction of monochromatic
light. In the CGO case, the rays also shift in complex
momentum space. These equations are implemented at
(i) the interface between the bounding-box vacuum and
the material mesh, where ε0 = 1, and (ii) every tetra-
hedron interface when r′′ 6= 0, which is the case when
computing the CGO ray amplitude.

9. Complex initial conditions

Initial positions of GO and CGO rays are defined on
the initial ray surface through the function R0. Ray
phases and amplitudes are also defined on the initial ray
surface through corresponding functions ψ0 and A0

0:

R(ζ1, ζ2, 0) = R0(ζ1, ζ2) , (37)

ψ(ζ1, ζ2, 0) = ψ0(ζ1, ζ2) , (38)

A0(ζ1, ζ2, 0) = A0
0(ζ1, ζ2) , (39)

where the initial functions depend on the ray parameters.
A simple ansatz of the complex initial ray position func-
tion is R0(ζ1, ζ2) = rlens + e1ζ1 + e2ζ2, with rlens ∈ R3

a lens position and ei ∈ R3 two orthogonal base vectors
in the lens plane. The initial phase function for a plane-
wave is then ψ0(ζ1, ζ2) = 0 whatever the actual angle of
the beam. For an initially circular Gaussian beam, as
considered in Sec. IV C, the initial phase function reads
ψ0(ζ1, ζ2) = ı(ζ2

1 + ζ2
2 )/(2k0w

2
0) with w0 an initial radius.

The initial momentum p0 of the rays can be obtained
by differentiating Eq. (38) and from the eikonal equation
on the initial curve:

p0.
∂R0

∂ζ1
=
∂ψ0

∂ζ1
, (40)

p0.
∂R0

∂ζ2
=
∂ψ0

∂ζ2
, (41)

p0.p0 = ε0 = 1 , (42)

where the rays are assumed to be initialized in vacuum,
e.g., ε0 = 1. These equations illustrate that the initial
momentum is real valued unless the right-hand side of
Eq. (40) or Eq. (41) is complex valued, e.g, for Gaussian
beams.
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III. CALCULATION OF CAUSTIC FIELDS USING
ETALON INTEGRALS

Caustics are singularities in the mapping from the ray
coordinate phase space to the configuration space, which
manifest as a degeneracy in the number of rays reaching
a given observation point. Mathematically, they corre-
spond to non invertibility of the Jacobian J, and hence
to a divergence of the ray amplitude because D(τ) = 0
in Eq. (25).

The Etalon Integral (EI) technique was developed to
remedy this shortcoming of GO and CGO18 and success-
fully applied in the case of a linear nondissipative permit-
tivity profile in Ref. 28. This section details the imple-
mentation of the EI in the IFRIIT framework. Notably,
we present modifications to the EI that are required for
the successful application of the method to laser propa-
gation in plasmas. The modifications are related to ray
selection rules in the case of CGO in dissipative media
and dissipation corrections for GO in dissipative media.
In Sec. IV we will present applications of the method to
nonlinear permittivity profiles using both GO and CGO.

A. Validity of the GO and CGO framework

The formalism of GO and CGO breaks down not only
at the divergence point itself, where D(τ) = 0, but also
in a small volume around the caustic called the caustic
zone. The volume of the caustic zone can be estimated
from the validity conditions of GO and CGO. One such
condition is that the phase and amplitude of rays must
not vary significantly over the Fresnel volume, defined
as a spatial volume essential to the field forming at a
given point (see Ref. 29 for more details). A corollary
of this condition is that the Fresnel volumes of adjacent
rays should not overlap significantly. The latter can be
expressed by requiring that the phase difference between
two rays reaching the same observation point should be
such that29,30:

|ψ1 − ψ2| ≥ λ0/2 . (43)

This criterion is convenient for determining observa-
tion points where the GO and CGO methods will fail to
produce a physical result. The region of inapplicability
of the ray optics framework is a thin region of space on
the lit side of the caustic for GO and on either side of
the caustic for CGO. In practice, we have found that the
ray solution remains valid up to |ψ1 − ψ2| ≥ λ0/3.

B. Etalon Integral

In regions of space where condition (43) is not met,
we make use of an EI method18 to reconstruct the elec-
tric field. The method is based on identifying standard

integrals that match the electric field of various caus-
tic types. In most ICF applications, caustics of the fold
type are encountered. These are the simplest singulari-
ties and arise, e.g., in linear layers. A guess at the form
of the caustic field is formulated such that deviations
from the ideal case are allowed. Namely, the field near a
fold-type caustic is approached by the sum of (i) an Airy
function, analytical solution for the field in a constant
density gradient, and (ii) the derivative of an Airy func-
tion, which can account, e.g., for weak caustic curvature
or wavefront distortions16. This so-called uniform Airy
asymptotic reads:

u(r) '
{
C1(r)Ĩ[ξ(r)]− ıC2(r)Ĩ[ξ(r)]/k0

}
exp ık0χ(r) ,

(44)

where Ĩ(ξ) = k
1/6
0

√
2πAi(k

2/3
0 ξ) is the dimensional Airy

integral. Four functions of space C1(r), C2(r), χ(r) and
ξ(r) have been introduced in Eq. (44). Since the field
given by the overlap of two rays also contains four param-
eters (ψ1, ψ2, A01, A02), the ray phases and amplitudes
can be related to the uniform Airy asymptotic functions.
By matching the fields asymptotically and equating the
pre-exponential factors, the caustic field is then:

u =
√
π[(−ξ)1/4(A01 + ıA02)Ai(ξ)−

(−ξ)−1/4(A02 + ıA01)Ai′(ξ)] exp[ı(k0χ− π/4)] , (45)

where the ξ and χ parameters are related to the eikonal
of the rays through:

χ =
1

2
(ψ1 + ψ2) , (46)

ξ = −
(
k0

3

4
(ψ2 − ψ1)

)2/3

, (47)

with subscripts 1 and 2 representing the two rays reaching
the observation point, which must be ordered in a specific
way to compute ξ correctly. Notably, the EI field must
be oscillating in the lit side and decaying in the shadow
side.

