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Abstract: Idiopathic pulmonary arterial hypertension (IPAH) is a complex disease associated with
vascular remodeling and a proliferative disorder in pulmonary artery smooth muscle cells (PASMCs)
that has been variably described as having neoplastic features. To decode the phenotype of PASMCs
in IPAH, PASMCs from explanted lungs of patients with IPAH (IPAH-PASMCs) and from controls
(C-PASMCs) were cultured. The IPAH-PASMCs grew faster than the controls; however, both growth
curves plateaued, suggesting contact inhibition in IPAH cells. No proliferation was seen without
stimulation with exogenous growth factors, suggesting that IPAH cells are incapable of self-sufficient
growth. IPAH-PASMCs were more resistant to apoptosis than C-PASMCs, consistent with the
increase in the Bcl2/Bax ratio. As cell replication is governed by telomere length, these parameters
were assessed jointly. Compared to C-PASMCs, IPAH-PASMCs had longer telomeres, but a limited
replicative capacity. Additionally, it was noted that IPAH-PASMCs had a shift in energy production
from mitochondrial oxidative phosphorylation to aerobic glycolysis. As DNA damage and genomic
instability are strongly implicated in IPAH development a comparative genomic hybridization was
performed on genomic DNA from PASMCs which showed multiple break-points unaffected by
IPAH severity. Activation of DNA damage/repair factors (γH2AX, p53, and GADD45) in response to
cisplatin was measured. All proteins showed lower phosphorylation in IPAH samples than in controls,
suggesting that the cells were resistant to DNA damage. Despite the cancer-like processes that are
associated with end-stage IPAH-PASMCs, we identified no evidence of self-sufficient proliferation in
these cells—the defining feature of neoplasia.
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1. Introduction

Idiopathic pulmonary arterial hypertension (IPAH), a vascular disorder associated with pulmonary
circulation, is characterized by pulmonary arterial obstruction, which is mostly caused by the dominant
proliferation of parietal pulmonary artery smooth muscle cells (PASMCs), as well as by variability in
pulmonary vasoconstriction to a lesser extent; this leads to increased pulmonary vascular resistance,
right-heart failure, and can ultimately prove fatal [1,2].

In the past decade, several major advances have led to substantial improvements in the
management of IPAH. Much of the current knowledge was determined using animal models. Although
none of the current animal models of pulmonary hypertension completely recapitulate the human
disease, they do provide insight into the potential cellular pathways contributing to its development
and progression [3]. We have learned a great deal about the pathobiology of IPAH, but we still do not
know what initiates this disease and the progression of pulmonary vascular remodeling and obstruction.
Although the pathogenesis and pathobiology of IPAH is complex and there is individual heterogeneity in
both the clinical trajectories of patients and the inter-relationships between endothelial cell dysfunction,
smooth muscle cell growth, apoptosis resistance, and a chronic inflammatory micro-environment in
their distal pulmonary arteries [4,5], the most striking cellular processes underlying the observed
vascular remodeling observed in this condition are related to excessive PASMC growth and apoptosis
resistance. In this setting, many disease-predisposing and function-modifying characteristics of
PASMCs have been identified, including oxidative stress, inflammation, and cross-talk with pulmonary
endothelial cells [4,6]. Given that many of these findings overlap with cancer-like processes—especially
deregulated cellular metabolism, sustained proliferation, and inhibition of apoptosis, IPAH is currently
categorized by many as a cancer-like disease [7–9]. Although the neoplastic-like pathobiology of IPAH
was originally put forward because of the finding that in IPAH, endothelial cells from plexiform lesions
showed cancer-associated genetic alterations including microsatellite instability, DNA damage [10],
and concomitant dysregulation of the growth–apoptosis balance [11], the “cancer-like” idea quickly
spread to include the hyper-proliferating PASMCs. From this idea is born the hypothesis that the
repurposing of anti-cancer drugs could constitute an effective antiproliferative/proapoptotic strategy
to reverse established pulmonary vascular remodeling [12]. Accordingly, imatinib mesylate, a receptor
tyrosine kinase inhibitor (TKI) that has been approved for several oncology conditions, has already been
investigated for the treatment of PAH [13]. However, imatinib was poorly tolerated in some patients
and although it improved cardiac output, it afforded only modest improvements in pulmonary artery
pressure [14]. Conversely, dasatinib, another TKI used as an alternative to imatinib in the treatment of
chronic myelogenous leukemia, has even been shown to induce PAH [15]. Consequently, it is important
to identify the nature of IPAH-PASMC: cancerous or non-cancerous, to avoid wrong therapeutic
strategy development and potential severe side effects of anti-cancer drugs in frail PAH patients.

The defining features of a cancer cell is self-sufficient growth, replicative immortality,
and “unchecked” tissue invasion and its hallmark phenotype includes DNA damage, genomic
instability, apoptosis blocking signals, and sustained angiogenesis [16].

In this study, we investigated the tumor-like phenotype of PASMCs from patients with end-stage
IPAH with a major focus on self-sufficient proliferation, apoptosis resistance, replicative potential,
and DNA damage/genomic instability.
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2. Results

2.1. Pulmonary Artery Smooth Muscle Cells (PASMCs) from Idiopathic Pulmonary Arterial Hypertension
(IPAH) Proliferate Faster than Cells from Controls

The proliferation status of PASMCs was first measured in situ by proliferating cell nuclear antigen
(PCNA)-immunodetection in lung tissues from control and IPAH patients (Figure 1A). As shown,
the number of PASMC nuclei positive for PCNA was higher in the distal pulmonary arteries of patients
with IPAH than in controls (p < 0.01). Furthermore, the increased growth of IPAH-PASMCs was
observed in vitro (Figure 1B). Cultured IPAH-PASMCs grew faster than control (C)-PASMCs in the
presence of fetal calf serum (FCS) (p < 0.01). However, no proliferation was observed in the absence of
the exogenous growth factor. These results demonstrate that although PASMCs from IPAH patients
proliferate faster than those from controls, they do not display self-sufficient proliferation, as do bona
fide cancer cells (Figure S1).

2.2. IPAH-PASMCs and C-PASMCs Respond to Contact Inhibition

Once the PASMCs were seeded, their proliferative capacity in response to FCS was analyzed.
For each sample, we estimated the cell number by counting and through crystal violet staining.
As shown in Figure 1C, the IPAH-PASMCs and C-PASMCs grew exponentially over the first several days.
Although the proliferation rate of IPAH-PASMCs was initially higher than that of controls, both growth
curves plateaued at similar stages, suggesting that cell contact growth inhibition mechanisms worked
equally efficiently in both groups.

