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ABSTRACT. Theoretical studies suggest that identically substituted dithio- and 

diselenocarbamate RAFT agents will have similar reactivity, but that diselenocarbamate RAFT 

agents are more likely to undergo intermediate radical termination. These results are supported by 

an experimental study of polymerizations of vinyl acetate mediated by Se-cyanomethyl N,N-

dimethyl diselenocarbamate (1Se) and its sulfur analog, S-cyanomethyl N,N-dimethyl 
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dithiocarbamate (1S). While the two polymerizations had similar interchain transfer constants (3.2 

for 1S and 3.9 for 1Se), significant retardation was observed for 1Se-mediated polymerizations. 

External chain transfer constants were also measured for 1S (5.4) and 1Se (45). The low apparent 

value of the chain transfer constant of 1S is attributed to the selective formation of a single 

monomer adduct in the early stages of the reaction. 

Introduction 

Reversible-addition fragmentation chain transfer polymerization (RAFT) is now one of the most 

widely used reversible deactivation radical polymerization techniques, both academically1 and 

industrially.2 RAFT relies on the use of a reversible chain transfer agent, comprising a homolytic 

leaving group, R, a radical stabilizing group, Z, and an unsaturated central group, shown as X=C-

X in Scheme 1. A wide variety of RAFT agents are available, and the effects of varying R and Z 

groups have been thoroughly studied, both experimentally3-6 and theoretically.7-10 The effect of 

changing the central group is much less well-understood.  

 

Scheme 1 Chain transfer reactions in RAFT polymerization (X = CH2, S, Se) 
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Chain transfer reactions between growing polymer chains and the RAFT agent are at the heart of 

the RAFT process. There are two major chain transfer reactions, shown in Scheme 1. The first, 

known as the pre-equilibrium, involves the transformation of the RAFT agent into a polymeric 

macroRAFT agent. The second is a degenerate chain transfer reaction between a propagating chain 

and a macroRAFT agent.  

Chain transfer constants can be associated with each equilibrium, and are defined in equations 1 

and 2 (kp represents the propagation rate constant, other rate constants are defined in Scheme 2):11 
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A reverse chain transfer constant can also be defined for the pre-equilibrium, governing the 

reaction of leaving group derived radicals (R•) with the macroRAFT agent to regenerate RAFT 

agent and a propagating radical (equation 3, ki represents the rate constant of addition of R• to 

monomer): 
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In an ideal RAFT polymerization, CS and Cex are high, leading to rapid formation of the 

macroRAFT agent and interconversion between macroRAFT agents and propagating chains, while 

C-S is negligible. An induction period during which little or no polymerization occurs is sometimes 

observed during the pre-equilibrium step, as the original RAFT agent is selectively converted to a 

single monomer adduct.12-15 



 4 

As shown in Scheme 1, the RAFT equilibrium takes place via formation of an intermediate radical 

adduct. Ideally, this would be a short-lived species that does not undergo any reaction other than 

fragmentation. Observations of retardation in many RAFT polymerizations led to a debate over 

the true role of the intermediate radical adduct. Barner-Kowollik and Davis16 suggested that slow 

fragmentation of the RAFT adduct could explain the retardation observed in styrene 

polymerizations mediated by dithiobenzoate RAFT agents. However, the very high intermediate 

radical adduct concentrations that would result from slow fragmentation were not observed in EPR 

experiments.17 In order to reconcile these data, Monteiro proposed that the intermediate radical 

undergoes termination reactions with itself and with propagating radicals.18 This approach can 

explain the observed retardation in a manner that is consistent with EPR results, but should result 

in the formation of 3- and 4-arm star polymers that are not observed in the experimental MWD. A 

number of other theories have been advanced to explain this absence. These include the ‘Missing 

Step’ model of Buback et al.,19 in which it is postulated that 3-arm stars formed via intermediate 

radical termination may react with propagating radicals to reform the intermediate radical adduct 

and a dead polymer chain, and the short radical termination model of Konkolewicz and Perrier20 

in which it is postulated that long chain radicals are too sterically hindered to react with the 

intermediate radical adduct, and thus that intermediate radical termination involves only 

oligomeric and initiator-derived radicals that produce 3-arm stars that are indistinguishable from 

dead chains produced by radical combination. . Additionally, Coote and Barner-Kowollik showed 

that entropic effects lead to strong chain length dependencies polymer-polymer reactions, even 

when they are chemically controlled. They suggested these effects could easily explain differences 

in fragmentation rate coefficients between the early stages of polymerization and the macroRAFT 