For a medium with ε′′ = 0, or for GO IRT, ψ ∈ R in
the lit side and ψ is imaginary in the shadow side. In that
case, the power function in Eq. (47) is bijective in the
lit side with ξ ∈ R, and there is a branch in the shadow
side that gives ξ ∈ R. The ray-ordering condition for
applicability of the method for GO IRT reads:

lit region : ψ′1 < ψ′2 , (48)

shadow region : ψ′′1 > 0 , (49)

where it is implied that in the lit side ψ′′1 = ψ′′2 and in the
shadow side ψ2 = ψ1. These conditions give the correct
field behavior with ξ < 0 in the lit side, ξ = 0 at the
caustic singularity, and ξ > 0 in the shadow side.
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C. Root selection and ray-ordering modifications for
dissipative media

The formalism presented above is not readily applica-
ble to media with ε′′ 6= 0, as criterion (48) cannot be used
to distinguish the lit and shadow regions. This is because,
in general, we have ψ′1 > ψ′2 in the caustic shadow. Two
complex branch selections must be done in order to ap-
ply the EI in dissipative media: determination of the ray
amplitudes (A1, A2) and of the Airy parameter ξ. The
former requires one to determine which ray was reflected
on the caustic, while the latter requires one to determine
whether the current observation point sits on the lit or
shadow side of the caustic.

1. Ray-ordering for amplitude branch selection

In the case of a fold caustic, reflected rays possess
longer travel times than nonreflected rays. This is no-
tably illustrated in Sec. IV. The ray-ordering criterion
is then:

|τ1| < |τ2| , (50)

||τ1| − |τ2|| > δprec , (51)

where we have introduced the small numerical parameter
δprec, whose magnitude depends on the precision of the
inverse Newton step. While Eq. (51) is well defined in
most cases, numerical precision issues in nondissipative
medium and being very close to the caustic can cause
rays that should be identical to have slightly different
parameters37. Given the convergence accuracy of the IRT
Newton step of 1Å in ray position, we have found that
δprec ' 1×10−3 µm is required (where τ is usually of the
order of 100 to 1000 µm). Application of the EI when
criterion (51) is not satisfied is detailed in Sec. III E.
Selection rule (50) implies that ray 2 was reflected on
the caustic, so that the correct root for amplitude A2 is
the one that provides a −π/2 phase shift compared to
A1.

2. Root selection for the Airy parameter

The root selection for the Airy parameter ξ requires
one to determine if a given observation point sits in the
shadow or lit side. In the IRT framework, this criterion
must be uniquely derived from the phase and amplitude
information of the two rays at the observation point and
must be valid in the case of ε′′ = 0 (e.g., be asymptoti-
cally equivalent to Eq. (48)). The difficulty arises from
the fact that for ε′′ 6= 0, the caustic singularity ξ = 0
is no longer located in physical space (as shown in Sec.
IV B 2). In that case, we deal with so-called complex
caustics32. While the divergence point is not in physical
space, divergent-like behavior of the rays is still observed

in the caustic zone (i.e., for |ψ1 − ψ2| ≤ λ0/2), which
usually intersects real space.

The following criterion for characterizing the shadow
region when ε′′ > 0 was derived from tracing phases of
CGO rays in dispersive linear permittivity profiles, as
shown in Sec. (IV B 2):

shadow region : ψ′1 − ψ′2 + ψ′′1 − ψ′′2 > 0 ,

and ψ′1 − ψ′2 > 0 , (52)

where rays 1 and 2 were ordered according to relation
(50).

From the knowledge of the observation point position
with respect to the caustic shadow, the following root
selection criterion is applied to ξ:

lit region : ξ′ < 0, ξ′′ < 0 ,

shadow region : ξ′ > 0, ξ′′ < 0 , (53)

which is equivalent to selecting branches of ξ that do not
produce exponential growth of the field in the caustic
shadow.

D. Etalon Integral for GO rays in dissipative media

Application of the EI in dissipative media with GO
rays also warrants a modification of the method formal-
ism. This is because near caustics and in dissipative
media, the difference in perturbative terms ψ(1) of the
GO rays becomes large compared to the difference in un-
perturbed terms ψ(0). The associated loss of accuracy
prevents the EI from converging for low values of |ξ|.
A satisfying approximate solution, converging to u = 0
at ξ = 0, is obtained by using ψ(0) only in the EI to
compute ξ and χ. Dissipation is then obtained by fac-
toring exp−k0ψ

(1) into the amplitude terms A0i. This
is illustrated alongside examples of wave propagation in
permittivity profiles in Sec. IV B 4.

E. Indistinguishable rays for the Etalon Integral

We consider that rays reaching an observation point
are numerically indistinguishable for the EI method when
condition (51) is not satisfied. In general, this case is
specific to CGO rays propagating close to caustics when
ε′′ = 0. In these occurrences, ray 1 is defined such that
ψ′′1 < 0. The ray phase and amplitude of the second ray
are overwritten as ψ2 = ψ1 and A2 = −ıA1, respectively,
and we set ξ = ((3/2)k0ψ

′′
1 )2/3 ∈ R (ξ > 0). The field is

then computed normally using the EI (Eq. (45)).

F. Unphysical rays in dissipative media

In the caustic shadow, two complex rays reach every
observation point. When ε′′ = 0, the phases of the rays
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are complex conjugate. Consequently, the two rays de-
scribe an exponentially damped and an exponentially in-
creasing solution. While only the exponentially damped
solution is physical (ψ′′ > 0), both rays are mathemati-
cally justified and must be kept when applying the EI.

When computing the ray field without using the EI,
the unphysical CGO ray in the caustic shadow must be
discarded. This produces the correct field past the zone
of CGO inapplicability (Eq. (43)). In strongly dissipa-
tive media however, both complex rays may be such that
ψ′′ > 0 in the caustic shadow. In that case, it is not pos-
sible to distinguish the physical from the unphysical ray,
and only the application of the EI allows one to compute
the field correctly. This is illustrated in Sec. IV B 2.

IV. ACADEMIC CASES

We now illustrate how complex rays propagate in var-
ious simple configurations and verify the accuracy of the
EI fields against reference solutions. Apart from analyti-
cal solutions, numerical results for GO and CGO propa-
gation are obtained with IFRIIT, for which a simplified
workflow overview is given in App. 1. All numerical re-
sults are given for 351 nm laser light.

A. Assessment of GO and CGO differences due to the
imaginary component of the dielectric permittivity

Comparisons of GO and CGO are conducted in 1-D
in order to identify situations when the treatment of ε′′

in GO is incorrect. For simplicity, homogeneous media
separated from vacuum by discrete interfaces are consid-
ered. This allows one to use analytical solutions for CGO
by simply applying the discrete jump conditions derived
in Sec. II C 8.