2.3. IPAH-PASMCs Display Consistent Proliferation Potential and Telomere Length Stability, But Are
Not Immortal

To measure the proliferation potential of PASMCs, cells from IPAH patients and controls were
passaged in culture and the population doubling level (PDL) was determined. As shown in Figure 2A,
PASMCs from controls did not exceed 9–10 PDL, whereas PASMCs from IPAH patients reached 16–17
PDL. However, no further proliferation was recorded for these cells even after prolonged culture
(1–2 weeks), indicating that IPAH-PASMCs do not display indefinite proliferation capacity. Moreover,
the estimated telomere length in C- and IPAH-PASMCs after several passages revealed that telomere
length was consistently greater in IPAH cells than in controls; however, telomere length was found to
decline gradually as the PDL increased (Figure 2B). All this suggests an initially “adaptive” response
that then wanes.
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Figure 1. Proliferation of pulmonary vascular cells in idiopathic pulmonary artery hypertension (IPAH).
(A) In situ cell proliferation in pulmonary arteries from control and IPAH samples was estimated
by immunohistochemistry for proliferating cell nuclear antigen (PCNA). Positive cells were more
numerous in pulmonary arteries from patients with IPAH than those from controls. (B) In vitro
proliferation of pulmonary artery smooth muscle cells (PASMCs) cultured without or with 10% FCS for
48 h. (C) Cellular growth curves. IPAH-PASMCs grew faster during the exponential phase of growth,
but reached a similar density at confluence compared to controls (n = 6 in each group). * p < 0.05;
** p < 0.01.
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Figure 2. Growth capacity of PASMCs. (A) Population doubling level (PDL) was calculated at each 133 
passage by cell counting. In contrast to control cells, IPAH-PASMCs continued proliferating for many 134 
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Figure 2. Growth capacity of PASMCs. (A) Population doubling level (PDL) was calculated at each
passage by cell counting. In contrast to control cells, IPAH-PASMCs continued proliferating for many
more passages. * p < 0.01. (B) Changes in telomere length in control and IPAH-PASMCs with advancing
population doubling in vitro, as illustrated by Southern blotting (representative image) and qPCR
(bottom panel). * p < 0.01 between controls and IPAH.
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2.4. IPAH-PASMCs are More Resistant to Apoptosis

Initially, we checked the expression levels of key pro- and anti-apoptotic factors. As shown in
Figure 3A, the IPAH phenotype was associated with decreased Bax and increased Bcl2 protein levels
compared to those in cells from control subjects, while the protein levels of Bcl-xL, a member of the
Bcl-2 family, were unaltered.
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Figure 3. Apoptosis resistance in IPAH. (A) Expression levels of pro- and anti-apoptotic proteins
Bax, Bcl-2, and Bcl-xL in PASMCs from controls and from patients with IPAH (n = 6 in each group).
(B) The effect of H2O2 (1–10 µM) or cycloheximide (5–10 µM) on apoptosis, as determined by annexin V
staining. As shown, the two treatments induced apoptosis in control (C)-PASMCs, while IPAH-PASMCs
remained unresponsive. * p < 0.01 between controls and IPAH.

We next evaluated the apoptotic response to stress in PASMCs. Both hydrogen peroxide and
cycloheximide strongly induced apoptosis in C-PASMCs (Figure 3B). However, no changes in the
annexin V-positive cell count was observed in IPAH-PASMCs, indicating that they were more resistant
to apoptosis.

2.5. Mitochondrial Function and Biogenesis in IPAH-PASMCs

Citrate synthase expression/activity, the electron transport chain, and ATP synthesis are common
markers of mitochondrial function and play key roles in aerobic respiration. Previous studies [17,18]
have identified site-specific defects in the electron transport chain in patients with IPAH. This finding
was confirmed in the present study by measuring changes in citrate synthase (CS) protein levels,
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which were markedly reduced in IPAH-PASMCs compared to control cells (Figure 4A). Interestingly,
as shown in Figure 4B, the expression of mitochondrial electron transport chain components was
significantly reduced in IPAH cells compared to controls, supporting our hypothesis that mitochondrial
respiration levels decreased in IPAH-PASMCs. Therefore, we reasoned that IPAH-PASMCs might
display reduced energy production. To test this hypothesis, the ATP content in the two cell types was
quantified (Figure 4A). Under normoxia, the ATP content in IPAH-PASMCs cells was similar to that
in controls. However, in a hypoxic environment, ATP in control cells dropped by 30%. Strikingly,
IPAH-PASMCs exhibited similar levels of ATP content under both conditions. This suggests that
IPAH-PASMCs have a reduced dependence on cellular respiration for energy compared to control
cells; this dependence is related to a metabolic shift to aerobic glycolysis.
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Figure 4. Energetic metabolism shift from mitochondrial respiration to glycolysis in IPAH. (A) Citrate
synthase protein expression was lower in IPAH-PASMCs than in C-PASMCs. Measurement of ATP
content in C-PASMCs and IPAH-PASMCs maintained for 24 h in normoxia (21% O2) or hypoxia (2%
O2) (n = 5 in each group). (B): The levels of mitochondrial electron transport chain components were
measured. The levels of different proteins were normalized against citrate synthase. * p < 0.05 and
** p < 0.01 between controls and IPAH.

2.6. Genomic Stability in IPAH-PASMCs

Array comparative genomic hybridization (CGH) was performed on genomic DNA from cultured
PASMCs (Figure 5). Multiple random breakpoints were detected in both groups, but the average
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number did not differ between groups (27 ± 7 vs. 25 ± 7 breakpoints in controls and IPAH, respectively).
Moreover, multiple regions not showing recurrent gains, losses, and loss of heterozygosity (LOH)
were identified, but the event levels did not differ between the two groups; we did not identify any
major aberrations in regions encoding key genes related to IPAH susceptibility or oncogene tumor
suppressor genes. Genomic DNA alterations were found at similar levels in IPAH and controls and
seemed to be arbitrary phenomena rather than disease-associated. We can therefore conclude that
genomic instability is not a hallmark of IPAH-PASMCs.
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Figure 5. Genomic stability in IPAH. (Upper panel) Representative comparative genomic hybridization
(CGH) array showing the gain, loss, and location of DNA regions on each chromosome. (Lower panel)
The number of break-points in ten controls (C-PASMCs) and ten patients with IPAH (IPAH-PASMCs)
as well as the gain, loss, and loss of heterozygosity (LOH) in all genomic DNA regions; this was done
by focusing on regions encoding genes identified to be involved in the development of IPAH.
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2.7. DNA Damage Markers in IPAH-PASMCs

