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Stability and Stationary Response of a Skew 
Jeffcott Rotor With Geometric Uncertainty

he aim of this work is to apply stochastic methods to investigate uncertain parameters of rotating machines with constant speed of 
otation subjected to a support motion. As the geometry of the skew disk is not well defined, randomness is introduced and affects the 
mplitude of the internal excitation in the time-variant equations of motion. This causes uncertainty in dynamical behavior, leading us 
o investigate its robustness. Stability un-der uncertainty is first studied by introducing a transformation of coordinates (feasible in this 
ase) to make the problem simpler. Then, at a point far from the unstable area, the random forced steady state response is computed 
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rom the original equations of motion. An analytical method provides the probability of instability, whereas Taguchi’s method is used to 
rovide statistical moments of the forced response. 
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Introduction
The dynamical behavior of rotating machines has been thor-

ughly investigated �1,2�. It is well known that their complex
ynamical behavior is mainly due to the rotating terms �gyro-
copic effect� appearing in the equations of motion. When these
achines are installed in a moving environment �2–4�, the dy-

amical behavior exhibits certain typical parametrical phenomena
instability, quasiperiodic responses, etc.�. Modeling a shaft-rotor
ystem whose support is subjected to an imposed motion can be
chieved by using numerical methods �finite elements� and semi-
nalytical methods �Rayleigh–Ritz� �3–5�. The equations of mo-
ion highlight nonclassical terms making resolution difficult: non-
ymmetrical matrices due to gyroscopic effects and parametric
xcitation �6� terms for a skew geometric shaft and /or for a ro-
ating motion of the support �3,4�.

Besides the problem of modeling dynamics, rotating machines
re known to be very sensitive systems. This sensitivity consider-
bly affects the vibratory behavior of slightly damped systems �7�.
or many mechanical systems, the origin of this sensitivity can be

raced to manufacturing dispersion. Designers try to avoid this
ariability by reducing all the tolerances of mounting and manu-
acturing processes. As a consequence, performances are guaran-
eed but production costs are still too high, making the product ill
dapted to mass production. The tolerancing process leads to un-
ertainty in system geometry and thus uncertainty in overall be-
avior.

The above situation raises the question: Does this uncertainty
arm performance? The problem of managing this uncertainty is
urrently investigated by using stochastic methods, Monte Carlo
MC� simulation, polynomial chaos, Taguchi’s method �7,8�, and
nalytical methods �9,10�. The efficiency of these techniques has
een proven for linear mechanical systems �11�, though little has
een done in this field regarding the dynamical behavior of para-
etrically excited systems including gyroscopic terms.
1
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The aim of this work is to apply stochastic methods to investi-
gate uncertain parameters of rotating machines with constant
speed of rotation subjected to a support motion. In this study, the
equations of motion of a supported rotor equipped with an asym-
metric disk are investigated. The support motion is a simple har-
monic translation in one direction. The amplitude of parametric
excitation, due to small changes in the system geometry, is con-
sidered as an uncertain parameter. As a consequence, the first
issue to be considered concerns the uncertain stability problem.
Stability is studied here by transforming the variables �from coor-
dinates expressed in the fixed frame to coordinates expressed in
the rotating frame�, changing the parametric equation into a time
invariant equation of motion. The computation of the natural fre-
quencies of this new set of equations provides information on
stability. It should be mentioned that this transformation of vari-
ables is always feasible even when the new set of equations of
motion is not easier to solve than the original one. In particular
when bearing stiffnesses are introduced in the fixed frame, they
may be changed into parametrical terms. The probability of insta-
bility at a given speed of rotation is computed since it is possible
to provide the probability density function �PDF� of the natural
frequency. The probability density function is derived from the
fundamental theorem on the function of one random variable.

In order to avoid numerical problems, we first ensure that all
forced response computations are performed far from possibly
unstable areas by computing the probability to be unstable. After
guaranteeing the stability of the free response, further statistical
results concerning the forced response near the primary and para-
metric resonances can be computed. Taguchi’s method is used to
provide the two first statistical moments of the forced responses
and very good agreement with the results obtained using the
Monte Carlo method is obtained.