1. Analytical solution for the electric fields

Consider a half space x′ > 0 populated by a constant
density medium of dielectric permittivity ε, otherwise
surrounded by vacuum for x′ ≤ 0. A plane-wave is in-
cident along the x′ axis, with initial momentum p0 = 1,
amplitude A0

0 = 1, and position r0 = 0 in vacuum. In
these conditions, the initial ray divergence is D0 = 1.
The ray position and momentum after the discrete inter-
face are denoted r1 = r0 and p1, respectively. The solu-
tion for τ at real space position x′ is τ = (x′ − r1)/p1,
which can be simplified to:

τGO = x′/
√

1− ne/nc = x′Re(ε)−1/2 ,

τCGO = x′/
√

1− ne/nc/(1 + ıνIB/ω0) = x′ε−1/2 . (54)

The corresponding ray fields are:

|u|GO(x′) = |Re(ε)|−1/4 exp

(
−k0x

′ Im(ε)

2 Re(ε)1/2

)
,

(55)

|u|CGO(x′) = |ε−1/4| exp
(
−k0x

′ Im(ε1/2)
)
, (56)

where we have used D0/D(τ) = 1/p1 in this simple con-
figuration. These equations illustrate how GO and CGO
may predict different absorption in a constant-density
plasma, where the ray divergence and absorption length
are modified by Im(ε). Before applying these formulas
to various cases, we must discuss the form taken by ε
in plasmas, and the usual assumptions that are made in
laser propagation models.

2. On the form of the dielectric permittivity function

The plasma dielectric permittivity in presence of laser
absorption by Inverse Bremsstrahlung reads33:

ε = 1− ne

nc

(
1 + ı

νIB

ω0

)−1

, (57)

where νIB is the Inverse Bremsstrahlung collision fre-
quency.

In the standard GO framework, where it is assumed
that ε′′ � ε′, the assumption νIB � ω0 is commonly
made. The corresponding permittivity reads:

ενIB�ω0
= 1− ne

nc
+ ı

ne

nc

νIB

ω0
. (58)

While it is natural to make use of Eq. (57) for CGO,
many GO-based models rely on Eq. (58). The ra-
tio Re(ε)/ Im(ε), which must be � 1 for GO validity
with respect to CGO, is shown in Fig. 3. In these
graphs, νIB is computed as a function of electron tem-
perature Te, for a CH plasma with effective ionization
< Z2 > / < Z >=3.1 and ion temperature Ti = Te. Us-
ing the simplified formulation for the permittivity leads
to a large domain where Re(ε) � Im(ε) is not satisfied.
In that region, GO will deviate significantly from CGO
because of the formulation of the dielectric permittivity.
A more relevant comparison is to make use of the non-
simplified permittivity in the GO approach. In that case,
it can be expected that GO will fail compared to CGO
in the density/temperature region highlighted in Fig. 3
(b), i.e. intermediate temperature plasma at high den-
sity. At high temperatures, above 1 keV, the domain of
GO inapplicability remains confined to the critical den-
sity region, which incidentally coincides with the caustic
region for rays at normal incidence. This case is discussed
extensively in Sec. IV B.
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(a) (b)

FIG. 3. Ratio of the real to imaginary part of the dielectric permittivity, (a) with and (b) without the assumption νIB � ω0.
The Inverse Bremsstrahlung collision coefficient νIB is computed from the electron-ion collision coefficient33 and using typical
formulations for the Coulomb logarithm as implemented in radiative hydrodynamic codes. The permittivities are expressed as a
function of electron temperature Te and electron number density normalized to the critical density ne/nc. At low temperatures,

loss of collisionality due to Fermi degeneracy is approximated by substituting Te with
√
T 2
e + T 2

f , where the Fermi temperature

Tf = (3π2ne)
2/3~2/(2mekb). The solid and dashed lines show the Re(ε) = Im(ε) and Re(ε) = 5 Im(ε) contours, respectively.

Crosses in (b) correspond to the absorption cases presented in Sec. IV A 3: Te = [7.5, 20, 500] eV and ne/nc = [0.5, 0.95, 0.9998].
The corresponding Inverse Bremsstrahlung coefficient is neνIB/(ncω0) = [0.42, 0.35, 0.008].

3. Absorbing medium

The difference in absorption between GO and CGO is
illustrated at three points highlighted in Fig. 3 (b): (a)
cold plasma of intermediate density Te = 7.5 eV, ne/nc =
0.5, corresponding to neνIB/(ncω0) = 0.42, (b) cold
plasma at high density Te = 20 eV, ne/nc = 0.95, corre-
sponding to neνIB/(ncω0) = 0.35 and (c) warm plasma
at close-to-critical density Te = 500 eV, ne/nc = 0.9998,
corresponding to neνIB/(ncω0) = 0.008. We consider the
cases of GO using the non-approximated and approxi-
mated permittivities (Eqs. (57) and (58), respectively).
The CGO case makes use of the non-approximated per-
mittivity. Corresponding results are given in Fig. 4.

In all cases, the fields from GO with approximated per-
mittivity greatly overestimate the laser absorption, which
is due to Im(ε)νIB�ω0

> Im(ε). This is observed in a
wide range of plasma parameters and must be carefully
accounted for in laser models. In the cold plasma and
intermediate density case (Fig. 4 (a)), corresponding to
Re(ε) = 2.7 Im(ε), the GO and CGO fields computed us-
ing ε are in agreement. A discrepancy appears in the
higher density cases (cold and warm plasmas, Fig. 4
(b,c)), where GO overestimates absorption. This differ-
ence is related to the ray momentum that shifts into com-
plex space in the CGO case which shortens the effective
absorption length. In general, GO may remain invalid at
high temperatures for densities sufficiently close to the
critical density, but these regions are narrow since rays
quickly refract out of high densities.

To summarize these results; GO is valid for cold plasma
as long as the non-approximated formulation for the per-
mittivity is used (Eq. (57)). GO becomes invalid in an
intermediate temperature regime, where it over-predicts

absorption. This is consistent with usual trends of hydro-
dynamic codes overestimating absorption at early times
in ICF implosions. Finally, at high temperatures, GO is
only invalid in a highly narrow region around the criti-
cal density, which is a good approximation in most cases.
These conclusions are drawn only for plane-waves, so that
the initial phase is the same in both GO and CGO. Ad-
ditionally, we show in Sec. IV B 4 that GO suffers from
limitations at caustics in dissipative media, which are not
related to the validity condition ε′′ � ε′ but to the one
on the phases, ψ(1) � ψ(0).

B. Complex ray propagation through caustics

We have highlighted how CGO gives more accurate
solutions for fields in cases where ε′′ ∼ ε′. We now illus-
trate how CGO can be used to compute laser fields close
to and behind caustics. CGO solutions are obtained by
applying the 3-D finite-element complex ray-tracing al-
gorithm described in Sec. II in a simple plane-wave 1-D
configuration. The accuracy of the model and of the EI
technique for caustic fields is assessed by comparisons to
the nonparaxial electromagnetic wave propagation code
LPSE34.