EPR experiments.21 The true mechanism causing retardation remains unresolved, and may vary 
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depending on the combination of monomer and RAFT agent used. More detailed discussion of this 

topic may be found in recent reviews15,22,23  

The first reports of reversible chain transfer as a means of controlling polymerization used 

macromonomers of methacrylic acid or methyl, t-butyl or phenyl methacrylate as chain transfer 

agents.24 In this case X = CH2. Subsequent studies investigated a range of different methacrylate- 

and α-methyl styrene-based dimer, trimer and macromonomer RAFT agents, typically finding 

chain transfer constants of 0.1-0.5 in polymerizations of styrene (St), acrylates and methacrylates.25 

To achieve control of dispersity and molecular weight with such low chain transfer constants 

required the use of starved-feed conditions to favor chain transfer over polymerization, in emulsion 

polymerization to limit termination reactions. With appropriate choice of reaction conditions, 

complex and well-controlled structures can be obtained using these chain transfer agents.26 

Sulfur-based chain transfer agents (X = S), introduced in 1998, exhibit much higher chain transfer 

constants, allowing controlled polymerization to be achieved in solution under batch conditions. 

Experimental27 and theoretical28 studies have also examined control agents based on 

dithiophosphinate esters (i.e., S=P-S-R) but with limited success. The vast majority of currently 

used RAFT agents incorporate a thiocarbonylthio (S=C-S) group. 

Several recent papers have investigated the use of selenium as an alternative to sulfur (Scheme 

2). Selenium-based RAFT agents allow the preparation of selenol-functional polymers which can 

be used to access the interesting biological and redox properties of the diselenide29 group. Zhan et 

al.30 reported the use of a cyclic diselenocarbamate in the polymerization of vinyl acetate (VAc) , 

while Zeng et al.31 have studied the use of S,Se-dibenzyl selenodithiocarbonate, S,Se-dibenzyl 

diselenothiocarbonate and dibenzyl triselenocarbonate (also studied by Botha et al.32 in the 
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polymerization of St. Zeng et al. also studied a series of diselenocarbonates, analogous to xanthate 

RAFT agents, in particular the O-phenyl Se-1-methoxycarbonylbenzyl diselenocarbonate O4 

(Scheme 2), which could control the polymerization of a wide range of monomers, including 

styrene, acrylates and vinyl esters.33 Our own group34 reported the use of Se-benzyl, Se-1-

phenylethyl and Se-cyanomethyl N,N-dimethyl diselenocarbamates to control the polymerization 

of St, butyl acrylate, VAc, vinyl pivalate and N-vinyl caprolactam. In each of these reports, similar 

levels of control over molecular weight and dispersity were achieved using either sulfur-based 

RAFT agents or their selenium analogs. However, use of selenium-based RAFT agents gave 

slower reactions: polymerization of St in the presence of the triselenocarbonate proceeded at 

approximately half the rate of the polymerization in the presence of the same quantity of 

trithiocarbonate. This was ascribed to higher levels of side reactions such as termination in the 

presence of selenium-based RAFT agents.31 

 

Scheme 2. Selenium-based RAFT agents.10-14 

In order to investigate the effect of selenium in more detail, we have carried out detailed kinetic 

studies of the polymerization of VAc in the presence of Se-cyanomethyl N,N-dimethyl 

diselenocarbamate (1Se) and its sulfur analog, S-cyanomethyl N,N-dimethyl dithiocarbamate (1S) 

as shown in Scheme 3. These experiments were aimed at determining the chain transfer constants 

of the RAFT agents and dormant polymer chains, as well as quantifying the effect of each RAFT 

agent on the rate of polymerization. To support these experiments a series of theoretical 
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calculations were also undertaken to compare the underlying similarities and differences in 

selenium- and sulfur-based RAFT agent reactivities. 

 

Scheme 3. RAFT polymerization of vinyl acetate mediated by 1S or 1Se. 

Theoretical Results and Discussion. 

To explore the underlying fundamental differences in reactivity between the C=S and C=Se 

bonds, gas-phase quantum-chemical calculations to study the simplest possible analogs of their 

respective RAFT reactions; namely, methyl radical addition to methyl dithioformate and methyl 

diselenoformate (Table 1). The results suggest that Se-based RAFT agents should undergo radical 

addition reactions that are both faster (due to their lower free energy barrier) and more exothermic 

than those of S-based RAFT agents. This is understandable in terms of the weaker C=Se versus 

C=S π-bond strengths, resulting from poorer orbital overlap between the 2p(C) and 4p(Se) orbitals 

of C=Se, versus the 2p(C) and 3p(S) orbitals of C=S. These trends are a logical extension of those 

examined previously for C=O versus C=S radical addition.35 If these trends are preserved in the 

reactions of substituted radicals and control agents, then the faster radical addition to Se-based 
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RAFT agents should deliver improved control, while the greater stability of the adduct radical 

would lead to more retardation relative to S-based RAFT agents.  