2 Equations of Motion and Deterministic Behavior

2.1 Equations of Motion for Behavior in Bending. The ro-
tor investigated is shown in Fig. 1. The equations of motion are
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eveloped from the Rayleigh–Ritz method �1�, and the derivation
or bending deformations is completely described in Refs. �3–5�.
he main steps of this derivation are as follows:

�i� choice of three different frames �Rd, frame moving with
the disk; Rs, frame attached to the moving support; and R0,
frame fixed in space�

�ii� computation of the Lagrangian in the R0 fixed frame
�iii� choice of an acceptable displacement shape function �Ray-

leigh method�, and
�iv� use of Lagrange equations

Only the main assumptions used for this model are recalled
ere. The rotor is composed of a flexible shaft and a rigid disk.
symmetrical geometry was chosen for the disk, a configuration
ften used in vacuum pumps. The shaft is in pinned-pinned con-
guration and the support is totally rigid. An imposed translational
armonic displacement is applied to the support in direction xs,
ee Fig. 1. The speed of rotation � is assumed to be constant. An
nitial beam mode shape is considered here when applying the
ayleigh method. The general form of the equations of motion
xpressed in the Rs frame is

�M + g�t�Md + h�t�Mnd�ẍ + �Cgyro+damp + g�t�Cnd + h�t�Cd�ẋ + Kx

= f�t� �1�

here

g�t� = Ida cos�2 �t�

h�t� = Ida sin�2 �t� �2�

nd

Ida = �Idxx − Idzz�/2 �3�

quation �1� is a two degree of freedom �dof� matrix differential
quation of the second order. It is a linear time-variant equation
ith periodic coefficients and gyroscopic terms. The parametric

xcitation �Eq. �2�� is due to the asymmetry geometry of the disk
Ida defined by Eq. �3��. The x vector describes the displacement
f the middle point of the shaft in the Rs frame. The translational
isplacement of the base appears in the right hand side of Eq. �1�
s an acceleration term. The external force vector can also include
residual mass unbalance �see Eq. �5��.
The rotor system has the following characteristics:

�i� The material is steel for the shaft and the disk.
�ii� The shaft has a length equal to L=0.4 m with a circular

cross section.
�iii� The disk is located at L /3.
�iv� Classical viscous damping is considered and is equal to

c=2000 N s m−1.
�v� The mass unbalance is located on the disk and is equal to
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ig. 1 View of the rotating machine model and associated
rames
8.66�10 kg m.
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More detailed features are given in the Appendix. The imposed
displacement is a harmonic cosine function with frequency �e and
an amplitude of 0.1 cm in direction xs �Fig. 1�. Considering these
characteristics and according to the formula given in Refs. �4,5�,
Eq. �1� expressed in standard units has the following numerical
values:

M = �13.5 0

0 13.5
�, Md = �− 15.4 0

0 15.4
�

Mnd = � 0 15.4

15.4 0
�

Cgyro+damp = � 2000 − 2.4 �

2.4 � 2000
�

Cd = �30.8 � 0

0 − 30.8 �
�, Cnd = � 0 30.8 �

30.8 � 0
�

K = �1.9e7 0

0 1.9e7
�, x�t� = �x�t�

z�t� � �4�

The rotor is subjected to a translational motion of the base, so the
right hand side of Eq. �1� takes the following numerical values:

f�t� = �0.0144�e
2 cos��et� + 8.66 � 10−6�2 sin��t�

8.66 � 10−6�2 cos��t� � �5�

To obtain the order of magnitude of the internal excitation, the
numerical values of the disk inertia are the following:

Ida = 0.029 kg m2

Idm = 0.077 kg m2 �6�

where Idm describes the inertia of symmetry of the disk. The fol-
lowing is a description of the deterministic dynamical behavior of
the system employed and is given before introducing randomness
in Eqs. �4� and �5� through the Ida parameter.

2.2 Deterministic Stability Analysis. Before computing the
forced response, it is necessary to check the unstable areas accord-
ing to the speed of rotation � and the amplitude of parametric
excitation Ida. In our case the system of equations �4� could be
easily transformed into a time invariant. As shall be seen, this
transformation makes the resolution simpler, but this result cannot
always be guaranteed for all time-variant systems. The stability
analysis could have also been considered by using Floquet’s
theory. In this case, however the variables change from x�t� into
q�t�:

x�t� = � cos��t� sin��t�
− sin��t� cos��t� �q�t� �7�

This transformation leads to a new equation expressed in the ro-
tating frame �Rd�. It is as follows:

�Mmob�q̈ + �Cmob�q̇ + �Kmob�q = fmob�t� �8�

with the following numerical values:

Mmob = M + �− 15.4Ida 0

0 + 15.4Ida
�

Cmob = � 2000 24.6 �

− 24.6 � 2000
�

K = K + �
− 15.4Ida� − 11.1 � 2000
mob �
− 2000 15.4Ida� − 11.1 �

�
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fmob�t� = �cos��t� − sin��t�
sin��t� cos��t� �f�t� �9�

he stability is then conducted by studying the eigenvalues of Eq.
8� with numerical expression �9�, setting the right hand side as
eing equal to zero and neglecting the damping. The influence of
he damping on the unstable boundaries is quite well known for
arametrically excited systems. The damping does not change the
requencies where instabilities are found, but leads to an increase
n the parametric excitation amplitude threshold. Neglecting the
amping means that instabilities are more likely to occur. By tak-
ng the imaginary part of these eigenvalues, we obtain the two
atural frequencies of the rotor, �1b and �2b. According to Ref.
12�, when �1b is equal to zero the rotor is unstable, and the real
art of the eigenvalue becomes positive. Figure 2 illustrates the
wo natural frequencies of the system studied according to the
peed of rotation for Ida=0.029 kg m2. There is a narrow range
ithin which the rotor is unstable, particularly at high speeds.
Other particular values of parameter Ida have been chosen and

tudied. The stability boundaries are summarized in Table 1. In-
ide the �-ranges given in Table 1, the rotating machine is un-
table while it is stable outside them. Regarding the influence of
da on the unstable ranges, we can conclude that the sensitivity of
he rotor is very low.

2.3 Deterministic Forced Response. In our case, the compu-
ation of the forced response could have been conducted by using
q. �8� with the values given by Eq. �9�. This method is not the
ost general for all kinds of rotating machines. This is why we

refer studying the problem starting from its original set of equa-
ions �1�.

As there is no analytical solution for Eq. �1�, a numerical
cheme is used to provide stable forced responses. In this field, the
ain numerical method used is the Newmark scheme in the time

omain. Unfortunately this integration process is very time con-

Ω (rpm

ω

rad.s-1

Ω (rpm

ω

Ω (rpm

ω

rad.s-1

Fig. 2 Campbell diagram obtaine
=0.029 kg m2

able 1 Unstable speed of rotation ranges for particular val-
es of Ida

Ida
�kg m2�

� min
�rpm�

� max
�rpm�

0.0261 12,275 12,725
0.0290 12,250 12,755
0.0319 12,230 12,780
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suming when the system is subjected to a wide frequency band
excitation �� and �e could be considerably different� and does not
take advantage of the periodic nature of the time-variant coeffi-
cients. This leads us to adapt an original numerical scheme pro-
posed and described in Ref. �13� to our case. This original method
works in the spectral domain and requires less computational time
as it takes advantage of the periodic nature of the parametric
terms. The method was first devoted to parametric linear systems
with a time-variant periodic stiffness. The addition of gyroscopic
terms and other time-variant coefficients does not change the
method of implementing the spectral method �14�. The spectral
process is divided into the following three steps:

�i� decoupling the equations of motion �Eq. �1�� by expanding
it, using the modal time-average basis

�ii� taking the Fourier transform of the pseudomodal system
obtained in �i�, and finally

�iii� solving the equations by a fixed point algorithm

To prove the efficiency of this method, Fig. 3 shows an example
of the forced responses obtained with both Newmark and spectral
methods. The running parameters are �e=15.9 Hz and �
=2000 rpm �almost 33.2 Hz�. The main differences between both
forced responses are observed for the z displacement forced re-
sponse. According to Eqs. �4� and �5�, the spectra of each dof
could be composed by �e, �, 2 ���e, 2 ���, etc. The x
forced response is mainly composed of the �e component, ex-
plained by the fact that the base excitation is much greater than
the excitation due to the mass unbalance. The z forced response is
composed of �e, �, and 2 ���e. Finally, the comparison re-
veals good agreement between both methods with a computational
time divided by 100.

Other deterministic results could be easily obtained with differ-
ent running conditions. Figure 4 shows the spectrum of both dofs
for �=166.2 Hz and �e=15.8 Hz. The excitation amplitudes re-
main the same as those of the previous case except �as the speed
of rotation has increased� the mass unbalance excitation, which is
greater. The frequency content of the x forced response becomes
more complex. It is now possible to give more results for the
deterministic dynamical behavior of the device studied.