Here, we investigated the expression of key proteins related to DNA damage repair.
The measurements were performed under basic conditions and in response to genotoxic stresses induced
by cisplatin. The proteins analyzed included γH2AX, p53, and its target GADD45. As illustrated in
Figure 6A, under basic conditions, the signal intensity of all proteins studied was low but different
between control and IPAH-PASMCs. Moreover, cisplatin treatment induced the accumulation of
phosphorylated γH2AX, p53, and growth arrest and DNA damage-inducible (GADD)45; this increase
in phosphorylation was more marked in controls than in IPAH-PASMCs (Figure 6B).
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 201 Figure 6. DNA damage and repair in IPAH. (A) Representative fluorescence microscopy images of
phosphorylated γH2AX, p53, and GADD45—factors required for cell cycle arrest. Stimulation with
cisplatin caused a sharp increase in γH2AX phosphorylation, which was higher in controls than in
IPAH samples. Phospho-p53 and - growth arrest and DNA damage-inducible (GADD)45 staining
patterns also showed similar profiles. (B) The ratio of positive cells/total cells in each condition was
quantified in PASMCs (n = 6 in each group). 100×magnification. * p < 0.05, ** p < 0.01 between vehicle
and cisplatin. § p < 0.01 between control- and IPAH-PASMCs under the same conditions.
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3. Discussion

The aim of this work was to characterize the phenotype of IPAH-PASMCs from end-stage IPAH
patients requiring lung transplantation, and in particular to compare their phenotypes with those
hallmarks of tumor cells phenotypes. Our results indicate that although the phenotype of IPAH-PASMCs
was clearly different from that of healthy cells these differences did not reach the generally accepted
thresholds required to categorize these cells as neoplastic. More particularly, our findings revealed a
clear propensity for IPAH-PASMCs to be hyper-proliferative: firstly, the remodeling of pulmonary
arteries was intimately associated with the increased growth of PASMCs; secondly, this phenomenon
was also maintained in isolated and cultured cells in vitro; and thirdly, IPAH-PASMCs showed faster
growth than control cells in response to FCS. However, critically we did not observe any proliferation
in the absence of exogenous stimulation. Taken together, these data suggest that IPAH-PASMCs did
not display self-sufficiency in growth signals, a defining characteristic of tumor cells. Nevertheless,
the expression profile of IPAH-PASMCs was abnormal, and although BMPR2 mutation and surviving
overexpression may result in increased growth and apoptosis resistance in these cells, this was shown to
be insufficient to induce proliferation independent of environment. IPAH-PASMCs proliferated faster
and for longer periods than C-PASMCs, but this phenomenon was clearly limited in a temporal and
spatial manner. Indeed, once cells reached confluency, their growth slowed dramatically. The observed
growth rate of IPAH-PASMCs was consistent with the features of apoptosis resistance and indeed the
aberrant protein levels of Bax and Bcl2 may have contributed to the promotion of apoptosis resistance.

According to some studies, the similarities between IPAH and cancer [12] are based on observed
abnormalities in aerobic glycolysis in both conditions, known as the Warburg effect [19]. The glycolytic
shift may underlie the resistance to apoptosis and increased vascular cell proliferation [20]. It may also
represent an adaptive response to a locally hypoxic environment. Our results confirmed these findings
in that IPAH-PASMCs showed a decrease in citrate synthase expression and electron transport chain
content in contrast to control PASMCs and ATP synthesis in IPAH-PASMCs was relatively unaffected
by exposure to hypoxia. Although our results support a metabolic shift to aerobic glycolysis with an
overexpression of glucose transporter Glut1 [21] (Figure S2), we would emphasize that the Warburg
effect is not exclusive to a cancer cell phenotype as it has also been observed in other “stressed tissue
micro-environments” represented by chronic diseases that include tuberculosis, idiopathic pulmonary
fibrosis [22], atherosclerosis [23], and Alzheimer’s disease [24].

The replicative capacity of the cells, as estimated by our doubling-population curve, showed that
even though the IPAH-PASMC populations were maintained over time compared to control cells,
this abnormality remained limited and did not extend beyond twenty passages; thereby precluding
IPAH-PASMC immortalization. The relationship between telomere shortening and cell longevity has
been clearly established and was another focus of our phenotypic characterization of “end-stage”
IPAH-PASMCs [25]. In tumor cells, telomere loss can be prevented by upregulating telomerase
expression, which elongates short telomeres and allows for continuous growth [26]. In our work,
despite the observation that telomere length was greater in IPAH cells than in controls, telomere
shortening with advancing culture passages was observed in both groups. This difference could not
be attributed to the ages of the patients [27], suggesting that the telomere stability seen in our IPAH
patients was not confounded by younger patient age.

The DNA double-strand break (DSB) is a serious lesion that can initiate genomic instability,
ultimately leading to cancer [28]. Previous studies have associated the growth of pulmonary vascular
cells with genomic instability. These alterations have been widely studied and validated in the
endothelial cells that form plexiform lesions in IPAH [11], but this question has remained unsolved
in smooth muscle cells. Array-based CGH is a powerful tool for the detection of chromosomal
abnormalities in various diseases [29,30]. Array CGH performed on genomic DNA from control- and
IPAH-PASMCs demonstrated a similar number of chromosomal break-points, with no significant loss
or gain in any specific region. These results show that the genomes of IPAH-PASMCs are remarkably
stable. Therefore, the abnormal phenotype of IPAH-PASMC is not associated with genomic aberrations
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and therefore unlikely to be causally linked to this pathology. Furthermore, telomere length was
found to be increased in IPAH-PASMCs and it is known that functional telomeres are a major factor in
genome stability [31]. Hence, although Yeager et al. [11] have previously described genomic instability
in endothelial cells from plexiform lesions, our results did not support an extension of these alterations
to PASMCS. Additionally, we note that Aldred et al. [32] have previously identified genomic instability
in vascular cells, as well as in bronchial and circulating cells, from various conditions suggesting that
genomic alterations are not a specific feature of any one disease process.