Table 1. Enthalpies (H) and Gibbs free energies (G) of reaction (ΔH, ΔG) and activation 

(ΔH≠, ΔG≠) for methyl radical addition to methyl dithioformate and methyl diselenoformate 

(298.15K, kJ mol–1)a  

Substrate ΔH ΔH≠ ΔG ΔG≠ 

S=C(H)SCH3 -74.7 18.7 -39.8 42.4 

Se=C(H)SeCH3 -91.6 -7.0 -56.1 26.3 

aCalculated at the G3(MP2)-RAD//M06-2X/6-31G(d) level of theory in the gas phase. For both 
reactions, the addition transition state is a first order saddle point with a positive barrier at M06-
2X/6-31G(d) but in the case of the Se derivative, the improved G3(MP2)-RAD energies result in 
a negative enthalpic barrier, though the Gibbs free energy barrier remains positive due to the loss 
of entropy on forming the transition state.  

To assess whether the change from S to Se affects structure-reactivity trends, we calculated a 

series of reactivity descriptors that were originally developed36,37 as a simple semi-quantitative 

predictor of the kinetic behavior of a new RAFT agent relative to known compounds. It is 

important to note that these descriptors measure the effects of changing R or Z separately using 

simplified model compounds, and assume that any specific interactions between R and Z groups 

are negligible. For the Z-group effects, we calculated descriptors for the RAFT agent stability 

(∆Hstab), the radical stabilization energy (RSE) of RAFT-adduct radical, and its fragmentation 

efficiency (∆Hfrag). For the R-group effects, we calculated an equivalent ∆Hstab descriptor, the RSE 

of R• leaving radical, and its chain transfer efficiency (∆HCT). The definitions of these terms are 

provided in Scheme 4,36 and the R and Z groups studied are shown in Scheme 5. Figure 1 compares 

corresponding values of each type of descriptor for dithiocarbamates and diselenocarbamates; full 

data is provided in the ESI. 
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Scheme 4. Descriptors for modelling the effects of the Z- and R- groups on RAFT Agent 

Stability (∆Hstab) and Radical Stabilization Energy (RSE), the effect of Z-group on 

Fragmentation Efficiency (∆Hfrag) and the effect of R-group on Fragmentation Efficiency 

(∆HCT).36 In this work we consider cases where X=S or Se. 
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Scheme 5. R- and Z-groups studied theoretically.  

 

The R-group descriptors of corresponding dithiocarbamates and diselenocarbamates are 

essentially identical, while the Z-group descriptors are highly correlated, indicating that R and Z 

substituents have similar effects on the reactivity of dithio- and diseleno-carbamates.  
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Figure 1. Comparison of corresponding reactivity descriptors for dithiocarbamates and 

diselenocarbamates. The plot on the left shows Z-group descriptors (RSE of RAFT-adduct radical, 

ΔHfrag and ΔHstab) while that on the right shows R-group descriptors (RSE of RAFT-adduct radical, 

ΔHfrag and ΔHstab) 

To probe the differences between the two classes of RAFT agent, new descriptors were obtained 

by combining the Z group descriptors with the enthalpies of methyl radical addition to the model 

sulfur and selenium-based RAFT agents of Table 1. These were ∆Hadd for addition of a methyl 

radical to the RAFT agent, and ∆RSE for the difference in radical stabilization energy between 

dithio- and diseleno-RAFT adduct radicals (Scheme 6).  
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Scheme 6. Descriptors for comparison of dithio- and diselenocarbamate RAFT agents: 

enthalpy of addition of methyl radical (∆Hadd) and hydrogen transfer from dithioacetal to 

diselenocarbamate radical adduct (∆RSE). 

 

Figure 2 shows that, for most Z-groups investigated, including dimethylamino (Z1), the 

enthalpies of methyl addition to dithio- or diseleno-carbamates are essentially identical. The higher 

∆Hfrag observed for diselenocarbamates are almost exactly compensated by the difference of 16.9 

kJ.mol-1 in ∆H of methyl addition to methyl dithioformate vs methyl diselenoformate (Table 1). 
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 Figure 2. Comparison of enthalpy of methyl radical addition (ΔHadd) for dithio- and 

diselenocarbamates. The bars represent the enthalpy of hydrogen transfer from a dithioacetal to a 

diselenocarbamate radical adduct (ΔRSE). 

On the other hand, ∆RSE ranges from -16 to -3 kJ.mol-1, indicating that the dithiocarbamate 

radical adducts are more stable than diselenocarbamate radical adducts with respect to combination 

with other radicals to form dithio- or diseleno-ketal type products. These results suggest that 

identically substituted dithio- and diselenocarbamates should show similar reactivities in radical 

polymerizations, but that radical adducts derived from diselenocarbamates may be more prone to 

undergo intermediate radical termination through combination with other radicals. 