As Eq. �1� is a linear time-variant equation, there is no natural
frequency in the “classical” sense. Fortunately, we are still able to
derive a Campbell diagram derived from that plotted in Fig. 2: It
is simply necessary to add term �� to the natural frequencies

ω2bω2bω2b

in the rotating frame „Rd… for Ida
)

1b

)

1b

)

1b

d

obtained in Rd. The Campbell diagram derived is shown in Fig. 5.
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Let us now focus on the forced steady state response. Figure 6
isplays the rms resonant curve for the x displacement. The reso-
antly excited natural frequencies are �e	�1=�2b−� and �e
�2=�1b+�. As these frequencies are very close at low speeds

f rotation, only a single main peak is observed. For x dof, the
ase excitation dominates the mass unbalance excitation.

Figure 7 displays the rms forced response of the z displacement.
econdary resonant peaks appear at low speeds of rotation for
requencies, respectively, equal to �4=�2b+� and �3=�1b−�.
hey are due to parametric resonances. For this dof, the main

esonant response is due to an excitation of the forward mode by
he mass unbalance.

Fig. 3 Comparison between the spectra of x
scheme and the spectral method; �=33.2 Hz a

Fig. 4 Comparison between the spectra of x

scheme and the spectral method; �=166.2 Hz and
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3 Description of Stochastic Methods Used

3.1 Monte Carlo Simulation. Monte Carlo simulations are
commonly used to obtain reference predictions in order to test
other statistical methods. Monte Carlo simulation requires a large
number of samples, therefore significantly increasing processing
time since computations of forced responses must be performed
and stored for each sample. The statistical moments PDFs are
deduced at the end of the simulation. The accuracy and the num-
ber of samples required greatly depend on the random number
generator. In order to generate Gaussian variables, a Box and
Muller algorithm is used here to transform a uniform distribution

z forced responses provided by a Newmark
�e=15.8 Hz

z forced responses provided by a Newmark
and
nd
and

�e=15.8 Hz
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etween 0 and 1 into a Gaussian distribution with a chosen mean
alue and standard deviation. As the convergence rate of this pro-
ess is proportional to function 1 /
n, the number of samples cho-
en is at least equal to 10,000.

3.2 Taguchi’s Method. Taguchi’s method allows very simple
stimation of the statistical moments of a function of multiple
andom variables whose PDFs are known �15�. This method has
een improved by D’Errico and Zaino �16�, in order to take into
ccount nonlinear response effects, and a modified Taguchi
ethod has been used for heat processing problems �17�. The

heoretical expressions for the first two moments of a function
f�x� of k randomly independent variables tx= �x1 , . . . ,xk� are

E�f�x�� =
−�

+�

f�x�p1�x1� ¯ pk�xk�dx1 ¯ dxk �10�

Ω

rad.s-1

Ω

rad.s-1

Ω

rad.s-1

Ω

rad.s-1

Fig. 5 Campbell diagram

Ω (rpm)
Fig. 6 rms value of the x displaceme
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var�f�x�� =
−�

+�

�f�x� − E�f�x���2p1�x1� ¯ pk�xk�dx1 ¯ dxk

�11�

In D’Errico’s method, each PDF of a given random variable is
sampled at three or more points and a weighting coefficient is
assigned to each point depending on its PDF type. For example,
Fig. 8 gives the three point discretization of a random Gaussian
��i is the mean value, si is the standard deviation� with associated
weightings wi. The response function is evaluated for all point
combinations and is equivalent to a full factorial design of experi-
ments with M responses and point combinations. The modified
Taguchi process is based on numerical integration techniques such
as the Gauss–Hermite quadrature method for the function of mul-
tiple variables. The mean value and the variance of the function
are estimated by a linear combination of the responses obtained

m)

ω1

ω2

m)

ω1

ω2

ω1= ω2b- Ω

ω2= ω1b+ Ω

ω4= ω2b+ Ω

ω3= ω1b- Ω

m)

ω1

ω2

m)

ω1

ω2

ω1= ω2b- Ω

ω2= ω1b+ Ω

ω4= ω2b+ Ω

ω3= ω1b- Ω

tained in the fixed frame

ωe (rad/s)
(rp(rp(rp(rp
nt „m… response versus � and �e
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reviously with the full factorial design of experiments as follows:

E�f�x�� = �
i=1

M

Wifi �12�

var�f�x�� = �
i=1

M

Wi�f i − E�f�x���2 �13�

here Wi=�i=1
k wi. For each uncertain variable, at least three

amples are necessary to take into account the nonlinear behavior
f the response function. Accuracy increases rapidly with the
umber of samples considered. The main advantages of this
ethod are its easy numerical implementation and its computa-

ional efficiency. Furthermore, non-Gaussian PDFs can be easily
ntroduced by choosing convenient points and weightings. Re-
arding this, see, for example, Ref. �18�. Taguchi’s method is a
onintrusive technique compared with expansion techniques �Tay-
or, perturbation, etc.�. However, Taguchi’s method cannot provide
he PDF of the response function, which can be considered as a
isadvantage.

Uncertain Dynamical Behavior
This step entails the investigation of the uncertain dynamical

ehavior of the rotating machine described previously. The uncer-
ain random parameter is chosen as Ida. The random nature of Ida

Ω (rpm)

Fig. 7 rms value of the z displace

iµ 3sii +µ3sii −µ

W
ei

gh
ti

ng

4/6

1/6

ig. 8 Points and weightings for a three point-sampled Gauss-

an variable
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could be a topic of discussion on its own. Our aim is to prove the
efficiency of Taguchi’s method and also to investigate possible
differences between the deterministic and random behaviors of the
rotor. Ida is now considered as a Gaussian parameter with a mean
value equal to 0.029 kg m2 and a standard deviation equal to 10%
of the mean value.

4.1 Stability Under Uncertainty: Analytical Method. De-
signers need to obtain a reliable estimation of the probability P�

of instability for a given speed of rotation �. The unstable feature
of the motion is found when the real part of one of the eigenvalues
of Eq. �8� �numerical values given by Eq. �9�, right hand side set
to zero, and damping neglected� becomes strictly positive. As the
eigenvalues depend on Ida and �, they also have a random nature.
Consequently, P� requires the computation of the PDF of the
eigenvalue, which may have a positive real part. Let � be the real
part of this eigenvalue and let h��x� be its PDF, then the theory of
probability leads to

P� = 100 �
0+

+�

h����d� �14�

According to Papoulis �10�, h���� could be computed through an
analytical process. Let

� = g�Ida,�� �15�

be the map linking � and Ida. In our case, Ida is physically
bounded as 0� Ida�0.1. Consequently, we restrict our derivation
to this interval.

The analytical process discussed by Papoulis is only applicable
for a certain class of maps. Now let us examine the behavior of
Eq. �15�. Figure 9�a� plots Eq. �15� for �=12,250 rpm. This
function is null until Ida reaches a threshold Ida

t . After this thresh-
old, Eq. �15� is a one-to-one mapping such that the fundamental
theorem �10� works simply, giving

h���� = � p�xi�
�g��xi��

where g� =
dg

dx
�16�

ωe (rad/s)

nt response „m… versus � and �e
me
i
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 here p�x� is the PDF of Ida, and xi are the real roots of Eq. �15�.

Before this threshold, Eq. �15� is null and has an infinite num-
er of real solutions. Consequently h���� contains an impulse
unction at the origin of area A given by

A =
−�

Ida
t

p�x�dx �
0

Ida
t

p�x�dx �17�

oreover, by assumption

� 	 0 �18�
hen

h���� = 0 for � � ��− � ¯ 0� �19�

ut recalling that p�x� is a Gaussian PDF, we are able to compute

���� for all the values of speed of rotation �. Figure 9�b� shows

���� for �=12,250 rpm. The impulse function is of great im-
ortance even if it is not taken into account in formula �14�. It
nsures that the full integration of the PDF is equal to 1. The
mpulse function vanishes for �=12,600 rpm. Figure 9�c� dis-
lays the probability of instability versus the speed of rotation.
he speed ranges given in Table 1 are in good agreement with the
robability obtained here. The analytical process is not always so
asy to implement. Each case must be considered with care de-
ending on the nature of the relation �Eq. �15��.