Finally, we cannot assess genomic stability without also investigating DNA damage and repair
processes [33]. DSBs are the most severe deleterious DNA lesions, and display severe consequences on
genomic stability and cell viability. γH2AX phosphorylation is considered a quantitative marker of
DSBs [34]. As illustrated in our study, the accumulation of γH2AX in response to cisplatin stimulation
was more marked in controls than in IPAH-PASMCs. Furthermore, a weak signal was observed in cells
maintained without genotoxic stresses. Interestingly, the signal was more pronounced in controls than
in IPAH-PASMCs upon exposure to DNA damage inducers such as ROS and inflammatory signals.
Cells respond to DNA damage by activating the DNA damage response (DDR) pathway, which is
orchestrated by p53 [35]. Similar to γH2AX, the nuclear accumulation of phosphorylated p53 and
its target GADD45 [36] was more marked in controls than in IPAH-PASMCs after genotoxic stress.
This suggests that the abnormal micro-environment had induced a “protective” adaptive response in the
IPAH-PASMCs that was maintained until end-stage disease. DSB signaling and γH2AX accumulation
were also associated with apoptosis, replicative senescence, or cell cycle arrest. These data further
confirm that IPAH-PASMCs are resistant to apoptosis. Although DDR is a complex network comprised
of many DDR factors and cell cycle regulators, the DDR was found to preferentially converge on p53,
leading to cycle arrest and apoptosis, both of which require GADD45 activity. If we consider γH2AX
as a faithful marker of DNA damage, it follows that IPAH-PASMCs are more resistant to DNA damage
related to both endogenous (inflammatory factors, ROS, etc.) and exogenous stresses (cisplatin). It is
difficult to identify the key element responsible for this phenotype, but we can hypothesize that this
phenotype is a consequence of major adaptations by the cells to a stressful environment, including
telomere length maintenance, relative genomic stability, and probable changes in epigenetic status.

Overall, our current work questions many studies that show almost overlapping molecular and
cellular mechanisms between cancer and PAH vascular cells [12]. Those studies support the targeting
of signaling pathways involved in cancer biology for controlling/regressing enhanced proliferation,
survival, and apoptosis resistance of lung vascular cells in PAH. Accordingly, many anti-cancer drugs
have been effective in attenuating/reversing experimental pulmonary hypertension in rat or mouse [12].
One of them, imatinib, has been presented as an anti-remodeling agent in this disease, and showed
promise as a potential treatment for pulmonary hypertension in preclinical models [37] but there is no
evidence of such effects in humans [13]. The reversal of pulmonary vascular remodeling should lead
to time-dependent reductions in pulmonary pressures, yet neither long-term randomized controlled
trials nor their respective extension phases have reported this phenomenon in a convincing way [14].
In addition, the clinical effects on exercise capacity (six-minute walk test distance) were conferred
within the first weeks of therapy, and this improvement shortly thereafter reached a plateau when no
further improvements are observed [13], which indicates either that the proposed anti-remodeling
effects of imatinib in PAH were an oversimplification of a much more complex process or that targeting
proliferation in PAH results in a rather limited treatment effect. Accordingly, we identified no evidence
of self-sufficient proliferation in IPAH-PASMC, despite a previous report stating that these cells do
proliferate in serum-free media [38]. In this study, IPAH-PASMC had yet a glycolytically active
proliferative cell phenotype with elevated ATP generation in both serum-replete and serum-deplete
conditions, that we could not detect in our culture cell conditions. However, primary cancer cells also
frequently “stop” proliferating after several passages as they undergo senescence. Yet, when left in
culture, some of these cells will restart proliferation after several weeks, which is when they usually
have become immortal. In our study, we stopped culturing PASMC when cells became senescent.
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The resistance of IPAH-PASMC to DNA damage that we observed in our study also challenges the
popular idea that DNA damage signaling pathway is important for PAH development [10]. However,
this limitation should be nuanced by the fact that crucial pathophysiological differences exist between
endothelial and smooth muscle cells. Indeed, while it seems accepted that pulmonary microvascular
endothelial cells and bone morphogenetic protein receptor 2 (BMPR2)-deficient ECs derived from
patients with IPAH are more vulnerable to DNA damage [39,40], it has been demonstrated that this
susceptibility is not observed with identical genotoxic stresses in PASMCs [40]. This is supported
by the work of Aldred and coworkers, who showed that somatic chromosomal abnormalities were
predominantly found in PAH-ECs and not in PAH-PASMCs [32].

4. Material and Methods

4.1. Patients

This study was approved by the local institutional review board and by the local ethics committee
(Comité de Protection des Personnes, Ile-de-France VII, Le Kremlin-Bicêtre, France, N◦ CO-08-003,
ID RCB 2008-A00485-50, approved on June 18th 2008). Written informed consent was obtained from
all patients prior to experimentation. For in vitro studies, we used lung specimens obtained during
lung transplantations in patients with IPAH, or during lobectomy or pneumonectomy procedures for
patients with localized lung cancer as controls. The average age (mean ± SD) was 38 ± 10 years in
patients with IPAH and 52 ± 12 years in the controls. The mean pulmonary artery pressure (PAP)
in patients with IPAH was 64 ± 17 mmHg. Preoperative echocardiography was performed on the
controls to rule out pulmonary hypertension, and lung specimens from the controls were collected at a
distance from tumor foci.

4.2. In Situ Evaluation of PASMC Proliferation

To assess in situ vascular cell proliferation in patients with IPAH, proliferating cell nuclear antigen
(PCNA) staining was performed. Tissue sections were deparaffinized in toluene, treated with a graded
series of ethanol washes, and rehydrated in PBS (Sigma Aldrich, St. Louis, MO, USA). Slides were then
incubated for 30 min in a protein blocking solution (10% goat serum in PBS) and incubated for 1 h with
an anti-PCNA mouse monoclonal antibody (M0879, clone PC-10, 1:200; Dako, Santa Clara, CA, USA) in
the presence of streptavidin/biotin endogenous blocking reagents (SP-2002; Vector, Burlingame, USA).
The slides were then incubated with a mouse biotinylated secondary antibody for 30 min, followed
by amplification with the Vectastain ABC-AP Kit (AK-5002; Vector) for 30 min. The slides were then
processed using the Vector Red Alkaline Phosphatase Substrate Kit (SK-5100; Vector).

4.3. Measurement of In Vitro Cell Growth

Human PASMCs were cultured from the explants of pulmonary arteries derived from patients
who received transplants for IPAH and from controls. PASMCs were cultured in 10% FCS/DMEM
as previously described and used between passage 4 to 6 unless otherwise specified (Figure 2) [41].
Immunofluorescence microscopy revealed stable expression of the smooth muscle cell marker SM22 by
cultured control and IPAH PASMCs from early (P3) to late (P9) passages (Figure S3). Cells were seeded
in 6-well plates in 10% FCS/DMEM at a density of 5 × 104 cells/well and allowed to adhere for 24 h.
The medium was subsequently removed, and the cells were subjected to growth arrest by incubation
with serum-free DMEM. After 48 h, the medium was replaced with fresh DMEM supplemented with
10% FCS and the cells were incubated for 2, 4, 6, 8, or 12 days. At the end of each incubation period,
the cells were dissociated using trypsin and counted with a Muse Cell Analyzer (Darmstadt, Germany)
according to the manufacturer’s instructions. The same cells were subjected to crystal violet staining to
examine their survival rate and density as previously described [42].
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4.4. Cell Apoptosis Measurement

Flow cytometry was used to detect the rate of apoptosis in PASMCs. Cells were treated with
H2O2 (1 and 10 µM) or cycloheximide (CHX, 5 and 10 µM) for 24 h, then dissociated using trypsin
and washed twice with PBS. Cells were prepared as a single-cell suspension at 1 × 106 cells/mL and
resuspended in 100 µL annexin V-FITC binding buffer, 5 µL propidium iodide [24], or both, in the dark
for 30 min at room temperature; thereafter, 400 µL binding buffer was added to wash the annexin/PI
stained cells. Untreated cells served as the negative control. Apoptotic cells were then analyzed using
a flow cytometer (Becton Dickinson, Franklin Lakes, NJ, USA). The rate of apoptosis was calculated as
the ratio of the number of annexin V-positive cells to the number of PI-negative cells.

