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The authors present a home made cryogenic electro-optical probe station allowing the direct modulation of quantum cascade lasers up to 40GHz. Based on a QMC cryostat, it should make the QCL bandwidth measure possible and then help answering questions about the modulation possibilities of such a kind of laser. The experimental results will be compared to simulation bandwidth prediction based on a complete set of rate equations describing the dynamic behavior of the laser. Bandwidth will be then linked to the different intrinsic and structural parameters.

INTRODUCTION

This paper aims at proposing a theoretical description of small signal modulation of Quantum Cascade Lasers (QCL). Their invention in 1994 by Faist, Capasso et al. [START_REF] Faist | Quantum cascade laser[END_REF] brought a powerful and compact solid source of far infrared radiation. Since then, their performances have continuously improved. Terahertz QCL working above liquid nitrogen temperature, [START_REF] Scalari | Far-infrared bound-tocontinuum quantum-cascade lasers operating up to 90 k[END_REF][START_REF] Kumar | 186 k operation of terahertz quantum-cascade lasers based on a diagonal design[END_REF] and even at room temperature by intracavity difference-frequency generation, have been reported. [START_REF] Belkin | Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation[END_REF] Their spectral range is now extending from the mid-infrared down to 1.2 THz. [START_REF] Walther | Quantum cascade lasers operating from 1.2 to 1.6 thz[END_REF] Due to the novel properties and unique interaction with many materials, the terahertz radiation has become a topic of active research for the past few years, and is still a going concern. [START_REF] Siegel | Terahertz technology[END_REF][START_REF] Saeedkia | Terahertz photonics: Optoelectronic techniques for generation and detection of terahertz waves[END_REF] Among the large possibilities of applications, free space short range communications have been studied [START_REF] Capasso | Quantum cascade lasers: Ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission[END_REF][START_REF] Piesiewicz | Towards Short-Range Terahertz Communication Systems: Basic Considerations[END_REF] because of the Wi-Fi capabilities of terahertz waves and QCL large supposed bandwidth modulation. [START_REF] Mustapha | Terahertz bandwidth prediction for amplitude modulation response of unipolar intersubband semiconductor lasers[END_REF] QCL-based local oscillators are also attractive for radioastronomy applications [START_REF] Gao | Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer[END_REF] thanks to their high spectral purity, adequate output power and good stability. Modeling the behavior of QCLs is therefore an important step toward the prediction of performances of such semi-conductor sources. Microscopic modelings have proved to be relevant in predicting and analyzing quantum device carrier dynamics and have largely participate to their design improvement. [START_REF] Iotti | Microscopic modelling of opto-electronic quantum devices: A predictive simulation tool[END_REF][START_REF] Iotti | Microscopic modelling of semiconductor-based quantum devices: a predictive simulation strategy[END_REF] However, hereinbefore mentioned applications need a more global consideration of the optoelectronic system, and the establishment of a small signal equivalent circuit appears to be useful with this end in view. That is the final purpose of the theory presented in this paper. Indeed, theoretical study of electro-optical behavior, associated with the electrical ports S-parameters of a QCL should create a link between experimental measurements and intrinsic parameters values of the laser diode, and a better prediction of embedded device behavior. This method has proved to be apposite for many kinds of semiconductor lasers used in such applications. Macroscopic theoretical modeling of the QCL dynamic are easily usable: the set of rate equations governing the number of photons in the cavity and of electrons on the different possible states, along with their different lifetimes are sufficient.

Considering the full rate equations system, 14 a numerical simulation is firstly established. It leads to modulation bandwidth up to a few dozens of gigahertz. Then, an analytical calculation is made to propose a transfer function that is simplified next, in order to study its dependence as a function of various parameters like lifetimes and number of periods. 

SIMPLIFIED MODEL

Rate Equations

The simplified rate equations are based on a three-level classical scheme which leads to a 3 equations-system (2 for electrons on the two levels involved in the laser transition and 1 for photons). For a QCL of N p periods, these equations are written as follows (Eq.( 1) to (3)) [START_REF] Haldar | A simplified analysis of direct intensity modulation of quantum cascade laser[END_REF] :

∂N 3 ∂t = η I q - N 3 τ 3 -G (N 3 -N 2 ) P ( 1 
)
∂N 2 ∂t = N 3 τ 32 - N 2 τ 2 + G (N 3 -N 2 ) P (2) ∂P ∂t = N p G (N 3 -N 2 ) P - P τ p + β N 3 τ sp (3)
where N i is the number of electrons in the i th level, P the number of photons, G the optical gain, τ 32 the non-radiative scattering time, τ i the electron lifetime in level i, and τ p the photon lifetime. τ sp is the spontaneous emission lifetime.