Experimental Results and Discussion 

Effect of RAFT agent on kinetics of polymerization. We subsequently carried out an 

experimental study of two analogous RAFT agents, S-cyanomethyl N,N-dimethyl dithiocarbonate 

(1S) and Se-cyanomethyl N,N-dimethyl diselenocarbamate (1Se), as chain transfer agents in the 
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RAFT polymerization of VAc. Both RAFT agents provided good control over molecular weight, 

with good agreement between experimental and theoretical number-average degrees of 

polymerization (Figure 3). Dispersities, though sometimes very large at the beginning of the 

polymerization, were around 1.5 at conversions of 40% and above. These characteristics are 

typical of moderately active RAFT agents in the polymerization of vinyl esters.38 Full details of 

molecular weight and dispersity can be found in the Supporting Information. 

 
Figure 3. Evolution of normalized number-average degree of polymerization and dispersity with 

conversion for bulk vinyl acetate polymerizations mediated by 1S (red) and 1Se (grey) in the 

presence of 11 mM AIBN at 70 °C. Different symbols correspond to different initial VAc:1 ratios 

(1S: square: 442:1; diamond: 233:1; circle: 114:1; 1Se: square: 464:1; diamond: 231:1; circle: 

114:1).  

1S and 1Se both slowed the rate of VAc polymerization, but in different ways. Addition of 1S 

resulted in an induction period, t0, of up to 2 h, followed by polymerization at a reduced rate 

compared to the control polymerization without added RAFT agent (Figure 4). Addition of 1Se 

did not cause a significant induction period but led to severe retardation: the polymerization in the 

presence of 0.1 M 1Se was approximately 100 times slower than the control polymerization. 

Further details of the fitting procedure can be found in the Supporting Information. 
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The retardation of the polymerization indicates that the concentration of propagating radicals is 

decreased in the presence of both 1S and 1Se. This is most likely a result of intermediate radical 

termination,18,22 which appears much more pronounced in the case of 1Se-mediated 

polymerizations, and may even be the dominant mode of termination in this reaction. 

 

Figure 4. Conversion vs time data for bulk polymerizations of vinyl acetate mediated by 1S (a) or 

1Se (b) in the presence of 11 mM AIBN at 70 °C. Lines represent best fits to conversion = 0 (t < 

t0), 1 – exp[-kapp.(t-t0)] (t ≥ t0) for polymerizations of 1S and conversion = 1 – exp(-kapp.t) for 

polymerizations of 1Se. Fitted values of kapp and t0 are shown in (c) and (d), respectively, for 1S 
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(red) and 1Se (grey, kapp only). Different symbols correspond to different initial VAc:1 ratios (1S: 

square: 442:1; diamond: 233:1; circle: 114:1; 1Se: square: 464:1; diamond: 231:1; circle: 114:1). 

Chain transfer constants of RAFT agents. The relative rates of consumption of RAFT agent, 

RAFT, and monomer, M, in the early stages of the reaction are given by equation 4: 

([*+,-]
([/]

= 𝐶0
[*+,-]

[/]#1'[2345]#1%'[2]
  (4) 

In the case where C-S is negligible, this can be simplified to equation 5: 

([*+,-]
([/]

≈ 𝐶0
[*+,-]

[/]#1'[2345]
  (5) 

This was assumed to be the case for vinyl acetate polymerizations in the presence of 1S and 1Se, 

due to the greater resonance stabilization of the cyanomethyl radical compared to the poly(vinyl 

acetate) propagating radical. Finally, if [M] >> CS[R], further simplification is possible to give 

equation 6: 

([*+,-]
([/]

≈ 𝐶0
[*+,-]
[/]

  (6) 

This analysis presumes that chain transfer and propagation are the only reactions that consume 

the monomer and RAFT agent, respectively. The chain transfer constants, CS, of the RAFT agents 

were evaluated by measuring RAFT agent conversion, pR, as a function of monomer conversion, 

pM, according to Walling’s method.39,40 This method makes use of the integrated form of equation 

6, shown in equation 7. Note that a non-linear relationship has been used rather than the more 

typical linearized relationship relating ln[R] and ln[M] in order to reduce bias induced by the 

distortion of the error structure of the data inherent in linearization.41 
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(1 − 𝑝*) = (1 − 𝑝/)1( (7) 

Monomer conversion was determined by 1H NMR, while RAFT agent conversion was 

determined from the UV absorbance of the peak corresponding to the RAFT agent in the SEC 

chromatogram. The values of CS were calculated by nonlinear least squares fitting, assuming errors 

of equal magnitude in both variables (Figure 5). The calculated values of CS are 45 (95% 

confidence interval = [26, 220]) for 1Se and 5.4 (95% confidence interval = [4.6, 6.7]) for 1S. The 

use of the simplified equation 6 as opposed to equation 5 had a negligible effect on the result (see 

Supporting Information for details). 