4.5. Western Blotting

Control and IPAH cells were lysed in a buffer containing 20 mM Tris (pH 7.5), 150 mM NaCl, 1 mM
EDTA, 1 mM EGTA, 1% Triton X-100, 2.5 mM sodium pyrophosphate, 1 mMβ-glycerolphosphate, 1 mM
Na3VO4, 1 µg/mL leupeptin, and 1 mM phenylmethylsulfonyl fluoride. The protein concentration
was determined using a Bradford protein assay (Bio-Rad Laboratories, Hercules, CA, USA). Samples
containing 30µg protein were separated by 10% SDS-PAGE and transferred to nitrocellulose membranes.
Proteins related to cell apoptosis (Bax, Bcl2, and Bcl-xL) were detected using specific antibodies. Citrate
synthase and mitochondrial electron transport chain components were then detected using a MitoProfile
Total OXPHOS antibody cocktail (ab110413, Abcam, Cambridge, UK). Next, the corresponding
secondary antibodies were added at a dilution of 1:10000 (Calbiochem, San Diego, CA, USA).
Immunoreactive bands were visualized using enhanced chemiluminescence (ECL; GE Healthcare,
Little Chalfont, UK) on a Bio-Rad Fluoro-S-Max Chemidoc system. A polyclonal antibody against
β-actin (1:3000 dilution; Sigma Aldrich, St. Louis, MO, USA) served as an internal loading control.
Densitometric quantification of the immunoblot bands was performed using Bio-Rad Quantity
One software.

4.6. In Vitro Lifespan Measured Based on Population Doubling Level

In culture, an untransformed cell line has a finite lifespan that can be expressed in terms of the
population doubling level (PDL). This measurement describes the total number of times the cells
in the population have doubled in vitro since primary isolation. At each sub-cultivation, confluent
PASMCs were trypsinized, counted, and reseeded at a density of 1 × 105 cells per dish. The PDL at
each sub-cultivation was calculated based on the cell count.

4.7. Telomere Length Measurement

We measured the changes in telomere length as the cells divided. At each passage, PASMCs
were harvested and used for genomic DNA extraction with the QIAamp DNA kit (Qiagen, Hilden,
Germany). DNA integrity was evaluated by SYBER Green I staining after electrophoresis on a 1%
agarose gel. DNA was digested with HinfI (10 U) and RsaI (10 U) (Roche, Basel, Switzerland) and
restriction fragments were analyzed by Southern blotting as described previously [43]. For telomere
length measurement, qPCR was performed as previously described by Cawthon [44]; the ratio of
telomere repeat copy number to single-gene copy number (T/S) was measured by comparison with the
36B4 gene.

4.8. Comparative Genomic Hybridization Analysis

The genomic DNA of PASMCs from control (C-PASMCs) and IPAH (IPAH-PASMCs) patients
(n = 10 in each group) was extracted. Following the denaturation of probe DNA, hybridization
was carried out using Affymetrix cytogenetic microarrays (Affymetrix Inc., Santa Clara, CA, USA)
according to the manufacturer’s instructions. This technique is based on the competitive hybridization
of control and patient DNA samples to an immobilized target sequence on a glass slide. Recently,
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array comparative genome hybridization (CGH) has proven to be a powerful tool for the detection of
submicroscopic chromosome abnormalities in various diseases. The analysis allows for the detection
of breakpoints and for the assignment of a status to each chromosomal region giving the gain, loss,
and loss of heterozygosity (LOH).

4.9. ATP Content Measurement in C- and IPAH-PASMCs

ATP in cells was measured under normoxic (21% O2) or hypoxic (2% O2) conditions using a
luciferase-based luminescence assay kit (PerkinElmer, Waltham, MA, USA). Briefly, cells were plated
in 24-well plates at 10,000 cells/well for attachment overnight. Then, cells were exposed to normoxia or
hypoxia for 4 h. Thereafter, an equal volume of the single-one-step reagent provided by the kit was
added to each well and incubated for 15 min with shaking at room temperature. Cellular ATP content
was measured using a luminescent plate reader. An additional plate with the same setup was used for
cell counting by hemocytometry to normalize the ATP levels to the cell number.

4.10. DNA Damage Response Analysis

PASMCs from controls and IPAH patents were seeded on glass slides, grown for at least 48 h,
and then treated with cisplatin (10 µM) or vehicle for 2 h. Cells were permeabilized with buffer
containing 0.5% Triton-X, 20 mM HEPES, 50 mM NaCl, 3 mM KCl, followed by fixation with
2% paraformaldehyde at room temperature for 20 min and 100% methanol at −20 ◦C for 10 min.
Cells were exposed to anti-phospho-γH2AX (mouse monoclonal antibody; Abcam, Cambridge, UK),
anti-phospho-p53 (rabbit polyclonal antibody) and anti-growth arrest and DNA damage-inducible 45
(GADD45; rabbit polyclonal antibody; Cell Signaling Technology, Danvers, MA, USA) at 1:200 dilution
in 2% BSA and 0.1% Triton X-100, followed by incubation with fluorescent secondary antibodies (Alexa
Fluor-488 goat anti-mouse and Alexa Fluor-568 goat anti-rabbit; Invitrogen, Carlsbad, CA, USA) at
1:1000 dilution and counterstaining with DAPI. The slides were analyzed with an epifluorescence
microscope and NiS element software (Nikon 80i, Tokyo, Japan) and the number of positive cells per
field was counted.

4.11. Statistical Analyses

All data are reported as mean ± SEM. To assess the differences in cell proliferation between
PASMCs from patients and control subjects, analysis of variance (one-way ANOVA) was used for
comparison between groups. When ANOVA indicated significance and an interaction, a nonparametric
Mann–Whitney test was used to compare patients and control subjects. Tukey’s post hoc test was
performed to evaluate differences in ATP synthesis under normoxia and hypoxia, as well as the
response to cisplatin vs. vehicle in C-PASMCs and IPAH-PASMCs. Matched ANOVA or paired t-tests
were used when values are paired. Values of p < 0.05 were considered to indicate statistically significant
differences between groups.