1. Nonabsorbing density ramp

Consider a plane-wave propagating from the initial po-
sition r0 = 0 with initial momentum p0 = 1 and vacuum
intensity I0 = 1014 W/cm2 into a constant density gra-
dient in the absence of dissipation, such that ε = 1−x/L
with L = 95.9 µm. For a GO ray, we have x = x′ ∈ R.
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(a) (b) (c)

FIG. 4. Ray absorption in a constant dielectric permittivity medium, for (a) cold plasma of intermediate density Te = 7.5 eV,
ne/nc = 0.5, corresponding to neνIB/(ncω0) = 0.42, (b) cold plasma at high density Te = 20 eV, ne/nc = 0.95, corresponding
to neνIB/(ncω0) = 0.35 and (c) warm plasma at close-to-critical density Te = 500 eV, ne/nc = 0.9998, corresponding to
neνIB/(ncω0) = 0.008. Fields from GO and CGO using the non-approximated permittivity (Eq. (57)) are shown as black and
red lines, respectively. The corresponding GO result using the approximated permittivity (Eq. (58)) is shown as blue lines.
The amplitude jump observed at coordinate x = 0 is due to the vacuum/plasma interface. GO and CGO results are on top of
each other in (a).

This is also the case when integrating the ray equations
in CGO with α = 0. In the general CGO case however,
the dielectric permittivity is defined with x ∈ C in or-
der to satisfy the Cauchy Riemman conditions (see Sec.
II B 4). In both cases, the permittivity gradient is real
valued and Gε = −1/L. For simplicity, the real-space
spatial coordinate x′ is taken along p0, e.g., the wave is
at normal incidence.

The analytical solution is obtained by solving Eq. (28)
for r′(τ).p0 = x′ with G′′ε = 0:

τ = 2L(1±
√

1− x′/L) . (59)

Equation (59) possesses at most two solutions, corre-
sponding to the overlap of incoming and outgoing waves.
In both GO and CGO, only one solution exists at x′ = L.
This degeneracy in the number of solutions is a caustic.
In the framework of GO, the condition x′ ≤ L must be
always met. This defines a region of space where no GO
solution exists. This is the caustic shadow, characterized
here with x′ > L.

It is straightforward to understand how the limitations
of ray propagation are lifted when considering CGO tra-
jectories. Since the ray parameter can be complex valued,
equation (59) always has one or two solutions (x′ = L still

represents a caustic). In the lit area,
√

1− x′/L ∈ R so
that τ ∈ R and the ray propagates with α = 0 in real
space. In the shadow area, τ ∈ C so that the ray prop-
agates from the initial real position into complex space
and back to real space. This is illustrated in Fig. 5 for
a case with L = 95.9 µm: rays effectively bypass the
divergence point located in real space by undergoing an
excursion into complex space.

The electric field is obtained by adding the individual
ray field and compared to LPSE. The CGO ray field in
the linear permittivity profile is shown in Fig. 6. Without
applying the EI, the ray field diverges in a region around
the caustic where the phase difference between the rays is
less than ∼ λ0/3. Applying the EI method in the caustic

FIG. 5. Ray trajectories in complex space for real-space end
points x′ in the lit region (black) and in the shadow region
(red and green). The starting and end points of complex rays
are indicated by colored x’s. The caustic location is indicated
with a cyan circle.

region, the caustic field is recovered. The resulting fields
are in agreement with the reference solution from LPSE
and the analytical result, in the entire space, including
in the caustic shadow. Finally, we note that by summing
the interfering fields directly, the ray solution is able to
capture the corresponding amplitude oscillation.

2. Complex caustics in dissipative media

We now consider the case of dissipative media (ε′′ > 0),
such that CGO rays in the lit area also shift in com-
plex space. The dielectric permittivity is set to ε =
1 − x/L + ı(x/L)2ν∗IB/ω0 with L = 95.9 µm and ν∗IB is
the Inverse Bremsstrahlung (IB) frequency at the criti-
cal density (νIB = ne/ncν

∗
IB). Here, the profile for ε′′ is
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FIG. 6. Field amplitude in a non-absorbing linear permittiv-
ity profile near the caustic location. The numerical solution
from LPSE is shown as a black curve. The spatial region of
ray optics inapplicability (Eq. (43)) exists between the two
vertical green lines. The caustic divergence location ξ = 0 is
shown as a vertical dashed black line. Non-interfering fields
obtained with CGO with and without application of the EI
method are shown as blue and cyan dotted lines, respectively.
Interfering fields are shown as red dots. The EI is applied
to the right of the vertical yellow line, corresponding to the
criterion |ψ1 − ψ2| ≥ λ0/3.

parabolic, which departs from the subgrid assumptions
of IFRIIT (see Secs. II and III). Two absorption cases
are considered: weakly dissipative media with ν∗IB = 2/ps
(ν∗IB/ω0 = 3.72 × 10−4) and moderately dissipative me-
dia with ν∗IB = 20/ps (ν∗IB/ω0 = 3.72× 10−3), covering a
range relevant to ICF conditions. Note that in these con-
ditions, the region of GO inapplicability due to ε′′ ≥ ε′,
discussed in Sec. IV A 3, is only located in a narrow re-
gion at the critical density.

The introduction of dissipation affects the phase and
complex parameters of rays reaching the real-space ob-
servation points. Notably, absorption decreases the real
part of the ray path-length τ ′ mostly in the caustic re-
gion and caustic shadow, while the imaginary part of
the ray path-length increases in the lit area and caus-
tic region. These tendencies, shown in Figs. 7(a) and
7(b), justify the ray-ordering criterion proposed in Eq.
(50). In addition, the physical points at which ψ′1 = ψ′2
and ψ′′1 = ψ′′2 no longer coincide and grow farther apart
with increasing absorption, as shown in Fig. 7(c). This
corresponds to the embedding of the caustic in complex
space: ξ = 0, corresponding to ψ1 = ψ2, is located in
complex space. Said differently, there is no observation
point in physical space where the ray mapping degen-
erates from two rays (ψ1 6= ψ2) to one ray (ψ1 = ψ2).
For modest dissipation, however, the caustic region still
intersects real space. This is shown in Fig. 7(c) where
the complex trajectory of the phase difference intersects
with the inapplicability region of the ray optics frame-
work for ν∗IB = 2/ps and ν∗IB = 20/ps. Conversely, for a

sufficiently dissipative medium, this trajectory no longer
intersects the inapplicability region in real space, e.g., the
caustic region is completely embedded in complex space.
This is illustrated for ν∗IB = 70/ps in Fig. 7(c). In that
case, there is neither a caustic nor a caustic region for the
CGO rays, and the fields are well defined everywhere, as
shown in Fig. 7(d) for the CGO field without application
of the EI. Careful examination of the phase differences as
a function of space compared to the three branches for
ξ was used to determine the exponentially damped solu-
tions and the subsequent selection criterion given in Eq.
(51).