Benefits and inaccuracies of this model

These rate equations well describe the static behavior of quantum cascade lasers, as they lead to the same result than the full system as illustrated in fig. (1). The much more simple calculation needed for this model allows quite simple analytical results. Moreover, as other macroscopic theories that allow to deduce a small signal equivalent circuit, helpful for optoelectronic applications like direct intensity modulation communications, this modeling is very valuable. However, this simplified modeling leads to a root-squared-law increase of the bandwidth with the number of periods. It is not a quite intuitive result. Indeed, the extraction time of the electrons to pass through the different periods is not taken into account. We can spontaneously think that this extraction time could decrease the small signal bandwidth of the QCL. That will be discussed further. Because of this simplification, small signal equivalent circuits deduced from this set of equations might lead to inaccuracies.

FULL RATE EQUATIONS

The previous set of rate equations is actually deduced from a more complex one. In order to take into account the extraction time of the electrons to pass from the fundamental level of the i th period to the excited one of the i + 1 th period, one more equation has to be reintegrated. The rate equations are consequently based on a three-level scheme with 4 equations (one for each of the three levels of the electrons and one for the photons). [START_REF] Rana | Current noise and photon noise in quantum cascade lasers[END_REF] This so called full rate equation system is given by Eq.( 4) to Eq.( 7) :

∂N (j) 3 ∂t = η I in (j) q - N (j) 3 τ 3 -G (j) (N (j) 3 -N (j)
2 ) P ( 4)

∂N (j) 2 ∂t = N (j) 3 τ 32 - N (j) 2 τ 2 + G (j) (N (j) 3 -N (j)
2 ) P ( 5)

∂N (j) 1 ∂t = N (j) 3 τ 31 - N (j) 2 τ 21 - I out (j) q (6) ∂P ∂t = Np j=1 G (j) (N (j) 3 -N (j) 2 ) P + n sp N (j) 3 -N (j) 2 τ sp - P τ p (7)
where N i is the number of electrons in the i th level, P the number of photons in the cavity, G (j) the optical gain of the j th period, τ i the electron lifetime in level i, and τ p the photon lifetime. τ 31 , τ 32 , τ 21 are the non radiative scattering times that are due to LO-phonon emission between the corresponding levels. n sp is the spontaneous emission coefficient and τ sp the radiative spontaneous relaxation time. I (j) in and I (j) out are respectively the input and output currents of the j th period. For the first period, I (1) in comes down to the input current of the QCL. Moreover, in order to describe the cascade scheme of the QCL, since the input current of the j th period is the output current of the (j -1) th period, these currents can be linked to a number of electrons extracted from the lower level of the (j -1) th period and injected on the upper level of the j th period. Then, the output current of the j th period is the rate of electrons leaving the level (1) given by Eq.( 8) and the input current of the j th period is the rate of electrons arriving on the level (3) from the level (1) of the previous period, given by Eq. (8).

I out (j) q = N (j) 1 τ out , I in (j) q = N (j-1) 1 τ out (8)

ANALYTICAL RESOLUTION

Hypotheses

The analytical resolution of the full rate equation is quite difficult for the time being. Consequently, one has to assume some simplifying hypotheses. First of all, the gain is supposed constant in the different periods. However, it could be an interesting job to focus on the spatial non-uniformity of the gain to describe furthermore the reality of the static and dynamic behavior. Secondly, the spontaneous emission term in the last equation is neglected as compared with the stimulated one. It is a well-known and quite correct assumption as soon as the laser is biased well above threshold. Last assumption, the η coefficient standing for the non-perfect injection of the electrons on the excited level will be supposed equal to 1. The value of this parameter has mainly an impact on the static behavior. 

Linearized equations

From the rate equations above, a small perturbation method will be used to linearize them. Thus, the number of photons P (t) will be the sum of the steady-state value P 0 and a small variation p(t) around P 0 . In the same way, the different numbers of electrons N (j) i (t) in each level will be the sum of a steady-state term N i0 (j) and a perturbation one n (j) i (t). This method, associated with the previous hypotheses leads to a linearized set of four rate equations, that can be written in the Laplace domain (s will be the Laplace variable and X(s) the Laplace transform of x(t)).

s + 1 τ 3 + G P 0 N (j) 3 (s) = N (j-1) 1 (s) τ out + G P 0 N (j) 2 (s) -G ΔN 0 P (s) (9) s + 1 τ 2 N (j) 2 (s) = N (j) 3 (s) τ 32 + G P 0 N (j) 3 (s) + G ΔN 0 P (s) (10) s + 1 τ 1 N (j) 1 (s) = N (j) 3 (s) τ 31 + N (j) 2 (s) τ 21 (11) s + 1 τ p -G N p ΔN 0 P (s) = -G P 0 Np j=1 N (j) 3 (s) -N (j) 2 (s) (12) 
where ΔN 0 = N 30 (j) -N 20 (j) is a constant for the different period j and it is actually the case in the simulations. This recurrent state system, associated with Eq. ( 12), can be described by a more complex global state system allowing us to link the optical power P opt (s) to I(s).

