
HAL Id: hal-02194267
https://hal.science/hal-02194267

Submitted on 25 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Memoryless systems generate the class of all discrete
systems

Erwan Beurier, Dominique Pastor, David I. Spivak

To cite this version:
Erwan Beurier, Dominique Pastor, David I. Spivak. Memoryless systems generate the class of all
discrete systems. International Journal of Mathematics and Mathematical Sciences, 2019, ID 6803526,
10 p. �10.1155/2019/6803526�. �hal-02194267�

https://hal.science/hal-02194267
https://hal.archives-ouvertes.fr

Memoryless systems generate the class of all discrete
systems
Erwan Beurier1☼, Dominique Pastor1☼, David I. Spivak2☼*

1 Département Signal et Communications, IMT Atlantique, Lab-STICC, UBL, 29238 Brest, France
2 Mathematics Department, MIT, Cambridge, Massachusetts, USA

☼These authors contributed equally to this work.
* David Spivak was supported by AFOSR grants FA9550-14-1-0031 and FA9550-17-1-0058, as well
as NASA grant NNH13ZEA001N-SSAT while working on this project.

Correspondence should be addressed to David Spivak; dspivak@math.mit.edu.

Abstract

Automata are machines, which receive inputs, accordingly update their internal
state, andproduce output, are a commonabstraction for the basic buildingblocksused
in engineering and science to describe and design complex systems. These arbitrarily
simplemachines can bewired together—so that the output of one is passed to another
as its input—to form more complex machines. Indeed, both modern computers
and biological systems can be described in this way, as assemblies of transistors or
assemblies of simple cells. The complexity is in the network, i.e., the connection
patterns between simple machines. The main result of this paper is to show that the
range of simplicity for parts as compared to the complexity forwholes is in some sense
complete: the most complex automaton can be obtained by wiring together direct-
outputmemoryless components. Themodelweuse—discrete-time automata sending
each other messages from a fixed set of possibilities—is certainly more appropriate
for computer systems than for biological systems. However, the result leads one to
wonder what might be the simplest sort of machines, broadly construed, that can be
assembled to produce the behavior found in biological systems, including the brain.

Keywords: automata, category theory, discrete system,memoryless system,monoidal
category, wiring diagram.

1 Introduction

Automata represent systems that receive inputs, alter their internal states, and produce
outputs. The state set of the automaton is to be interpreted as the set of all potential
memories, or storable experiences. In automata theory, the state set is typically finite.
In this case, one can view this memory capacity as limited. On the contrary, when the
memory of the automaton is not assumed to be limited (human brain), or its capacity
can always be extended (RAM-machines or Turing machines as models of computers in
computation theory), the automaton should have an infinite state set.

In the theory of dynamical systems, we use a generalisation of automata in which the
size of the state space is not restricted to finiteness, or even to countability. Dynamical
systems with the behaviour of an automaton, that is, taking inputs in discrete time, are
called discrete systems. The state space of such a system acts as a sort of memory of
the inputs. Each input influences the current state of the automaton, and the current
state is the result of the system’s own form—how it deals with inputs—together with the
system’s history.

One can imagine a dynamical system whose state space is that of all possible input-
histories; a new input simply appends to the existing history to become a new history.

1

mailto:dspivak@math.mit.edu

On the other hand, one can imagine the "opposite" kind of system: one that completely
forgets the previous inputs. These systems are referred to as "simple-reflex" in [RN10,
p. 49], reactive, or memoryless in this paper. The transitions of these automata depend
only on the input, as no experience is stored. The system decides according to the current
perception of the world, rather than current perception together with past perception. In
fact, these memoryless systems could act by making a single distinction in the input—a
yes/no Boolean response—and nothing more; we call these Boolean reactive systems.

In this paper, we will study the links between systems that have memory and those
that do not. More precisely, we prove that systems with memory can be simulated by
wiring together systems without memory. Our result provides a theoretical framework
that supports artificial neural network approaches. Memory is carriedby connections, and
not only by individuals, within a compositional hierarchy of parts. In particular, feedback
generatesmemory. This result is already known by electronicians and computer scientists
(transistors), but this article formally proves and generalises this intuitive result to any
kind of automaton in discrete time, which takes any kind of inputs and returns any kind
of outputs. As a special case, when the automata are boolean (which can compare to
transistors), we generate the class of finite automata (which can compare to computers).

This article lies between two fields of mathematics: category theory and dynamical
systems. Regarding category theory, we need no more than the basic definitions of cate-
gories, functors, natural transformations, (symmetric)monoidal categories, andmonoidal
functors. Regarding dynamical systems from a category-theoretic point of view, Section 2
recalls the notions of C -typed-finite sets, C -boxes, wiring diagrams and discrete systems
inside a C -box, with reference to [Spi16].