5. Conclusions

Both experimental and clinical data have led many towards a seductive comparison between IPAH
and cancer. Our findings clearly indicate the although IPAH-PASMCs are hyper-proliferative they do
not fulfill the defining phenotypic features of a cancer cell and indeed, many of the phenotypic features
that we have described in the end-stage disease setting are more likely to represent ongoing adaptive
changes to an abnormal micro-environment rather than maladaptive neoplastic change. Accordingly,
our study does not support the direct translation of cancer biology to PAH pathophysiology.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/14/3575/
s1. Figure S1: Cancer cells display self-sufficient proliferation. Figure S2: Overexpression of glucose transporter
Glut1 in IPAH-PASMC. Figure S3: Immunofluorescence microscopy revealed stable expression of the smooth
muscle cell marker SM22 by cultured control and IPAH PASMCs from early (P3) to late (P8) passages.
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PASMC pulmonary artery smooth muscle cell
PCNA proliferating cell nuclear antigen
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Fetal Calf Serum

References

1. Montani, D.; Günther, S.; Dorfmüller, P.; Perros, F.; Girerd, B.; Garcia, G.; Jaïs, X.; Savale, L.; Artaud-Macari, E.;
Price, L.C.; et al. Pulmonary arterial hypertension. Orphanet J. Rare Dis. 2013, 8, 97. [CrossRef] [PubMed]

2. Voelkel, N.F.; Tuder, R.M. Cellular and molecular biology of vascular smooth muscle cells in pulmonary
hypertension. Pulm. Pharmacol. Ther. 1997, 10, 231–241. [CrossRef] [PubMed]

3. Stenmark, K.R.; Meyrick, B.; Galie, N.; Mooi, W.J.; McMurtry, I.F. Animal models of pulmonary arterial
hypertension: The hope for etiological discovery and pharmacological cure. Am. J. Physiol. Lung Cell.
Mol. Physiol. 2009, 297, L1013–L1032. [CrossRef] [PubMed]

4. Hassoun, P.M.; Mouthon, L.; Barberà, J.A.; Eddahibi, S.; Flores, S.C.; Grimminger, F.; Jones, P.L.; Maitland, M.L.;
Michelakis, E.D.; Morrell, N.W.; et al. Inflammation, growth factors, and pulmonary vascular remodeling.
J. Am. Coll. Cardiol. 2009, 54, S10–S19. [CrossRef]

5. Yuan, J.X.-J.; Rubin, L.J. Pathogenesis of pulmonary arterial hypertension: The need for multiple hits.
Circulation 2005, 111, 534–538. [CrossRef] [PubMed]

6. Eddahibi, S.; Guignabert, C.; Barlier-Mur, A.-M.; Dewachter, L.; Fadel, E.; Dartevelle, P.; Humbert, M.;
Simonneau, G.; Hanoun, N.; Saurini, F.; et al. Cross talk between endothelial and smooth muscle cells in
pulmonary hypertension: Critical role for serotonin-induced smooth muscle hyperplasia. Circulation 2006,
113, 1857–1864. [CrossRef] [PubMed]

7. Sakao, S.; Tatsumi, K. Vascular remodeling in pulmonary arterial hypertension: Multiple cancer-like pathways
and possible treatment modalities. Int. J. Cardiol. 2011, 147, 4–12. [CrossRef]

8. Rai, P.R.; Cool, C.D.; King, J.A.C.; Stevens, T.; Burns, N.; Winn, R.A.; Kasper, M.; Voelkel, N.F. The Cancer
Paradigm of Severe Pulmonary Arterial Hypertension. Am. J. Respir. Crit. Care Med. 2008, 178, 558–564.
[CrossRef]

9. Voelkel, N.F.; Cool, C.; Lee, S.D.; Wright, L.; Geraci, M.W.; Tuder, R.M. Primary pulmonary hypertension
between inflammation and cancer. Chest 1998, 114, 225S–230S. [CrossRef]

www.editage.com
http://dx.doi.org/10.1186/1750-1172-8-97
http://www.ncbi.nlm.nih.gov/pubmed/23829793
http://dx.doi.org/10.1006/pupt.1998.0100
http://www.ncbi.nlm.nih.gov/pubmed/9778486
http://dx.doi.org/10.1152/ajplung.00217.2009
http://www.ncbi.nlm.nih.gov/pubmed/19748998
http://dx.doi.org/10.1016/j.jacc.2009.04.006
http://dx.doi.org/10.1161/01.CIR.0000156326.48823.55
http://www.ncbi.nlm.nih.gov/pubmed/15699271
http://dx.doi.org/10.1161/CIRCULATIONAHA.105.591321
http://www.ncbi.nlm.nih.gov/pubmed/16606791
http://dx.doi.org/10.1016/j.ijcard.2010.07.003
http://dx.doi.org/10.1164/rccm.200709-1369PP
http://dx.doi.org/10.1378/chest.114.3_Supplement.225S


Int. J. Mol. Sci. 2019, 20, 3575 16 of 17

10. Meloche, J.; Pflieger, A.; Vaillancourt, M.; Paulin, R.; Potus, F.; Zervopoulos, S.; Graydon, C.; Courboulin, A.;
Breuils-Bonnet, S.; Tremblay, E.; et al. Role for DNA damage signaling in pulmonary arterial hypertension.
Circulation 2014, 129, 786–797. [CrossRef]

11. Yeager Michael, E.; Halley George, R.; Golpon Heiko, A.; Voelkel Norbert, F.; Tuder Rubin, M. Microsatellite
Instability of Endothelial Cell Growth and Apoptosis Genes Within Plexiform Lesions in Primary Pulmonary
Hypertension. Circ. Res. 2001, 88, e2–e11.