Analytic Transfer Function Calculation

Then, the small signal electro-optical transfer function H(s) is given by Eq.( 13) : with

H(s) = P opt (s) I(s) = α m c n g h ν q k (-1) (3Np+2) Cof 1,N p det ([Ω]) (13) 
det ([Ω]) = (-1) (3Np+1) σ Np-1 k=0 (-d) k Cof 1,Np-k + Cof 2,Np-k + δ d Np (14) Cof 1,k = -Cof 1,1 k-1 i=0 a k-i-1 1 d i (15) Cof 2,k = (-1) 3Np a 2 Cof 1,k-1 + Cof 2,1 d k-1 ( 16 
)
a 1 = - k σ τ out (α 21 α 32 -α 22 α 31 ) , a 2 = - k σ τ out (α 11 α 32 -α 12 α 31 ) ( 17 
)
d = det ([A]) , δ = k s + N p G ΔN 0 + 1 τ p ( 18 
)
Cof 1,1 = σ α 33 (α 21 + α 22 ) , Cof 2,1 = σ α 33 (α 11 + α 12 ) (19) 
A = k ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ s + 1 τ3 + G P 0 -G P 0 0 -1 τ32 -G P 0 s + 1 τ2 + G P 0 0 -1 τ31 -1 τ32 s + 1 τout ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ α 11 α 12 0 α 21 α 22 0 α 31 α 32 α 33 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ (20) 
where k = 1 G P0 ≈ 8.2 × 10 -14 is a scale factor avoiding overflow during numerical computation. The higher degree Laplace terms 's' of this transfer function is Cof 1,1 d Np-1 for the numerator and δ d Np for the denominator. They respectively correspond to an s 3Np-1 term over an s 3Np+1 . Indeed, the higher degree term of d = det ([A]) is s 3 , the higher one of δ is s, and the higher one of Cof 1,1 is s 2 . Therefore, the calculation leads to a globally second-order transfer function.

INVESTIGATION ON THE TURN-ON DELAY

Results based on the simplest model

These results are extracted from reference 19 and are presented here, for comparison.

• Rise time of the population inversion

The time t ΔN th taken by the electron population inversion to reach its threshold value is defined by :

ξ 3 e - t ΔN th τ 3 -ξ 2 e - t ΔN th τ 2 ξ 3 -ξ 2 = 1 - I th I (21) 
with :

ξ 3 = 1 + τ 2 τ 32 • τ 3 τ 2 -τ 3 , ξ 2 = τ 2 τ 32 • τ 2 τ 2 -τ 3 (22) 
• Rise time of the photons

The rise time of the photon number to reach 10% of the final value is :

t 10%S0 = τ p I0 I th -1 ln 1 + 1 I th - 1 I 0 q τ sp β τ p τ 3 S 0 10 (23) 
• Turn-on Delay for one period

Finaly, the Turn-on Delay (ToD) is the sum of the two previous contributions :

Δt = t ΔN th + τ p I0 I th -1 ln 1 + 1 I th - 1 I 0 q τ sp β τ p τ 3 P 0 10 (24) 

Enhanced model

The previous study, based on the simplified rate equations does not take into account the time needed by electrons to go from one period to the next one. We are going to analyse what happens when equations ( 4) to (7) are used to derive the ToD.

Assuming the photon number is still null, we compute the inversion population. Then, the relations linking N (s) are the following:

N (j) 1 (s) = T (s) • N (j-1) 1 (s) N (j) 3 (s) = 1 τout p + 1 τ3 N (j-1) 1 (s) N (j) 2 (s) = 1 τ32 τout s + 1 τ3 s + 1 τ2 N (j-1) 1 (s) (25)
with :

T (s) = 1 τ out 1 τ32 τ2 + 1 τ31 s + 1 τ2 s + 1 τ3 s + 1 τ2 s + 1 τout (26)
We can then obtain the total population inversion given by : Whatever the number of periods is, the slope χ of the linear part of the temporal evolution of the population inversion is constant. Then, the time taken to reach the final value ΔN 0tot of the population inversion is given by ΔN0 tot χ with :

