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ABSTRACT
The authors present a home made cryogenic electro-optical probe station allowing the direct modulation of
quantum cascade lasers up to 40GHz. Based on a QMC cryostat, it should make the QCL bandwidth measure
possible and then help answering questions about the modulation possibilities of such a kind of laser. The
experimental results will be compared to simulation bandwidth prediction based on a complete set of rate
equations describing the dynamic behavior of the laser. Bandwidth will be then linked to the different intrinsic
and structural parameters.

Keywords: Bandwidth measurement, Quantum Cascade Laser, Modulation, Modelling

1. INTRODUCTION
This paper aims at proposing a theoretical description of small signal modulation of Quantum Cascade Lasers
(QCL). Their invention in 1994 by Faist, Capasso et al.1 brought a powerful and compact solid source of far
infrared radiation. Since then, their performances have continuously improved. Terahertz QCL working above
liquid nitrogen temperature,2,3 and even at room temperature by intracavity difference-frequency generation,
have been reported.4 Their spectral range is now extending from the mid-infrared down to 1.2 THz.5 Due to the
novel properties and unique interaction with many materials, the terahertz radiation has become a topic of active
research for the past few years, and is still a going concern.6,7 Among the large possibilities of applications, free
space short range communications have been studied8,9 because of the Wi-Fi capabilities of terahertz waves and
QCL large supposed bandwidth modulation.10 QCL-based local oscillators are also attractive for radioastronomy
applications11 thanks to their high spectral purity, adequate output power and good stability. Modeling the
behavior of QCLs is therefore an important step toward the prediction of performances of such semi-conductor
sources. Microscopic modelings have proved to be relevant in predicting and analyzing quantum device carrier
dynamics and have largely participate to their design improvement.12,13

However, hereinbefore mentioned applications need a more global consideration of the optoelectronic system,
and the establishment of a small signal equivalent circuit appears to be useful with this end in view. That is the
final purpose of the theory presented in this paper. Indeed, theoretical study of electro-optical behavior, associ-
ated with the electrical ports S-parameters of a QCL should create a link between experimental measurements
and intrinsic parameters values of the laser diode, and a better prediction of embedded device behavior. This
method has proved to be apposite for many kinds of semiconductor lasers used in such applications. Macroscopic
theoretical modeling of the QCL dynamic are easily usable: the set of rate equations governing the number of
photons in the cavity and of electrons on the different possible states, along with their different lifetimes are
sufficient.

Considering the full rate equations system,14 a numerical simulation is firstly established. It leads to modu-
lation bandwidth up to a few dozens of gigahertz. Then, an analytical calculation is made to propose a transfer
function that is simplified next, in order to study its dependence as a function of various parameters like lifetimes
and number of periods.
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Figure 1. Optical power versus current of a 30-periods QCL (dotted line : experimental data, solid line : simplified model
and dashed line : enhanced model)16

2. SIMPLIFIED MODEL

2.1 Rate Equations

The simplified rate equations are based on a three-level classical scheme which leads to a 3 equations-system (2
for electrons on the two levels involved in the laser transition and 1 for photons). For a QCL of Np periods,
these equations are written as follows (Eq.(1) to (3))15 :

∂N3

∂t
= η

I

q
− N3

τ3
− G (N3 − N2)P (1)

∂N2

∂t
=

N3

τ32
− N2

τ2
+ G (N3 − N2)P (2)

∂P

∂t
= Np G (N3 − N2)P − P

τp
+ β

N3

τsp
(3)

where Ni is the number of electrons in the ith level, P the number of photons, G the optical gain, τ32 the
non-radiative scattering time, τi the electron lifetime in level i, and τp the photon lifetime. τsp is the spontaneous
emission lifetime.

2.2 Benefits and inaccuracies of this model

These rate equations well describe the static behavior of quantum cascade lasers, as they lead to the same result
than the full system as illustrated in fig.(1). The much more simple calculation needed for this model allows quite
simple analytical results. Moreover, as other macroscopic theories that allow to deduce a small signal equivalent
circuit, helpful for optoelectronic applications like direct intensity modulation communications, this modeling is
very valuable.

However, this simplified modeling leads to a root-squared-law increase of the bandwidth with the number
of periods. It is not a quite intuitive result. Indeed, the extraction time of the electrons to pass through the
different periods is not taken into account. We can spontaneously think that this extraction time could decrease
the small signal bandwidth of the QCL. That will be discussed further. Because of this simplification, small
signal equivalent circuits deduced from this set of equations might lead to inaccuracies.