12. Pullamsetti, S.S.; Savai, R.; Seeger, W.; Goncharova, E.A. Translational Advances in the Field of Pulmonary
Hypertension. From Cancer Biology to New Pulmonary Arterial Hypertension Therapeutics. Targeting
Cell Growth and Proliferation Signaling Hubs. Am. J. Respir. Crit. Care Med. 2017, 195, 425–437. [CrossRef]
[PubMed]

13. Hoeper, M.M.; Barst, R.J.; Bourge, R.C.; Feldman, J.; Frost, A.E.; Galié, N.; Gómez-Sánchez, M.A.;
Grimminger, F.; Grünig, E.; Hassoun, P.M.; et al. Imatinib mesylate as add-on therapy for pulmonary arterial
hypertension: Results of the randomized IMPRES study. Circulation 2013, 127, 1128–1138. [CrossRef]

14. Humbert, M. Impression, sunset. Circulation 2013, 127, 1098–1100. [CrossRef] [PubMed]
15. Montani, D.; Bergot, E.; Günther, S.; Savale, L.; Bergeron, A.; Bourdin, A.; Bouvaist, H.; Canuet, M.; Pison, C.;

Macro, M.; et al. Pulmonary arterial hypertension in patients treated by dasatinib. Circulation 2012, 125,
2128–2137. [CrossRef]

16. Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 100, 57–70. [CrossRef]
17. Sutendra, G.; Michelakis, E.D. The metabolic basis of pulmonary arterial hypertension. Cell Metab. 2014, 19,

558–573. [CrossRef]
18. Iqbal, M.; Cawthon, D.; Wideman, R.F.; Bottje, W.G. Lung mitochondrial dysfunction in pulmonary

hypertension syndrome. I. Site-specific defects in the electron transport chain. Poult. Sci. 2001, 80, 485–495.
[CrossRef] [PubMed]

19. Zhang, S.; Yang, C.; Yang, Z.; Zhang, D.; Ma, X.; Mills, G.; Liu, Z. Homeostasis of redox status derived from
glucose metabolic pathway could be the key to understanding the Warburg effect. Am. J. Cancer Res. 2015, 5,
928–944. [PubMed]

20. Mason, E.F.; Rathmell, J.C. Cell metabolism: An essential link between cell growth and apoptosis. Biochim.
Biophys. Acta 2011, 1813, 645–654. [CrossRef] [PubMed]

21. Zurlo, G.; Piquereau, J.; Moulin, M.; Pires Da Silva, J.; Gressette, M.; Ranchoux, B.; Garnier, A.;
Ventura-Clapier, R.; Fadel, E.; Humbert, M.; et al. Sirtuin 1 regulates pulmonary artery smooth muscle
cell proliferation: Role in pulmonary arterial hypertension. J. Hypertens. 2018, 36, 1164–1177. [CrossRef]
[PubMed]

22. Xie, N.; Tan, Z.; Banerjee, S.; Cui, H.; Ge, J.; Liu, R.-M.; Bernard, K.; Thannickal, V.J.; Liu, G. Glycolytic
Reprogramming in Myofibroblast Differentiation and Lung Fibrosis. Am. J. Respir. Crit. Care Med. 2015, 192,
1462–1474. [CrossRef] [PubMed]

23. Werle, M.; Kreuzer, J.; Höfele, J.; Elsässer, A.; Ackermann, C.; Katus, H.A.; Vogt, A.M. Metabolic control
analysis of the Warburg-effect in proliferating vascular smooth muscle cells. J. Biomed. Sci. 2005, 12, 827–834.
[CrossRef] [PubMed]

24. Newington, J.T.; Pitts, A.; Chien, A.; Arseneault, R.; Schubert, D.; Cumming, R.C. Amyloid Beta Resistance in
Nerve Cell Lines Is Mediated by the Warburg Effect. PLoS ONE 2011, 6, e19191. [CrossRef] [PubMed]

25. Allsopp, R.C.; Vaziri, H.; Patterson, C.; Goldstein, S.; Younglai, E.V.; Futcher, A.B.; Greider, C.W.; Harley, C.B.
Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl. Acad. Sci. USA 1992, 89,
10114–10118. [CrossRef]

26. Shay, J.W. Role of Telomeres and Telomerase in Aging and Cancer. Cancer Discov. 2016, 6, 584–593. [CrossRef]
27. Izikki, M.; Hoang, E.; Draskovic, I.; Mercier, O.; Lecerf, F.; Lamrani, L.; Liu, W.-Y.; Guignabert, C.; Fadel, E.;

Dorfmuller, P.; et al. Telomere Maintenance Is a Critical Determinant in the Physiopathology of Pulmonary
Hypertension. J. Am. Coll. Cardiol. 2015, 66, 1942–1943. [CrossRef]

28. Helleday, T.; Lo, J.; van Gent, D.C.; Engelward, B.P. DNA double-strand break repair: From mechanistic
understanding to cancer treatment. DNA Repair 2007, 6, 923–935. [CrossRef]

29. Zhang, Z.-F.; Ruivenkamp, C.; Staaf, J.; Zhu, H.; Barbaro, M.; Petillo, D.; Khoo, S.K.; Borg, A.; Fan, Y.-S.;
Schoumans, J. Detection of submicroscopic constitutional chromosome aberrations in clinical diagnostics:
A validation of the practical performance of different array platforms. Eur. J. Hum. Genet. EJHG 2008, 16,
786–792. [CrossRef]

http://dx.doi.org/10.1161/CIRCULATIONAHA.113.006167
http://dx.doi.org/10.1164/rccm.201606-1226PP
http://www.ncbi.nlm.nih.gov/pubmed/27627135
http://dx.doi.org/10.1161/CIRCULATIONAHA.112.000765
http://dx.doi.org/10.1161/CIRCULATIONAHA.113.001460
http://www.ncbi.nlm.nih.gov/pubmed/23479665
http://dx.doi.org/10.1161/CIRCULATIONAHA.111.079921
http://dx.doi.org/10.1016/S0092-8674(00)81683-9
http://dx.doi.org/10.1016/j.cmet.2014.01.004
http://dx.doi.org/10.1093/ps/80.4.485
http://www.ncbi.nlm.nih.gov/pubmed/11297288
http://www.ncbi.nlm.nih.gov/pubmed/26045978
http://dx.doi.org/10.1016/j.bbamcr.2010.08.011
http://www.ncbi.nlm.nih.gov/pubmed/20816705
http://dx.doi.org/10.1097/HJH.0000000000001676
http://www.ncbi.nlm.nih.gov/pubmed/29369849
http://dx.doi.org/10.1164/rccm.201504-0780OC
http://www.ncbi.nlm.nih.gov/pubmed/26284610
http://dx.doi.org/10.1007/s11373-005-9010-5
http://www.ncbi.nlm.nih.gov/pubmed/16205843
http://dx.doi.org/10.1371/journal.pone.0019191
http://www.ncbi.nlm.nih.gov/pubmed/21541279
http://dx.doi.org/10.1073/pnas.89.21.10114
http://dx.doi.org/10.1158/2159-8290.CD-16-0062
http://dx.doi.org/10.1016/j.jacc.2015.08.869
http://dx.doi.org/10.1016/j.dnarep.2007.02.006
http://dx.doi.org/10.1038/ejhg.2008.14


Int. J. Mol. Sci. 2019, 20, 3575 17 of 17

30. Brenner, B.M.; Rosenberg, D. High-throughput SNP/CGH approaches for the analysis of genomic instability
in colorectal cancer. Mutat. Res. 2010, 693, 46–52. [CrossRef]

31. O’Sullivan, R.J.; Karlseder, J. Telomeres: Protecting chromosomes against genome instability. Nat. Rev. Mol.
Cell Biol. 2010, 11, 171–181. [CrossRef]

32. Aldred, M.A.; Comhair, S.A.; Varella-Garcia, M.; Asosingh, K.; Xu, W.; Noon, G.P.; Thistlethwaite, P.A.;
Tuder, R.M.; Erzurum, S.C.; Geraci, M.W.; et al. Somatic Chromosome Abnormalities in the Lungs of Patients
with Pulmonary Arterial Hypertension. Am. J. Respir. Crit. Care Med. 2010, 182, 1153–1160. [CrossRef]
[PubMed]

33. Tubbs, A.; Nussenzweig, A. Endogenous DNA Damage as a Source of Genomic Instability in Cancer. Cell
2017, 168, 644–656. [CrossRef]

34. Kuo, L.J.; Yang, L.-X. Gamma-H2AX—A novel biomarker for DNA double-strand breaks. Vivo Athens Greece
2008, 22, 305–309.