  

Figure 5. RAFT conversion as a function of monomer conversion for polymerizations of vinyl 

acetate in the presence of 1Se (grey) and 1S (red). Heavy lines represent fits to (1-pR) = (1-pM)Cs, 

with CS = 45 and 5.4 respectively. Lighter lines represent 95% confidence limits. Error bars 

represent the standard error in the data points and correspond to a standard error of 1.5% in the 

conversion of monomer and RAFT agent. 
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The measured value of CS for 1Se is an order of magnitude greater than that of 1S, a surprising 

result given the similar molecular weight distributions obtained for polymers produced with either 

RAFT agent (Figure 1). The induction times observed in the presence of 1S, but not in the presence 

of 1Se, may provide an explanation for this behavior. Klumperman and coworkers have shown 

that in the polymerization of VAc in the presence of various xanthate RAFT agents, there is an 

initial induction period during which the RAFT agent is converted to a species containing exactly 

one monomer unit.14 Polymerization of VAc does not begin until all xanthate has been converted 

to the monoadduct. For this to occur, the rate of addition of the propagating radical to the RAFT 

agent must be much greater than the rate of propagation (CS[RAFT]/[M] >> 1), while the rate of 

addition of the leaving group (in this case cyanomethyl) to the monomer should be slower than the 

rate of propagation.15  

It is likely that this process takes place in the 1S polymerization, in which an induction period is 

also observed. In this case, the measured chain transfer constant is not that of 1S, but that of the 

monoadduct. It would not be possible to distinguish these two species by size exclusion 

chromatography, as they would elute at similar volumes. In the case of 1Se, for which no induction 

period is observed, the measured chain transfer constant is that of 1Se. In this case, the addition of 

cyanomethyl to VAc is no longer rate-determining, and no induction period is observed. As the 

rate of cyanomethyl addition should be independent of the nature of the RAFT agent, this in turn 

suggests that a different reaction is significantly slower in the case of 1Se-mediated polymerization 

and becomes rate-determining. A plausible hypothesis is that the fragmentation of the 1Se radical 

adduct is significantly slower than that of the 1S radical adduct. This would result in increased 

concentrations of 1Se radical adducts, leading to higher levels of intermediate radical termination 

and a slower overall polymerization. 
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Chain transfer constant of macroRAFT agent. A similar procedure was used to determine the 

chain transfer constant of macroRAFT agents 2S and 2Se obtained from polymerization of VAc 

in the presence of 1S and 1Se (Figure 6). Both macroRAFT agents had a number-average 

molecular weight of 3750 g.mol-1 (determined by SEC), with dispersities of 1.48 (2S) or 1.34 (2Se). 

The purified macroRAFT agents were dissolved in a large excess of VAc ([VAc]/[2] = 1600) and 

polymerization was initiated by AIBN at 70°C. Conversion of macroRAFT agent and monomer 

were determined by analysis of the SEC traces after injection of a known quantity of reaction 

mixture, following the method developed by Goto and Fukuda.42-44 Four experiments were carried 

out for each macroRAFT agent, using different quantities of initiator in each case. 

The major limitations of this method are due to the presence of dead chains in the macroRAFT 

agent, and the difficulty of deconvoluting the SEC traces of the unreacted macroRAFT agent and 

polymer.45,46 We estimated the level of dead polymer chains to be 6.8% in the case of 2S, and 9.3% 

in the case of 2Se, based on the known rate constant of decomposition of AIBN of 3.2 × 10-5 s-1 at 

70°C, and an assumed value of 0.6 for the initiator efficiency (literature values range from 0.25-

0.65 at 60°C).47 The estimated concentration of dead polymer was subtracted from the measured 

concentration of macroRAFT agent when calculating macroRAFT agent conversion, as 

recommended by Fukuda.45 Deconvolution of the chains was facilitated by the use of a large excess 

of VAc, enabling good separation between the peaks corresponding to the unreacted macroRAFT 

agent and the chain-extended polymer. All SEC traces are shown in the Supporting Information. 

While some residual error is inevitable, it should be relatively consistent between the two 

macroRAFT agents given their similar molecular weight distributions and estimated purities. 