We now compare the ray fields with LPSE. We show
in Figs. 8(a) and 8(b) the GO and CGO results with and
without the EI method, for ν∗IB = 2/ps and ν∗IB = 20/ps.
The caustic shift in complex space implies that the com-
plex ray solution no longer diverges at the caustic in the
presence of absorption (see notably Fig. 8(b) at the
lit/shadow boundary), although it reaches an incorrect
value. Furthermore, the unphysical ray selection rule can
no longer be applied (see Sec. III F) and the CGO rays
are an exponentially growing solution behind the caustic.
The incorrect ray field in the caustic region and the un-
physical solution growth are both successfully corrected
by the modified EI using the ray parameters themselves.

3. Caustic fields in nonlinear density gradients

We now consider a Gaussian profile of the form
ε = 1 − 1.2 exp{−[(x − xmax)/L]2} + ı1.2 exp{−2[(x −
xmax)/L]2}ν∗IB/ω0, with L = 42.3 µm and xmax = 115
µm. In this case, the large-scale ε′ profile is also non-
linear and departs from the sub-grid assumptions. This
is a stringent test of the entire model implementation,
including the EI formulation.

Results for CGO are reported in Fig. 8(c) for ν∗IB/ω0 =
3.72 × 10−4, alongside the LPSE simulation. Excellent
agreement is found between our implementation of CGO
and the reference solution. These test cases show that
CGO used in conjunction with an EI method adapted to
dissipative media can be used to reproduce caustic fields
in media with nonlinear ε′ and ε′′.

4. Modified Etalon Integral method for GO rays in
dissipative media

In Sec. IV A 3, we have highlighted how the validity
domain of GO in constant density media is related to the
magnitude of ε′′ and its discrete jump across interfaces.
Given the derivation of GO in weakly dissipative media
presented in Sec. II C 2, there is the additional assump-
tion that ψ′ � ψ′′. While we have shown that for usual
plasma parameters, GO is invalid only in a narrow re-
gion around the critical density, the picture is different
in inhomogeneous media. Notably, in the caustic region,
the EI relies on a parameter ξ that depends on the phase
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FIG. 7. Real part (a) and imaginary part (b) of the propagation parameter τ for rays reaching various real-space observation
points in the caustic region. Parameters from incoming rays are shown as solid lines and from reflected rays as dashed lines.
Calculations with ν∗IB = 0 and ν∗IB = 20/ps are shown in blue and red, respectively. The caustic location in the nondissipative
case is shown as a vertical dashed black line. (c) Complex path of the phase difference ψ1−ψ2 of rays reaching various real-space
observation points in the linear layer. The caustic divergence point is located at (0, 0), indicated by the intersection of two
solid gray lines. The region of GO/CGO inapplicability is located inside the dashed black circle. Calculations with ν∗IB = 0,
ν∗IB = 2/ps, ν∗IB = 20/ps, and ν∗IB = 70/ps are shown in black, blue, red, and green, respectively. Solid lines indicate the lit
region and dashed lined the shadow region. (d) Fields obtained with CGO IRT with ν∗IB = 70/ps. The caustic location in the
nondissipative case is shown as a vertical dashed black line. No application of the EI is made in that case.

difference between the rays. Applications of the EI for
GO shows that the reconstructed field diverges near the
caustic in a region much larger than one defined by the
simple assumption ε′′ � ε′, as shown in Fig. 9. This
is due to the loss of accuracy in GO for computing ξ in
dissipative media and near the caustic, where we have
ψ′2 − ψ′1 ≤ ψ′′2 − ψ′′1 . In other words, since GO is not
able to model complex caustics, the fields obtained at-
tempting to model a real caustic in dissipative media are
discrepant with the CGO fields.

While the correct approach would be to use complex
rays in the caustic region for dissipative media, it is con-
venient to use a modification of the EI for GO that avoids
field divergence at the caustic point. Simply, the EI is
computed as if the medium were non-dissipative, e.g., by
using Re(ψ) to compute ξ and χ. The absorption term is
then added in the amplitude factors, e.g., by substitut-
ing A0i with A0i exp [−k0 Im(ψi)]. Resulting fields from
the modified EI are shown in Fig. 9. The modified EI
successfully compensates for the shortcoming of GO near
the complex caustic.

The study of ray fields in inhomogeneous dissipative
media presented here exhibits the advantages of CGO
over GO for the caustic field. For plane-waves, and in

typical ICF or HED plasmas, this advantage is mainly
the computation of the fields in the shadow region and
at the caustic boundary. Accurate computation of the
caustic field is useful for AMR algorithms that may oth-
erwise treat the lit/shadow boundary in GO as a steep
gradient that must always be refined. Such algorithms,
their synergy with the IRT framework, and their useful-
ness in CBET computations will be detailed in a following
paper.

C. Gaussian beam diffraction

In previous sections, we have highlighted the capability
of CGO to accurately model fields in situations where
ε′ ∼ ε′′ and ∇ε′ ∼ ∇ε′′ and behind real and complex
caustics. We now illustrate the usefulness of CGO in the
case of beams with complex initial conditions. This is
notably the case of Gaussian beams and beams smoothed
by phase plates, which possess non-plane complex valued
initial phase fronts.

A 2-D Gaussian wavefield in its focal plane can be writ-
ten in complex form as uG(ζ1, 0) = exp[−ζ2

1/(2w
2
0)]. Re-

calling that the ray field is expressed as u = A0 exp[ık0ψ],
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FIG. 8. Field amplitude in a [(a),(c)] weakly and (b) moderately absorbing medium near the caustic location, for a linear
density profile [(a),(b)] and an exponential density profile (c). Curves are labeled as in Fig. 6.

it is readily seen that the GO initial conditions read
A0

0,go = exp[−ζ2
1/(2w

2
0)] and ψ0

go = 0. Conversely, the

CGO initial conditions may be written as A0
0,cgo = 1

and ψ0
cgo = ıζ2

1/(2k0w
2
0). As such, the rays in GO are

initially parallel across the beam. In vacuum, propaga-
tion of these rays then yields a cylinder-like field with a
Gaussian profile. In the CGO case, the initial momentum
transverse to the beam direction has a non zero imaginary
component derived from p0

x = ∂ψ(0)/∂ζ1. Propagation of
complex rays following these initial conditions produces a
field pattern that exactly follows that of a Gaussian beam
undergoing diffraction, as shown in Fig. 10(a). As the
beam propagates, the rays accumulate a complex phase
such that the beam diffracts in the near field and then
transitions to a spherical wave as it propagates farther,
as can be seen in Fig. 10(b).