ΔN tot (s) = Np j=1 ΔN (j) (s) = Np j=1 N (j) 3 (s) -N (j) 2 (s) = ⎛ ⎝ 1 p + 1 τ3 - 1 τ32 s + 1 τ3 s + 1 τ2 ⎞ ⎠ 1 -T (s) Np 1 -T (s) • I(s) q = G(s, N p ) • I(s) (27)
χ = lim s→0 s 2 ⎛ ⎝ 1 s + 1 τ3 - 1 τ32 s + 1 τ3 s + 1 τ2 ⎞ ⎠ 1 1 -T (s) • I(s) q = τ 31 τ 32 -τ 2 τ 31 τ out (τ 31 + τ 32 ) + τ 31 (τ 2 + τ 32 ) • I 0 q (28)
The photon number rise time can be neglected here because the photon number starts to increase during the establishement of the population inversion. In conclusion, the ToD is equal to t ΔNtot .

t ΔNtot = t ΔN th + ΔN 0tot χ = t ΔN th + τ 3 1 - τ 2 τ 32 τ out (τ 31 + τ 32 ) + τ 31 (τ 2 + τ 32 ) τ 31 τ 32 -τ 2 τ 31 (29) 

EXPERIMENTAL SETUP

In order to experimentally establish the bandwidth of QCLs, a test bench has been developed. It consists in a home-made electro-optical probe station, based on a TK1813 QMC Instruments Ltd. cryostat. A Cascade Microtech microwave probe and special feedthrough allow applying both the bias and modulation current up to 40 GHz. This probe is driven by a three-axis micrometer stage. Two others three-axis micrometric stages drive two optical 1,55 μm focalizers(see fig.( 4)). Indeed, since no fast enough THz detector is currently available, an up-conversion toward telecoms wavelength has been planned. [START_REF] Dhillon | Thz sideband generation at telecom wavelengths in a gaas-based quantum cascade laser[END_REF][START_REF] Dhillon | Terahertz transfer onto a telecom optical carrier[END_REF] Because of the second order non-linear susceptibility χ 2 of GaAs, the whole THz spectra with microwave modulation sidebands is shifted on both sides of the telecom wavelength line. Modulation frequencies as high as 13 GHz 22 and more recently 24GHz [START_REF] Maineult | Microwave modulation of terahertz quantum cascade laser : a transmission-line approach[END_REF] have been achieved with this technique. This test bench will allow us to have access to the Bode diagram magnitude of a QCL to validate our modeling. Based on this theory, work is in progress to propose small signal equivalent circuit of QCL, helpful for direct modulation applications. The different elements of the circuit are then linked to intrinsic parameters and optimization of the QCL in accordance with the application is possible. It is also an efficient method to get access to the intrinsic parameters of the laser chip under test and to evaluate the device features, in the same way as the technique used for more conventional lasers like VCSELs. 

CONCLUSION

A simplified transfer function, taking account of QCL cascade scheme architecture has been presented. The time constant variations of this transfer function have been pointed out and lead to a dependence of the direct modulation bandwidth with the number of periods and the electron extraction time. Numerical functions have been proposed, they could be useful for predicting the dynamic QCL performances. Further work and experiments are in progress to experimentally prove these dependences.
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 1 Figure 1. Optical power versus current of a 30-periods QCL (dotted line : experimental data, solid line : simplified model and dashed line : enhanced model) 16

Figure 2 .

 2 Figure 2. Comparison between full numerical simulation and linearized state system of a 30-periods QCL.

  Comparison between the temporal evolution of the populaiton inversion calculated from the simplest and the enhanced model.

  Temporal evolution of the population inversion for different number of periods. The inset represents a zoom of the area inside the dashed red rectangular box.
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( a )

 a Presentation of the experimental setup with the three-axis micrometric stages. An binocular microscope with camera allows us to see inside the cryostat, as we can catch sight of the QCL chip on the monitor (b) View of the inside of the modified QMC cryostat. We can see the two optical focalizer and the microwave probe.

Figure 4 .

 4 Figure 4. Photos of the experimental setup

Table 1 .

 1 Device parameters used in numerical simulations (unless stated otherwise) (from[START_REF] Rana | Current noise and photon noise in quantum cascade lasers[END_REF][START_REF] Haldar | A simplified analysis of direct intensity modulation of quantum cascade laser[END_REF][START_REF] Faist | Terahertz quantum cascade laser[END_REF][START_REF] Sirtori | Quantum cascade laser : fundamentals and performances[END_REF] 

	Parameter	Value
	Number of periods N p	30
	Confinement factor Γ	0.27
	Cavity losses α i	24cm -1
	Gain G	5.3×10 4 s -1
	Equilibrium population inversion ΔN 0	10 5
	Equilibrium photon number P 0 @I 0 = 450mA	2.3×10 8
	τ out	0.5 ps
	τ 2	0.3 ps
	τ 3	1.1 ps
	τ 31	2.4 ps
	τ 32	2 ps
	τ p	3.7 ps
	τ sp	7 ns