A plot of macroRAFT conversion vs monomer conversion (Figure 6) shows that all experiments 

followed similar trajectories. Values of CS were obtained by nonlinear least squares fitting of 
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equation 8, assuming errors of similar magnitude in both variables. The two macroRAFT agents 

showed similar chain transfer constants, of 3.2 for 2S and 3.9 for 2Se, with 95% confidence 

intervals of [3.0, 3.5] and [3.4, 4.3] respectively. This contrasts with the large apparent difference 

in CS observed between 1S and 1Se, and supports the idea that the CS measured for 1S (5.4) is 

actually that of the monoadduct produced during the induction period.  

   

Figure 6. MacroRAFT agent conversion as a function of monomer conversion for 

polymerizations of VAc in the presence of 2S (a) and 2Se (b). Different symbols correspond to 

experiments carried out at different initiator concentrations. Heavy solid line represents best fit to 

the equation (1 – p2) = (1 - pM)Cs, with CS = 3.2 (2S) or 3.9 (2Se). Lighter lines represent the 95% 

confidence intervals for CS of [3.0, 3.5] (2S) and [3.4, 4.3] (2Se). Error bars represent the standard 

error in the data points, and correspond to a standard error of 0.4% (2S) or 0.5% (2Se) in the 

measurement of conversion of monomer and RAFT agent. 
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and a relatively persistent selenocarbonylselenyl radical. If this were the case, the measured chain 

transfer constant, CS
app, would contain a component due to spontaneous dissociation of the RAFT 

agent. 

Following Fukuda’s treatment,42 if the measured rate of RAFT agent consumption, ka
app is 

assumed to be first order with respect to [RAFT] and [R•], it will contain a component due to chain 

transfer (ka[R•]), and a component due to spontaneous dissociation of the RAFT agent (kd), which 

is independent of the radical concentration (equation 8).  

𝑘6
788[𝑅•] = 𝑘6[𝑅•] + 𝑘: (8) 

Dividing both sides of the equation by kp[R•] gives equation 9: 

")
!##

"*
= ")

"*
+ "+

"*[2•]
 (9) 

which can be expressed in terms of chain transfer constants (measured, CS
app, and underlying, 

CS) and the apparent rate constant of polymerization, kapp = kp[R•] = -d(ln[M])/dt (equation 10). 

𝐶0
788 = 𝐶0 +

"+
"!##

  (10) 

CS was evaluated independently for each initiator concentration, then plotted against 1/kapp, with 

results shown in Figure 7. No dependence of CS on initiator concentration was observed for either 

2S or 2Se, indicating that spontaneous dissociation of sulfur- or selenium-based RAFT agents is 

negligible. 
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Figure 7. CS of 2S (a) and 2Se (b) plotted for each experiment, as a function of 1/kapp (inverse of 

the apparent rate constant of polymerization). Error bars represent 95% confidence intervals for 

the individual values of CS. The solid lines represent the CS obtained by fitting all experimental 

results, and shaded areas represent the 95% confidence intervals for these values.  

For both 2S and 2Se, the polymerization kinetics were 0.5-order in initiator concentration, and 

displayed an induction time, t0, ranging from a few minutes up to half an hour, which was inversely 

proportional to the square root of the concentration of AIBN. For a comparable initiator 

concentration, the 2S polymerization was approximately three times faster than the 2Se 

polymerization (Figure 8). Both 2S and 2Se polymerizations were retarded by comparison with 

the control polymerization at a comparable initiator concentration. Induction periods were 

approximately twice as long for 2Se polymerizations as for 2S polymerizations at a comparable 

initiator concentration (Figure 8). While the induction periods observed for 1S could be explained 

by selective formation of the single monomer adduct, the cause of induction periods in the presence 
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of macroRAFT agents 2 is unclear. The -0.5-order dependence on AIBN concentration suggests 

that the length of the induction time is inversely proportional to the radical concentration. 

   

Figure 8. Dependence of (a) apparent first order rate constants, kapp and (b) induction times, t0 

on AIBN concentration for polymerizations of VAc in the presence of 2S (red) and 2Se (gray) ([2] 

= 6.4 mM). Dashed lines in figure 6a represent kapp = 5.9 × 10-3 [AIBN]0.53 min-1 (2S) and kapp = 2.0 

× 10-3 [AIBN]0.46 min-1 (2Se). Dashed lines in figure 6b represent t0 = 13 × [AIBN]-0.5 min (2S) and 

21 × [AIBN]-0.5 min (2Se). 