3. FULL RATE EQUATIONS

The previous set of rate equations is actually deduced from a more complex one. In order to take into account
the extraction time of the electrons to pass from the fundamental level of the ith period to the excited one of
the i + 1th period, one more equation has to be reintegrated. The rate equations are consequently based on a
three-level scheme with 4 equations (one for each of the three levels of the electrons and one for the photons).14

This so called full rate equation system is given by Eq.(4) to Eq.(7) :

∂N
(j)
3

∂t
= η

Iin
(j)

q
− N

(j)
3

τ3
− G(j) (N (j)

3 − N
(j)
2 )P (4)

∂N
(j)
2

∂t
=

N
(j)
3

τ32
− N

(j)
2

τ2
+ G(j) (N (j)

3 − N
(j)
2 )P (5)

∂N
(j)
1

∂t
=

N
(j)
3

τ31
− N

(j)
2

τ21
− Iout

(j)

q
(6)

∂P

∂t
=

Np∑

j=1

G(j) (N (j)
3 − N

(j)
2 )P + nsp

N
(j)
3 − N

(j)
2

τsp
− P

τp
(7)

where Ni is the number of electrons in the ith level, P the number of photons in the cavity, G(j) the optical
gain of the jth period, τi the electron lifetime in level i, and τp the photon lifetime. τ31, τ32, τ21 are the non
radiative scattering times that are due to LO-phonon emission between the corresponding levels. nsp is the
spontaneous emission coefficient and τsp the radiative spontaneous relaxation time. I

(j)
in and I

(j)
out are respectively

the input and output currents of the jth period. For the first period, I
(1)
in comes down to the input current of

the QCL.

Moreover, in order to describe the cascade scheme of the QCL, since the input current of the jth period is
the output current of the (j − 1)th period, these currents can be linked to a number of electrons extracted from
the lower level of the (j−1)th period and injected on the upper level of the jth period. Then, the output current
of the jth period is the rate of electrons leaving the level (1) given by Eq.(8) and the input current of the jth

period is the rate of electrons arriving on the level (3) from the level (1) of the previous period, given by Eq.(8).

Iout
(j)

q
=

N
(j)
1

τout
,

Iin
(j)

q
=

N
(j−1)
1

τout
(8)

4. ANALYTICAL RESOLUTION

4.1 Hypotheses

The analytical resolution of the full rate equation is quite difficult for the time being. Consequently, one has to
assume some simplifying hypotheses. First of all, the gain is supposed constant in the different periods. However,
it could be an interesting job to focus on the spatial non-uniformity of the gain to describe furthermore the reality
of the static and dynamic behavior. Secondly, the spontaneous emission term in the last equation is neglected as
compared with the stimulated one. It is a well-known and quite correct assumption as soon as the laser is biased
well above threshold. Last assumption, the η coefficient standing for the non-perfect injection of the electrons
on the excited level will be supposed equal to 1. The value of this parameter has mainly an impact on the static
behavior.



Table 1. Device parameters used in numerical simulations (unless stated otherwise) (from14,15,17,18)

Parameter Value

Number of periods Np 30

Confinement factor Γ 0.27

Cavity losses αi 24cm−1

Gain G 5.3×104 s−1

Equilibrium population inversion ΔN0 105

Equilibrium photon number P0 @I0 = 450mA 2.3×108

τout 0.5 ps

τ2 0.3 ps

τ3 1.1 ps

τ31 2.4 ps

τ32 2 ps

τp 3.7 ps

τsp 7 ns

4.2 Linearized equations
From the rate equations above, a small perturbation method will be used to linearize them. Thus, the number
of photons P (t) will be the sum of the steady-state value P0 and a small variation p(t) around P0. In the same
way, the different numbers of electrons N

(j)
i (t) in each level will be the sum of a steady-state term Ni0

(j) and a
perturbation one n

(j)
i (t).

This method, associated with the previous hypotheses leads to a linearized set of four rate equations, that
can be written in the Laplace domain (s will be the Laplace variable and X(s) the Laplace transform of x(t)).