4.2 Uncertain Steady State Response: Taguchi’s Method.
e now focus on the uncertain forced response. The implementa-

ion of the analytical process described earlier is not feasible
ere, so Taguchi’s is used. Figure 10 shows the mean value
nd the standard deviation of the x rms displacement, while the
unning condition is �=1000 rpm. The Monte Carlo simulation

Ida

λ

PΩ(%)

(a)

(c)

t
daI

Ida

λ

PΩ(%)

(a)

(c)

t
daI

Fig. 9 g„Ida ,�=12,250… „a…, PDF h�„�… comput
unstable „c…
as achieved using 10,000 samples, whereas Taguchi’s method
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required only three samples. Compared with the deterministic re-
sults �Fig. 6� the orders of magnitude of the predicted mean values
are the same. The mean value seems to be quite close to the
deterministic response. In contrast, the standard deviation exhibits
more troubled behavior. In order to obtain an order of magnitude
of the maximum values that could be reached by the response, the
Chebyshev inequality can be used. This would result in a maxi-
mum frequency response curve, highlighting two resonant fre-
quencies that differ from the deterministic one. This fact is per-
haps one of the most important results in the field of uncertain
dynamical systems. Finally, Taguchi’s method agrees very well
with the Monte Carlo method.

The comments are the same for the other forced responses ob-
tained under different running conditions �see Fig. 11�. Moreover,
as the standard deviation is 100 times less than the mean value, it
can be concluded that the introduction of randomness in param-
eter Ida does not greatly affect the dynamics of this rotor machine.
This conclusion is very interesting because the input dispersion is
not negligible.

The comparison between Fig. 12 �mean values of the forced
response� and Fig. 7 �deterministic forced response� confirms this
fact. The sensitivity of the system to asymmetry inertia is quite
low. The disk does not require a high precision manufacturing
process.

Finally, as Taguchi’s method reveals itself to be a very efficient
tool for computing the statistical moments of the forced response,
Fig. 13 illustrates the standard deviation of the z rms displacement
response. As can be observed, the main output dispersion is lo-
cated on secondary resonances and for low speed of rotation val-
ues. Indeed, the randomness of parameter Ida appears to play a

Ω

λ

hΩ(λ)

(b)

Ω

λ

hΩ(λ)

(b)

at �=12,250 rpm „b…, and probability P� to be
ed
major role when the system response is not too high.
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Conclusion
This study achieved two goals. The first was to show that the

ntroduction of stochastic parameters is one way to obtain more
nformation on the sensitivity of a rotating machine. The uncertain
tability analysis was investigated by using an analytical process
ot considered to be the most general tool. Indeed, certain essen-
ial mathematical properties are usually missing, so that the Monte

(a)

(b)

ωe (

ωe (

Fig. 10 Mean value „a… and standard deviation „

x direction provided by MC and Taguchi’s meth

(a)

(b)

ωe (

ωe (

Fig. 11 Mean value „a… and standard deviation „
x direction provided by MC and Taguchi’s method
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Carlo simulation is the only method of building the PDF of a
function of one random variable. The case studied here provides
interesting information, making it possible to quantify the robust-
ness of stability with great accuracy.

Regarding the forced response, the use of Taguchi’s method
does not require cumbersome mathematical developments such as
those required for classical sensitivity analysis �for example, the

/s)

/s)

of the rms forced response „m… versus �e in the
s; �=1000 rpm

/s)

/s)

f the rms forced response „m… versus �e in the
rad

rad

b…
od
rad

rad

b… o

s; �=6400 rpm
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omputation of partial derivatives�. The first statistical moments
an be used easily to obtain the bounded values reached by the
achine in operation. The second goal was to obtain useful infor-
ation on the random nature of the dynamical parametric behav-

or. As the output variability is not high in this case, it is impos-
ible to extrapolate a trend from these results. The rotating
achine seems to be robust with respect to the parametric excita-

ion. The work must be extended in other directions, for example,

Ω (rpm)Ω (rpm)

Fig. 12 Mean values of the z rms forced response

Ω (rpm)Ω (rpm)
Fig. 13 Standard deviation of the z rms displacem
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considering the overall dynamics, not only those close to the first
critical speeds, analyzing nonlinear behavior due to shaft bearing
clearance asymmetry, etc. Another interesting path for develop-
ment is to consider accelerating rotors �2,3� �� speed fluctuations�
subjected to a steady state ground motion, as the transient nature
of this particular motion makes the application of the spectral
method unfeasible.

ωe (rad/s)ωe (rad/s)

… versus � and �e provided by Taguchi’s method

ωe (rad/s)ωe (rad/s)
„m
ent „m… versus � and �e by Taguchi’s method
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Table 2 provides the main feature of the studied rotor.
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