The capability of CGO to model diffraction of a Gaus-
sian beam in vacuum was first shown in Refs. 32 and 35
and numerically applied to homogeneous media in Ref.
28. Potential applications in ICF are related to diffrac-
tion modeling of beams with non-plane initial phase
fronts, such as beams smoothed by phase plates, although
this remains to be demonstrated. This contrasts with

the artificial diffraction-like approaches used in GO-based
ray-tracing in ICF hydrodynamic codes, where the initial
k-vector of the plane-wave is spread at the lens to artifi-
cially mimic a beam diffraction pattern.

D. 2-D field computation in a Gaussian density profile

We now present an application of IFRIIT to plane-
wave field computation in an ICF-like density profile.
The plasma density is set to:

ne

nc
= 4 exp

[
− (x− xmax)2 + (z − zmax)2

L2

]
, (60)

with L = 83.6 µm and xmax = zmax = 25 µm. The
IB frequency at the critical density is set to ν∗IB/ω0 =
7.45× 10−3. The density profile is Gaussian in the (x, z)
plane and invariant along the y direction, to facilitate
comparisons with LPSE. The beam is incident along the
x axis and centered around z = 25 µm, with a radial
profile of super-Gaussian order 4 and radius at 1/e of
100.9 µm. The vacuum intensity is 3× 1015 W/cm2 and
the wavelength is 351 nm.
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FIG. 9. Field amplitude in (a) a weakly and (b) a moderately absorbing medium near the caustic location, for a linear density
profile. Numerical solutions from LPSE are shown as black curves. The spatial region of ray optics inapplicability (Eq. (43)) is
located right of the vertical green line. Non-interfering fields obtained with GO and without the EI method are shown in cyan.
Corresponding results using the baseline and modified EI method are shown in red and blue, respectively. The EI is applied
right of the vertical yellow line, corresponding to criterion |ψ1 − ψ2| ≥ λ0/3.
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FIG. 10. Propagation of CGO rays with an initial condition of a Gaussian wavefield with initial radius w0 = 30λ0. Rays are
propagated up to ∼ 8ar, where ar = 992 µm is the Rayleigh range. (a) Field amplitude in the simulation box. (b) Imaginary
phase accumulated along the CGO ray propagation.

1. Fields in the coronal plasma

Fields are computed using the GO IRT model with
modified EI. Given the results presented in Secs. IV A 3
and IV B 4, the only discrepancy to be expected com-
pared to CGO lies in the shadow region of the caus-
tic. The permittivity profile is discretized using a 3-D
tetrahedral mesh with NrxNyxNθ=401x3x801 vertices
uniformly meshed on a cylinder of 205-µm radius and
height. Fields in IFRIIT are computed at the tetra-
hedron vertices and shown alongside LPSE results in
Fig. 11(a). Corresponding profiles along the ne/nc ∈
[0.05, 0.25, 0.65] isocontours are given in Fig. 11(b).
Excellent agreement is obtained in the entire coronal
plasma. Notably, the region of high laser refraction fea-
tures a dip in the electric field along the ne/nc = 0.05
contour that is particularly challenging to capture using

rigid-scale estimators commonly implemented in hydro-
dynamic codes since ray statistics converge slowly in such
regions. The IRT method successfully reconstructs this
part of the field without additional cost. The caustic
fields are also well reproduced, although they are largely
under-resolved despite the high angular resolution em-
ployed here. In practice, one would rely on AMR to
resolve the caustic scales.

2. Resolution scaling of the caustic solution

The GO IRT solution presented above was obtained
using uniform mesh spacing in the radial and angular di-
rections. In a practical inline calculation with IFRIIT,
one would use a lower resolution in the coronal plasma
and use AMR in regions of interest, e.g., regions of high
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(a) (b)

FIG. 11. (a) Fields computed from LPSE (top half) and the IFRIIT GO model (bottom half), separated by a horizontal line at
z = 25. Fields from the IRT GO model are shown at the vertices of the tetrahedral mesh in the y = 0 plane. All fields are cut
off below 0.001 nc. Dashed black lines highlight the locations of the 5%, 25%, and 65% critical-density contours, respectively.
The critical density position is shown as a solid black line. The thickness of the caustic in the IRT GO model appears larger
than it is due to the plotting procedure (see profiles in (b)). (b) Field profiles along the 5%, 25%, and 65% critical-density
contours as functions of the angular coordinate where π corresponds to the input beam direction. LPSE simulations are shown
in black and GO IRT fields are shown as dotted red lines.
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FIG. 12. Caustic fields along the 0.25 critical-density contour
between LPSE (black line) and IFRIIT using real-valued rays
(colored lines). Mesh resolutions correspond to those given in
Table I.

CBET gain gradients or high field gradients such as caus-
tics (see App. 1 for more details). Employing a low resolu-
tion in the corona could lead to an accumulation of error
in the ray phase that would degrade the adaptively re-
fined caustic solution. Here, we present a grid resolution
scaling of the coronal plasma discretization to illustrate
how the caustic field is affected.

The caustic field is diagnosed by inserting observation
points along the ne/nc = 0.25 density contour. These
points are not tied to tetrahedrons and as such do not
modify the subgrid dielectric permittivity profile: they
are a synthetic diagnostic, for which the IRT method is
well suited. The mesh resolutions considered here are
detailed in Table I. Corresponding results are given in
Fig. 12. The solution is seen to converge to satisfactory

NrxNyxNθ ∆r (µm) ∆θ (◦)
51x3x51 4 7
101x3x101 2 3.6
201x3x201 1 1.8
301x3x301 0.7 1.2

TABLE I. Mesh configuration employed for the scaling sim-
ulations. The number of vertices NrcxNyxNθ is indicated in
the r, y, and θ directions, respectively. The grid is uniformly
spaced in r =

√
x2 + z2 and θ = tan−1(z/x), with correspond-

ing resolutions ∆r and ∆θ. Three grid points are employed
in the y direction, with no gradients in that direction.

accuracy for resolutions of ∆r = 2 µm and ∆θ = 1.8◦.
The value for ∆r is to be compared with the inhomo-
geneity scale length of this case and will be relaxed cor-
respondingly for longer scale-length plasmas. Note here
that the converged position and shape of the caustic differ
slightly from the solution from LPSE: the caustic loca-
tion is shifted by ∼ 0.4 µm, the peak amplitude is the
same, and the caustic is more spread out in the LPSE
case. While this accuracy is deemed sufficient, we men-
tion that the discrepancy is due, in part, to the diffi-
culty of converging the LPSE solution in regions where
rays approach a caustic wih glancing angle of incidence.
Higher-resolution runs suggest that the caustic location
is converging toward the ray solution, albeit at a slow
rate. For reference, the LPSE run took 32.7 hours on
360 cores. Runtimes for IFRIIT are discussed in Sec.
IV D 3.