35. Williams, A.B.; Schumacher, B. p53 in the DNA-Damage-Repair Process. Cold Spring Harb. Perspect. Med.
2016, 6. [CrossRef] [PubMed]

36. Smith, M.L.; Chen, I.T.; Zhan, Q.; Bae, I.; Chen, C.Y.; Gilmer, T.M.; Kastan, M.B.; O’Connor, P.M.; Fornace, A.J.
Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science 1994, 266,
1376–1380. [CrossRef]

37. Schermuly, R.T.; Dony, E.; Ghofrani, H.A.; Pullamsetti, S.; Savai, R.; Roth, M.; Sydykov, A.; Lai, Y.J.;
Weissmann, N.; Seeger, W.; et al. Reversal of experimental pulmonary hypertension by PDGF inhibition.
J. Clin. Investig. 2005, 115, 2811–2821. [CrossRef]

38. Goncharov, D.A.; Kudryashova, T.V.; Ziai, H.; Ihida-Stansbury, K.; DeLisser, H.; Krymskaya, V.P.; Tuder, R.M.;
Kawut, S.M.; Goncharova, E.A. Mammalian target of rapamycin complex 2 (mTORC2) coordinates pulmonary
artery smooth muscle cell metabolism, proliferation, and survival in pulmonary arterial hypertension.
Circulation 2014, 129, 864–874. [CrossRef]

39. Federici, C.; Drake, K.M.; Rigelsky, C.M.; McNelly, L.N.; Meade, S.L.; Comhair, S.A.A.; Erzurum, S.C.;
Aldred, M.A. Increased Mutagen Sensitivity and DNA Damage in Pulmonary Arterial Hypertension. Am. J.
Respir. Crit. Care Med. 2015, 192, 219–228. [CrossRef]

40. Li, M.; Vattulainen, S.; Aho, J.; Orcholski, M.; Rojas, V.; Yuan, K.; Helenius, M.; Taimen, P.; Myllykangas, S.;
De Jesus Perez, V.; et al. Loss of bone morphogenetic protein receptor 2 is associated with abnormal DNA
repair in pulmonary arterial hypertension. Am. J. Respir. Cell Mol. Biol. 2014, 50, 1118–1128. [CrossRef]

41. Eddahibi, S.; Humbert, M.; Fadel, E.; Raffestin, B.; Darmon, M.; Capron, F.; Simonneau, G.; Dartevelle, P.;
Hamon, M.; Adnot, S. Serotonin transporter overexpression is responsible for pulmonary artery smooth
muscle hyperplasia in primary pulmonary hypertension. J. Clin. Investig. 2001, 108, 1141–1150. [CrossRef]
[PubMed]

42. Feoktistova, M.; Geserick, P.; Leverkus, M. Crystal Violet Assay for Determining Viability of Cultured Cells.
Cold Spring Harb. Protoc. 2016, 2016, pdb.prot087379. [CrossRef] [PubMed]

43. Kimura, M.; Stone, R.C.; Hunt, S.C.; Skurnick, J.; Lu, X.; Cao, X.; Harley, C.B.; Aviv, A. Measurement of
telomere length by the Southern blot analysis of terminal restriction fragment lengths. Nat. Protoc. 2010, 5,
1596–1607. [CrossRef] [PubMed]

44. Cawthon, R.M. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002, 30, e47. [CrossRef]
[PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.mrfmmm.2010.04.002
http://dx.doi.org/10.1038/nrm2848
http://dx.doi.org/10.1164/rccm.201003-0491OC
http://www.ncbi.nlm.nih.gov/pubmed/20581168
http://dx.doi.org/10.1016/j.cell.2017.01.002
http://dx.doi.org/10.1101/cshperspect.a026070
http://www.ncbi.nlm.nih.gov/pubmed/27048304
http://dx.doi.org/10.1126/science.7973727
http://dx.doi.org/10.1172/JCI24838
http://dx.doi.org/10.1161/CIRCULATIONAHA.113.004581
http://dx.doi.org/10.1164/rccm.201411-2128OC
http://dx.doi.org/10.1165/rcmb.2013-0349OC
http://dx.doi.org/10.1172/JCI200112805
http://www.ncbi.nlm.nih.gov/pubmed/11602621
http://dx.doi.org/10.1101/pdb.prot087379
http://www.ncbi.nlm.nih.gov/pubmed/27037077
http://dx.doi.org/10.1038/nprot.2010.124
http://www.ncbi.nlm.nih.gov/pubmed/21085125
http://dx.doi.org/10.1093/nar/30.10.e47
http://www.ncbi.nlm.nih.gov/pubmed/12000852
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Pulmonary Artery Smooth Muscle Cells (PASMCs) from Idiopathic Pulmonary Arterial Hypertension (IPAH) Proliferate Faster than Cells from Controls 
	IPAH-PASMCs and C-PASMCs Respond to Contact Inhibition 
	IPAH-PASMCs Display Consistent Proliferation Potential and Telomere Length Stability, But Are Not Immortal 
	IPAH-PASMCs are More Resistant to Apoptosis 
	Mitochondrial Function and Biogenesis in IPAH-PASMCs 
	Genomic Stability in IPAH-PASMCs 
	DNA Damage Markers in IPAH-PASMCs 

	Discussion 
	Material and Methods 
	Patients 
	In Situ Evaluation of PASMC Proliferation 
	Measurement of In Vitro Cell Growth 
	Cell Apoptosis Measurement 
	Western Blotting 
	In Vitro Lifespan Measured Based on Population Doubling Level 
	Telomere Length Measurement 
	Comparative Genomic Hybridization Analysis 
	ATP Content Measurement in C- and IPAH-PASMCs 
	DNA Damage Response Analysis 
	Statistical Analyses 

	Conclusions 
	References