(
s +

1
τ3

+ GP0

)
N

(j)
3 (s) =

N
(j−1)
1 (s)
τout

+ GP0 N
(j)
2 (s) − GΔN0 P (s) (9)

(
s +

1
τ2

)
N

(j)
2 (s) =

N
(j)
3 (s)
τ32

+ GP0 N
(j)
3 (s) + GΔN0 P (s) (10)

(
s +

1
τ1

)
N

(j)
1 (s) =

N
(j)
3 (s)
τ31

+
N

(j)
2 (s)
τ21

(11)

(
s +

1
τp

− GNp ΔN0

)
P (s) = − GP0

Np∑

j=1

(
N

(j)
3 (s) − N

(j)
2 (s)

)
(12)

where ΔN0 = N30
(j) − N20

(j) is a constant for the different period j and it is actually the case in the
simulations.

This recurrent state system, associated with Eq. (12), can be described by a more complex global state
system allowing us to link the optical power Popt(s) to I(s).

4.3 Analytic Transfer Function Calculation
Then, the small signal electro-optical transfer function H(s) is given by Eq.(13) :

H(s) =
Popt(s)
I(s)

= αm
c

ng

h ν

q
k

(−1)(3Np+2) Cof1,Np

det ([Ω])
(13)
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Figure 2. Comparison between full numerical simulation and linearized state system of a 30-periods QCL.

with

det ([Ω]) = (−1)(3Np+1)σ

(
Np−1∑

k=0

(−d)k
(
Cof1,Np−k + Cof2,Np−k

)
)

+ δ dNp (14)

Cof1,k = −Cof1,1

k−1∑

i=0

(
ak−i−1
1 di

)
(15)

Cof2,k = (−1)3Np a2 Cof1,k−1 + Cof2,1 dk−1 (16)

a1 = − k σ

τout
(α21 α32 − α22 α31) , a2 = − k σ

τout
(α11 α32 − α12 α31) (17)

d = det ([A]) , δ = k

(
s + Np GΔN0 +

1
τp

)
(18)

Cof1,1 = σ α33 (α21 + α22) , Cof2,1 = σ α33 (α11 + α12) (19)

[
A
]

= k

⎡

⎢⎢⎢⎢⎣

s + 1
τ3

+ GP0 −GP0 0

− 1
τ32

− GP0 s + 1
τ2

+ GP0 0

− 1
τ31

− 1
τ32

s + 1
τout

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

α11 α12 0

α21 α22 0

α31 α32 α33

⎤

⎥⎥⎥⎥⎦
(20)

where k = 1
G P0

≈ 8.2 × 10−14 is a scale factor avoiding overflow during numerical computation.

The higher degree Laplace terms ’s’ of this transfer function is Cof1,1 dNp−1 for the numerator and δ dNp for
the denominator. They respectively correspond to an s3Np−1 term over an s3Np+1. Indeed, the higher degree
term of d = det ([A]) is s3, the higher one of δ is s, and the higher one of Cof1,1 is s2. Therefore, the calculation
leads to a globally second-order transfer function.

5. INVESTIGATION ON THE TURN-ON DELAY

5.1 Results based on the simplest model

These results are extracted from reference 19 and are presented here, for comparison.

• Rise time of the population inversion



The time tΔNth
taken by the electron population inversion to reach its threshold value is defined by :

ξ3 e−
tΔNth

τ3 − ξ2 e−
tΔNth

τ2

ξ3 − ξ2
= 1 − Ith

I
(21)

with :

ξ3 = 1 +
τ2

τ32
· τ3

τ2 − τ3
, ξ2 =

τ2

τ32
· τ2

τ2 − τ3
(22)

• Rise time of the photons

The rise time of the photon number to reach 10% of the final value is :

t10%S0 =
τp

I0
Ith

− 1
ln
[
1 +

(
1

Ith
− 1

I0

)
q τsp

β τp τ3

S0

10

]
(23)

• Turn-on Delay for one period

Finaly, the Turn-on Delay (ToD) is the sum of the two previous contributions :

Δt = tΔNth
+

τp

I0
Ith

− 1
ln
[
1 +

(
1

Ith
− 1

I0

)
q τsp

β τp τ3

P0

10

]
(24)

5.2 Enhanced model

The previous study, based on the simplified rate equations does not take into account the time needed by electrons
to go from one period to the next one. We are going to analyse what happens when equations (4) to (7) are used
to derive the ToD.