These results suggest that intermediate mesh resolu-
tions may be used in the coronal plasma while still retain-
ing sufficient accuracy in the caustic region. The caustic
region itself may then be resolved using AMR at wave-
length scales.
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3. Performance scaling

We now discuss performance of the IFRIIT code in the
2-D Gaussian case. Several caveats must be underlined.
First, the model implementation is currently not fully op-
timized since it is in a development state that facilitates
experimentation and debugging. Second, the 2-D plasma
configuration is computed on a 3-D mesh, implying that
the tracing algorithms are largely under-optimized for
a 2-D configuration, including all arc-length calculations
and vector operations. Finally, there is an important dis-
tinction between initialization of the IRT procedure and
timestepping. Namely, initialization requires CPU- and
memory-intensive algorithms to find all rays converging
to the mesh vertices. This computation cost is relaxed
when considering timestep iterations, where the IRT ini-
tial guess can be taken from the previous timestep.

As was discussed throughout the paper, IFRIIT aims
at being implemented as an inline module in radiative
hydrodynamic codes, and significant simplifying assump-
tions have been made to that end. As such, it remains
relevant to mention the order of magnitude of the perfor-
mance with the current model implementation. Timing
results from the resolution scaling study (Sec. IV D 2) are
reported in Table II. The initialization time tinit includes
the construction of the 3-D initial guess map (function
G : (ζ1, ζ2, τ) in Sec. II A 2), application of the 3-D mini-
mum filter, Newton iteration on all guesses and determi-
nation of which points are in the caustic shadow, which
is costly in GO since it involves the non-convergence of
the IRT Newton step. The timestepping time tstep is
estimated as the time it takes to conduct one Newton it-
eration on all the observation points in the lit side. The
field computation time tfields includes tracing of the rays
to each observation point with integration of phase and
amplitude, as well as application of the EI algorithms.
All times reported here are total CPU time and therefore
do not account for parallelization. The code was com-
piled using the GNU Compiler Collection (GCC) with
simple O2 optimization.

The results are compatible with the performance re-
quirements for an inline implementation in a radiative
hydrodynamic code. Timestepping and field computa-
tion time are under a minute on a single CPU, even
at high resolutions. Performance scaling when adding
tetrahedrons in the third dimension (here along y) will
require an Message Passing Interface implementation. It
is estimated that the number of compute nodes typically
used for 3-D hydrodynamic calculations will be compat-
ible with the requirements of IFRIIT. The cost of us-
ing CGO over GO is in general 0-30% higher. However,
achieving the same accuracy in highly non-linear permit-
tivity profiles require a finer meshing for CGO due to the
discrete jump conditions (see Sec. II C 8), which signif-
icantly increase the effective computation and memory
cost. This is discussed in App. 2.

V. CONCLUSION

We have described an accurate method of modeling
laser fields at hydrodynamic scales. The model combines
an Inverse Ray-Tracing (IRT) method with a piecewise
linear dielectric permittivity approximation within a 3-D
tetrahedral mesh to compute fields at arbitrary observa-
tion points within the simulation domain. By choosing
the observation points to be the tetrahedron’s vertices
of the mesh, the piecewise linear approximation can be
extended to all laser-related quantities. This approach
allows for convenient implementation of nonlinear laser-
plasma interactions models.

Laser fields can be computed with the IRT by using
either conventional Geometrical Optics (GO) or Com-
plex Geometrical Optics (CGO). We have demonstrated
how CGO extends the validity domain of GO in condi-
tions where the imaginary part of the dielectric permit-
tivity overcomes the real part. In typical ICF plasmas,
this is notably the case at intermediate temperatures and
at high temperatures close to the critical density, where
GO overestimates absorption. Additionally, using GO
with the usual approximated expressions for the permit-
tivity produces large discrepancies between GO and CGO
at low temperatures. This particular occurrence is cor-
rected by using the non-approximated expression for the
permittivity. These trends are consistent with usual ob-
servations made in ICF experiments where hydrodynamic
codes tend to overestimate absorption at early times. Fi-
nally, we have illustrated how CGO exactly models the
diffraction of Gaussian beams, which is useful for accu-
rate modeling of small f-number beams and may be ex-
tended to modeling beams smoothed by phase plates.

An Etalon Integral (EI) method has been implemented
to reconstruct the electric field at caustics of fold type.
This method uses only ray quantities (phase, amplitude)
without assumptions on local gradient scale length or
wave angle with respect to the caustic. The caustic field
is approximated by a sum of an Airy function and the
derivative of an Airy function, which accounts for de-
viation from the simple Airy pattern observed in linear
density profiles. Shortcomings of the base method have
been identified in the case of dissipative media, for both
GO and CGO. Subsequent adaptations have been pro-
posed. Notably, the ray-ordering and root selection rules
were adapted for the case of CGO in dissipative media.
Calculations using IRT with GO and CGO in linear and
nonlinear permittivity profiles have shown good agree-
ment between the reconstructed fields with respect to
reference solutions from the electromagnetic wave solver
in LPSE. Notably, we have highlighted how GO cannot
model caustic fields correctly very close to the caustic it-
self for dissipative media. This is related to attempting
to model a complex caustic while retaining the approx-
imation of small imaginary part of the ray phase. This
phenomenon is correctly captured by CGO. In addition,
we have shown that for sufficiently dissipative media, the
caustic is fully embedded in complex space and no longer
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NrxNyxNθ Ntetras Nvertices Next. faces No Nlit tinit (s) tstep (s) tfields (s)
51x3x51 4.2× 105 7.9× 103 108 676 301 14.3 6.4× 10−2 2.6× 10−1

101x3x101 1.6× 106 3.1× 104 108 2703 1192 64.5 2.2× 10−1 1.6
201x3x201 6.5× 106 1.2× 105 108 10706 4748 489.5 1.6 13.0
301x3x301 1.5× 107 2.7× 105 108 24009 10655 1745.2 5.7 46.9

TABLE II. Performance characteristics of IFRIIT calculations for the 2-D Gaussian density profile case. The various entries
are the following: number of vertices in the simulation domain NrxNyxNθ, number of tetrahedrons in the entire mesh Ntetras,
number of vertices in the entire mesh Nvertices, number of external faces on the bounding mesh Next. faces, number of observation
points No, number of observation points that have been determined to be on the lit side of the caustic Nlit, elapsed time for
initialization of the IRT tinit, estimated elapsed time for timestepping of the IRT tstep and elapsed time for computation of the
fields tfields. All times are total CPU time.

manifests its influence in real space. In that case, the
CGO framework is uniformly valid in the entire plasma
and there is no caustic.