In Section 3, we introduce discrete systems and a specific mapping that will serve
our purposes (Section 3.1). We then introduce two equivalence relations between discrete
systems. Both are bigger than the usual bisimulationused in automata theory (in the sense
of set inclusion). One corresponds to an external point of view; two systems are equivalent
if they transform input streams into output streams in the same way (Section 3.2). The
other relation corresponds to an internal point of view: two systems are equivalent if they
have "the same structure" (in a sense that is defined in Section 3.3). We prove that these
are just two perspectives on the same relation.

This equivalence relations plays a crucial role in the two results of Section 4. First,
we show that any discrete system is equivalent to some wiring-together of memoryless
systems (Section 4.2). Second, we show that any discrete system with a finite state set is
equivalent to a combination of finitely many Boolean reactive systems (Section 4.3).

1.1 Notation

In this article, we will use the following notation.

• Let N denote the set of all natural numbers, N ∶= {0,1,2, . . .}.
• By default, the variable nwill refer to a natural number: n ∈ N. We will also see the

integers n as their set-theoretic counterparts, that is 0 = ∅, and n = {0,1, . . . , n − 1};
in that context, i ∈ n simply means i ∈ {0, . . . , n − 1}. Note that the set n contains
exactly n elements and this is what really matters in this notation.

• When the size of a sequence (x0, x1, . . . , xn−1) does not matter, it will be denoted
x, which makes it easier to write and read. If each xi is an element of the same
set X , then we will write x ∈ X , instead of defining an n = length (x) and writing
x ∈ Xn. If xi ∈ Xi for possibly different Xi, and if there exists a compact notation X

⋀

for X0 ×X1 × ⋅ ⋅ ⋅ ×Xn−1, then we will write x ∈X
⋀

too.

2

• Sets is the usual category of sets.

2 Boxes and wiring diagrams

In this section, we will present the background necessary for the understanding of this
paper, namely that of dynamical systems from a categorical point of view. It will be
reduced to the absolute minimum used in this article. For more background onmonoidal
categories and functors, see [BW98] and [Bor94]. Our approach is different from the one
in [BKP+17]. The dynamical systems presented here are defined as a generalisation of
automata whose input and output spaces are predetermined. We will define a category
of lists, a category of boxes, and diverse operations on them.

In this section, C will be any category with finite products, that is: for any finite
sequence (Ai)i∈n ∈ C , the product ∏i∈nAi always exists (typically Sets). Most of the
following notions were already defined in [Spi16]; we only recall them without proving
their properties. Examples can be found in the longer version of this article [BPS18].

2.1 The category of typed finite sets

Before defining proper boxes, we need to define the notion of input and output ports.
These will eventually be the sides of our boxes.

Definition 2.1 (Category of C -typed finite sets [Spi16]). The category TFSC of C -typed
finite sets is defined as follows:

Objects: An object is any pair (P, τ) such that P is a finite set and τ ∶ P → ObC is a
function

Morphisms: A morphism from (P, τ) to (P ′, τ ′) is a function γ ∶ P → P ′ such that
τ = τ ′ ○ γ

Identities: The identity morphism on (P, τ) is the identity function of the set P

Composition: The composition of morphisms is the usual composition of functions

An object inTFSC is called aC -typed finite set; amorphism inTFSC is called aC -typed
function.

We can rewrite a C -typed finite set (P, τ) as the finite sequence ⟨τ(p0), . . . , τ(pn−1)⟩,
where P = {p0, . . . , pn−1}. A C -typed finite set is simply a list of objects in C , indexed by
a finite set P . If C = Sets, a Sets-typed finite set is a list of sets.

A C -typed function γ ∶ (P, τ) → (P ′, τ ′) can be then seen as a means to obtain the
former list ⟨τ(p0), . . . , τ(pn−1)⟩ from the latter list ⟨τ ′(p0), . . . , τ ′(pn−1)⟩, by reordering,
duplicating or even ignoring its elements. As τ = τ ′ ○ γ, the list ⟨τ(p0), . . . , τ(pn−1)⟩ can
be rewritten ⟨τ ′ (γ(p0)) , . . . , τ ′ (γ(pn−1))⟩. Beware of the inversion: γ goes from (P, τ) to
(P ′, τ ′) and we see it as a transformation of the list (P ′, τ ′) into the list (P, τ).

Definition 2.2 (Sum of typed finite sets [Spi16]). Let (P0, τ0) , (P1, τ1) ∈ TFSC be two
C -typed finite sets.

We define their sum by (P0, τ0)+(P1, τ1) = (P0 + P1, τ0 + τ1) as the usual disjoint union
of sets P0 + P1 and τ0 + τ1 as τi on Pi for i ∈ 2.