Assuming the photon number is still null, we compute the inversion population. Then, the relations linking
N

(j)
3 (s) and N

(j)
2 (s) to N

(j−1)
1 (s) are the following:

N
(j)
1 (s) = T (s) · N (j−1)

1 (s)

N
(j)
3 (s) =

1
τout

p + 1
τ3

N
(j−1)
1 (s)

N
(j)
2 (s) =

1
τ32 τout(

s + 1
τ3

)(
s + 1

τ2

) N
(j−1)
1 (s)

(25)

with :

T (s) =
1

τout

1
τ32 τ2

+ 1
τ31

(
s + 1

τ2

)

(
s + 1

τ3

)(
s + 1

τ2

)(
s + 1

τout

) (26)

We can then obtain the total population inversion given by :



ΔNtot(s) =
Np∑

j=1

ΔN (j)(s) =
Np∑

j=1

(
N

(j)
3 (s) − N

(j)
2 (s)

)

=

⎛

⎝ 1
p + 1

τ3

−
1

τ32(
s + 1

τ3

)(
s + 1

τ2

)

⎞

⎠ 1 − T (s)Np

1 − T (s)
· I(s)

q
= G(s,Np) · I(s)

(27)
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(a) Comparison between the temporal evo-
lution of the populaiton inversion calculated
from the simplest and the enhanced model.
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(b) Temporal evolution of the population in-
version for different number of periods. The
inset represents a zoom of the area inside the
dashed red rectangular box.

Figure 3. legende

Whatever the number of periods is, the slope χ of the linear part of the temporal evolution of the population
inversion is constant. Then, the time taken to reach the final value ΔN0tot of the population inversion is given
by ΔN0tot

χ

with :

χ = lim
s→0

s2

⎛

⎝ 1
s + 1

τ3

−
1

τ32(
s + 1

τ3

)(
s + 1

τ2

)

⎞

⎠ 1
1 − T (s)

· I(s)
q

=
τ31 τ32 − τ2 τ31

τout (τ31 + τ32) + τ31 (τ2 + τ32)
· I0

q

(28)

The photon number rise time can be neglected here because the photon number starts to increase during the
establishement of the population inversion. In conclusion, the ToD is equal to tΔNtot

.

tΔNtot
= tΔNth

+
ΔN0tot

χ

= tΔNth
+ τ3

(
1 − τ2

τ32

)
τout (τ31 + τ32) + τ31 (τ2 + τ32)

τ31 τ32 − τ2 τ31

(29)

6. EXPERIMENTAL SETUP

In order to experimentally establish the bandwidth of QCLs, a test bench has been developed. It consists in
a home-made electro-optical probe station, based on a TK1813 QMC Instruments Ltd. cryostat. A Cascade



Microtech microwave probe and special feedthrough allow applying both the bias and modulation current up
to 40 GHz. This probe is driven by a three-axis micrometer stage. Two others three-axis micrometric stages
drive two optical 1,55 μm focalizers(see fig.(4)). Indeed, since no fast enough THz detector is currently available,
an up-conversion toward telecoms wavelength has been planned.20,21 Because of the second order non-linear
susceptibility χ2 of GaAs, the whole THz spectra with microwave modulation sidebands is shifted on both sides
of the telecom wavelength line. Modulation frequencies as high as 13 GHz22 and more recently 24GHz23 have
been achieved with this technique. This test bench will allow us to have access to the Bode diagram magnitude
of a QCL to validate our modeling. Based on this theory, work is in progress to propose small signal equivalent
circuit of QCL, helpful for direct modulation applications. The different elements of the circuit are then linked
to intrinsic parameters and optimization of the QCL in accordance with the application is possible. It is also an
efficient method to get access to the intrinsic parameters of the laser chip under test and to evaluate the device
features, in the same way as the technique used for more conventional lasers like VCSELs.24

(a) Presentation of the experimental setup with the
three-axis micrometric stages. An binocular microscope
with camera allows us to see inside the cryostat, as we
can catch sight of the QCL chip on the monitor

(b) View of the inside of the modified QMC cryostat.
We can see the two optical focalizer and the microwave
probe.

Figure 4. Photos of the experimental setup

7. CONCLUSION

A simplified transfer function, taking account of QCL cascade scheme architecture has been presented. The
time constant variations of this transfer function have been pointed out and lead to a dependence of the direct
modulation bandwidth with the number of periods and the electron extraction time. Numerical functions have
been proposed, they could be useful for predicting the dynamic QCL performances. Further work and experiments
are in progress to experimentally prove these dependences.
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