These results, together with those obtained for the small molecule RAFT agents 1S and 1Se, 

suggest that significant termination of intermediate radicals occurs, which reduces the 

concentration of propagating radicals, retarding the polymerization.18,20,23 This effect is more 

significant for selenium-based RAFT agents than for their sulfur analogs. 
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Theoretical studies suggest that dithiocarbamates and diselenocarbamates with the same R and 

Z groups should exhibit similar reactivities as reversible addition fragmentation chain transfer 

agents. However, the radical adducts formed from diselenocarbamates are more likely to undergo 

intermediate radical termination than those formed from dithiocarbamates. In line with these 

predictions, both the sulfur-based RAFT agent, S-cyanomethyl N,N-dimethyldithiocarbamate (1S) 

and its selenium analogue, Se-cyanomethyl N,N-dimethyldiselenocarbamate (1Se) were capable 

of controlling the polymerization of VAc, providing relatively narrowly dispersed polymers with 

controlled molecular weight. Polymerizations in the presence of 1Se were substantially retarded, 

indicating significant termination of intermediate radicals. By contrast, polymerizations in the 

presence of 1S were less retarded, but exhibited induction periods of up to 2 hours. Such induction 

periods are typically associated with selective formation of a single monomer adduct. 

The chain transfer constants of 1S, 1Se and the corresponding macroRAFT agents 2S and 2Se 

were measured as 5.4 (1S), 45 (1Se), 3.2 (2S) and 3.9 (2Se). The low value measured for 1S 

probably represents the CS of the single monomer adduct, 1S′, with the true CS of 1S being too 

high to measure using the SEC curve resolution technique. Chain transfer constants for the 

macroRAFT agents 2 were independent of the radical concentration, indicating that spontaneous 

dissociation of the RAFT agent is negligible. 

These experimental results support the theoretical prediction that the chain transfer constants of 

selenium-based RAFT agents are generally similar to those of sulfur-based RAFT agents with 

identical substituents. However, the intermediate radicals resulting from addition of a propagating 

radical to a selenium-based RAFT agent are significantly more likely to undergo intermediate 

radical termination, leading to substantial retardation of the polymerization.  
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Experimental part 

The 2,2′-azobis(isobutyronitrile) initiator (AIBN, ≥ 98%) was purchased from Fluka and 

recrystallized twice from methanol prior use. Vinyl acetate (VAc, 99+%) was purchased from 

Acros Organics and purified by passing through a column packed with neutral alumina. S-

cyanomethyl N,N-dimethyldithiocarbamate was purchased from Aldrich and used as received. Se-

cyanomethyl N,N-dimethyldiselenocarbamate was synthesised according to a literature 

procedure.12 

Size-exclusion chromatography (SEC) was used to determine the number-average molar mass 

(Mn) values and dispersities (Ð) of the macroRAFT agents. The SEC analyses were conducted 

using a Waters 2410 index refractometer and a Waters 2489 UV/Vis spectrometer (at 290 nm) 

with a Styragel column (HR4E) in tetrahydrofuran (THF) as eluent at a flow rate of 1.0 mL.min-1 

(35 °C). The column systems were calibrated with narrow polystyrene (PSt) standards, obtained 

from Polymer Laboratories, ranging from 580 to 164500 g.mol-1. Values of Mn and Ð are 

reported in PSt equivalents. 

Monomer conversion comparison. The polymerizations were performed in glass tubes that 

were flame-sealed under vacuum after three freeze–pump–thaw cycles. The tubes were 

immersed into an oil bath at the desired temperature and frozen at given intervals into liquid 

nitrogen. The monomer conversion was determined by 1H NMR. 

A typical procedure for the polymerisations is as follows: 1S (0.05 g, 0.31 mmol), AIBN (0.01 

g, 0.07 mmol) and VAc (6.20 g, 72.08 mmol) were stirred together in a Schlenk tube. The main 

solution was divided into 5 glass tubes and degased with three freeze-pump-thaw cycles before 
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being flame-sealed under vacuum. The tubes were placed in an oil bath maintained at 70 °C. At 

given intervals, the tubes were removed and frozen into liquid nitrogen.  

Comparison of VAc and RAFT agent conversion. Polymerizations were performed in glass 

tubes that were flame-sealed under vacuum after three freeze–pump–thaw cycles. The tubes were 

immersed into an oil bath at the desired temperature and frozen at given intervals into liquid 

nitrogen. The monomer conversion was determined by 1H NMR and the RAFT agent conversion 

was determined by SEC UV. 

A typical procedure of the determination of monomer conversion versus RAFT agent 

conversions is as follows: 1S (0.03 g, 0.16 mmol), AIBN (0.01 g, 0.08 mmol) and VAc (6.23 g, 

72.38 mmol) were stirred together in a schlenk tube. The main solution was divided into 5 glass 

tubes and degased with three freeze-pump-thaw cycles before being flame-sealed under vacuum. 

The tubes were placed in an oil bath maintained at 70 °C. At given intervals, the tubes were 

removed and frozen into liquid nitrogen. The samples were diluted by THF to a known 

concentration and analysed by SEC. 