The IRT model, coupled with GO or CGO and formu-
lated in the framework of a 3-D piecewise linear approxi-
mation based on tetrahedrons, has been implemented in
the IFRIIT code. The code’s capability to compute fields
in a 2-D Gaussian density profile has been demonstrated.
Notably, the model correctly predicts fields at caustics
and in regions of high laser field refraction, two regions
for which neither rigid-scale estimation, Paraxial Com-
plex Geometrical Optics (PCGO), nor tessellation-based
models converge natively to physical results. These re-
sults are obtained without the use of any artificial limita-
tion coefficients or relaxation parameters. Model perfor-
mances were discussed and are compatible with require-
ments for inline implementation into 3-D hydrodynamic
codes. While GO and CGO have similar computational
costs at fixed resolution, accurate field calculations in
highly non-linear permittivity profiles with CGO require
a finer meshing than with GO. This may be resolved by
using piecewise permittivity functions that are smooth
at interfaces, and will be explored in future work.

The IFRIIT model is formulated for convenient mod-
eling of nonlinear LPI’s. Notably, it will be used in con-
junction with AMR to accurately model CBET at caus-
tics.
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Appendix: The IFRIIT code framework

In this appendix, we give a brief description of the
global workflow of IFRIIT, and discuss the current nu-
merical cost of GO versus CGO.

1. Code structure

A simplified illustration of the IFRIIT working loop
is given in Fig. 13. IFRIIT relies on rays to compute
fields. As such, it describes continuously the medium in
which the rays propagate, using a piecewise-linear ap-
proximation in 3D tetrahedrons. At initialization, the
topology of the mesh must be computed; that is the 3D
triangulation step. This triangulation may be uncon-
strained, e.g. when the code is used as a post-processor
of a user-supplied point cloud, or constrained, e.g. when
the code input is hydrodynamic data. During timestep-
ping, the triangulation can be kept identical, even though
the tetrahedron vertices may be moving. The IRT step
is achieved by an iterative multi-dimensional Newton
solver. The latter requires an initial guess to start itera-
tions, whose quality is the main performance limitation
of the IRT and IFRIIT. At initialization, the initial guess
is computed from forward propagation of probe rays, and
is in general not accurate. During timestepping, the ini-
tial guess is taken from the previous hydrodynamic step,
which is in general an almost-converged guess.

The laser field is computed from the ray phases and
amplitudes, and corrected by Etalon Integrals in order
to produce physical fields at caustics of Fold type. Ray
amplitudes are geometric factors that only depend on
the topology of the permittivity map. For that reason,
if LPIs do not modify the permittivity map, the IRT
step and ray amplitude computation step only need to be
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FIG. 13. Simplified workflow of a global iteration in IFRIIT. Main processes are shown in the grey box. Iterations pertaining
to AMR steps are shown in the yellow box. Iterations pertaining to pump depletion steps are shown in the magenta box.

performed once per global iteration. In the CGO frame-
work, that is generally not the case. However, prelimi-
nary studies suggest that it is a good approximation to
neglect the contribution of LPIs to CGO ray propagation
in most HEDP cases of interest. On the other hand, com-
putation of the ray phase is conducted iteratively concur-
rently with the computation of LPI gain rates and of the
laser field. This allows to account for pump depletion,
that is important for accuracy of fields and energy con-
servation. The phase integration step is less expensive
than the amplitude computation step, however, it must
be repeated more often. Finally, global and local conver-
gence of LPI gain rates, and energy conservation, may be
achieved when necessary by adaptively refining the laser
mesh in several AMR steps.

2. Use of CGO versus GO

Using CGO provides a more physical description of
the laser propagation processes. Namely, it provides the
most accurate representation of fields at caustics through
laser refraction on the imaginary part of the permittivity,
and allows to account for diffraction processes through
the imaginary part of the beam phase. As such, from
a model accuracy standpoint, the use of CGO appears
preferred over that of GO.

The added numerical cost of CGO versus that of GO is
not straightforward to estimate. CGO involves more nu-
merous complex arithmetic operations, requires the use
of a 6 dimensional Newton solver, involves more than
twice the number of rays for computation of Jacobian ma-
trices, and requires computation of complex momentum

jump conditions between tetrahedrons in the piecewise-
linear permittivity approximation. However, some of
these added costs are also recovered in the IRT step it-
self. In GO, the most costly IRT-related operation is the
determination that an observation point is in a caustic
shadow. This is achieved by non-convergence of the New-
ton algorithm, i.e. by failing to find rays reaching a given
point. Since CGO rays do reach the caustic shadow, this
slower operation is not encountered and greatly speeds
up the algorithm.

In general, we have found that CGO is only 0-30%
slower than GO, even in the 2D Gaussian permittiv-
ity configurations. At the moment, the main drawback
of utilizing CGO over GO is related to the description
of permittivity as piecewise linear. This approximation
produces discontinuities in complex space, that require
ray jump conditions on the ray momentum. This loss
of smoothness has been found to be detrimental to the
accuracy of reconstructed fields in highly non-linear per-
mittivity profiles such as the 2D Gaussian case consid-
ered in the paper, while this was not the case in simpler
1D cases. While this can be compensated with higher
resolution meshing, this implies that CGO will then be
significantly more costly. As such, efficient use of CGO
in highly non-linear density profiles may require a piece-
wise description of the subgrid quantities that is smooth
at interfaces. Such a description would be achieved at
the cost of CPU efficiency. However, it is a planned de-
velopment of the IFRIIT model that will be explored.
It is theorized that these smoother permittivity profiles
may also be beneficial to GO for accurate description of
high-gain LPIs, which may be sensitive to numerical noise
introduced by a continuous but non-smooth permittivity
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