1Se (0.04 g, 0.16 mmol), AIBN (0.01 g, 0.08 mmol) and VAc (6.23 g, 72.38 mmol) were stirred 

together in a schlenk tube. The main solution was divided into 5 glass tubes and degased with three 

freeze-pump-thaw cycles before being flame-sealed under vacuum. The tubes were placed in an 

oil bath maintained at 70 °C. At given intervals, the tubes were removed and frozen into liquid 

nitrogen. The samples were diluted by THF to a known concentration and analysed by SEC. 

Chain extension and Ctr,ex determination 
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Preparation of 2S. A glass tube was loaded with 1S (0.10 g, 0.63 mmol), VAc (2.40 g, 27.91 

mmol) and AIBN (0.03 g, 0.15 mmol). After three freeze–pump–thaw cycles, the tube was flame-

sealed under vacuum. The tube was immersed into an oil bath at 70 °C for 6 hours before being 

frozen into liquid nitrogen (conv. 90%). The volatiles were removed under reduced pressure to 

give a yellow powder. Mn,NMR = 3600 g.mol-1, Mn,SEC = 3750 g.mol-1, Ð = 1.48. No unreacted 1S 

could be observed by NMR or SEC. 

Preparation of 2Se. A glass tube was loaded with 1Se (0.10 g, 0.38 mmol), VAc (3.70 g, 43.02 

mmol) and AIBN (0.04 g, 0.24 mmol). After three freeze–pump–thaw cycles, the tube was flame-

sealed under vacuum. The tube was immersed into an oil bath at 70 °C for 2 hours and 45 minutes 

before being frozen into liquid nitrogen (conv. 35 %). The volatiles were removed under reduced 

pressure to give an orange powder. Mn,NMR = 3600 g.mol-1, Mn,SEC = 3750 g.mol-1, Ð = 1.34. No 

unreacted 1Se could be observed by NMR or SEC. 

A typical procedure of the chain extension polymerization is as follows: 2S (0.10 g, 0.03 mmol), 

AIBN (0.01 g, 0.05 mmol) and VAc (4.07 g, 47.28 mmol) were stirred together in a schlenk tube. 

The main solution was divided into 5 glass tubes and degassed with three freeze-pump-thaw cycles 

before being flame-sealed under vacuum. The tubes were placed in an oil bath maintained at 70 

°C. At given intervals, the tubes were removed and frozen into liquid nitrogen. The samples were 

diluted by THF to a known concentration and analyzed by SEC. 

The total area under each chromatogram relative to the t0 allows the direct determination of the 

monomer conversion. We applied the SEC curve resolution method42 to determine the interchain 

transfer constant. 



 28 

Theoretical Procedures. All geometries were optimized using B3-LYP/6-31G(d), except for 

the kinetics calculations for which M06-2X/6-31G(d) was used instead. For species containing Se, 

we adopted Rassolov’s 6-31G rather than the default version in Gaussian. Rassolov’s 6-31G basis 

set is consistent with the first- and second-row atoms, whereas the default Gaussian 6-31G basis 

set is not. All conformers were systematically searched and results were only reported for the 

lowest energy conformers. For Z5, the chair is always lower in energy than the boat form. The 

enthalpy at 0K was calculated using a modified version of G3(MP2)-RAD, where the 

ROMP2/G3MP2large calculations were replaced by RI-ROMP2/G3MP2Large with the RIMP2-

cc-pVTZ auxiliary basis set. For cases where the full system was too large to be studied with 

G3(MP2)-RAD (Z3, Z4, Z5, Z11 and Z12), an ONIOM approximation to G3(MP2)-RAD was 

used in which the full system was treated with ROMP2/G3MP2Large, and the core system (Z1 for 

Z3-5 and Z9 for Z10 and Z11) was treated with G3(MP2)-RAD. 
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Theoretical studies suggest that identically substituted dithio- and diselenocarbamate RAFT 
agents will have similar reactivity, but that diselenocarbamate RAFT agents are more likely to 
undergo intermediate radical termination. These results are supported by an experimental study 
of polymerizations of vinyl acetate mediated by Se-cyanomethyl N,N-dimethyl 
diselenocarbamate (1Se) and its sulfur analog, S-cyanomethyl N,N-dimethyl dithiocarbamate 
(1S). While the two polymerizations had similar interchain transfer constants (3.2 for 1S and 
3.9 for 1Se), significant retardation was observed for 1Se-mediated polymerizations. External 
chain transfer constants were also measured for 1S (5.4) and 1Se (45). The low apparent value 
of the chain transfer constant of 1S is attributed to the selective formation of a single monomer 
adduct in the early stages of the reaction. 

 