3

Definition 2.3 (Sum of typed functions [Spi16]). Let γi ∶ (Pi, τi) → (P ′
i , τ

′
i) (i ∈ 2) be two

C -typed functions.
We define their sum as the C -typed function γ0 + γ1 ∶ (P0, τ0) + (P1, τ1) → (P ′

0, τ
′
0) +

(P ′
1, τ

′
1) such that ∀x ∈ P0 + P1, (γ0 + γ1) (x) = γi(x) if x ∈ Pi (i ∈ 2).

We can view the sum (P, τ)+(P ′, τ ′) as the concatenation of the lists ⟨τ(p0), . . . , τ(pn)⟩
and ⟨τ ′(p′0), . . . , τ

′(p′n′)⟩, that is, the list ⟨τ(p0), . . . , τ(pn), τ ′(p′0), . . . , τ ′(p′n′)⟩, and the sum
of C -typed functions as a action on each part of the concatenated list.

Proposition 2.4. The category TFSC has the following properties:

• The sum of C -typed finite sets is a coproduct.
• There is only one C -typed finite set (P, τ) where P = ∅. We denote it by 0.
• TFSC has a symmetric monoidal structure for the sum +, with 0 as the unit.

Proof. See [Spi16].

2.2 Dependent products

In this subsection, we define the dependent product functor. If a C -typed finite set can
be viewed as a list of objects of C , then the dependent product of this list is simply the
product of its elements.

Definition 2.5 (Dependent product [Spi16]). Wedefine the dependent product as the functor
−
⋀

∶ TFS
op
C → C such that:

Action on objects: (P, τ)
⋀

=∏p∈P τ(p)

Action on morphisms: If γ ∶ (P, τ) → (P ′, τ ′), then γ⋀ ∶ (P ′, τ ′)
⋀

→(P, τ)
⋀

is defined as the
function γ⋀ ∶ ∏p′∈P ′ τ ′(p′) → ∏p∈P τ(p) such that ∀(ap′)p′∈P ′ ∈ (P ′, τ ′)

⋀

, γ⋀((ap′)p′∈P ′) =
(aγ(p))p∈P .

The interpretation of the dependent product is actually quite straightforward: the
dependent product of a C -typed finite set, viewed as a list, is the product of the elements
of the list in the same order as they appear in the list. The dependent product is thus a
functor that packages the usual operations of diagonal A → A ×A, projection A ×B → A,
and swapping A ×B → B ×A.

We remind thatC has finite products; as a consequence, the dependent product always
exists.

Proposition 2.6. There is a natural isomorphism (P0, τ0) + (P1, τ1)
⋀

≅ (P0, τ0)
⋀

×(P1, τ1)
⋀

; in
other words, the dependent product functor sends coproducts in TFSC to products in C .

Proof. See [Spi16].

This property is also quite intuitive: if one views the coproduct in TFSC as the
concatenation of lists, and the dependent product as the product of the elements of the
list, then the dependent product of the concatenation of two lists is the product of the
dependent products of each lists.

4

2.3 The category of boxes and wiring diagrams

The category TFSC is not the main purpose of this article; however its properties will be
useful for the rest of this article.

In the following, by abuse of notation, we will write X ∈ TFSC for (X,τ), and X
⋀

for
(X,τ)
⋀

.

Definition 2.7 (C -box [Spi16]). We call C -box any pair X = (X in,Xout) ∈ TFSC ×TFSC .

A C -box is a pair of C -typed finite sets (X in,Xout), where X in represent the list of
inputs ports, and Xout represent the list of outputs ports.

Definition 2.8 (Wiring diagram [Spi16]). Let X = (X in,Xout) and Y = (Y in, Y out) be
C -boxes.

A wiring diagam ϕ ∶X → Y is a pair of C -typed functions (ϕin, ϕout) such that:

• ϕin ∶X in → Y in +Xout

• ϕout ∶ Y out →Xout

The C -typed function ϕin tells what feeds the input ports of the box X : each input
port of X is either connected to an input port of Y or to an output port of X (in case of
feedback); the C -typed function ϕout tells what feeds the output ports of Y : each output
port of Y is connected to some output port of X .

We can now compose the wiring diagrams:

Definition 2.9 (Composition of wiring diagrams [Spi16]). Let ϕ ∶ X → Y and ψ ∶ Y →
Z be two wiring diagrams. We define their composition, denoted ψ ○ φ, as the pair
((ψ ○ φ)in, (ψ ○ φ)out), where (ψ ○ φ)in is defined such that the following diagram com-
mutes:

X in Z in +Xout

Y in +Xout

Z in + Y out +Xout Z in +Xout +Xout

ϕin

(ψ○ϕ)in

ψin+idXout

idZin+ϕout+idXout

Z in+∇Xout

and (ψ ○ φ)out is defined such that the following diagram commutes:

Zout Xout

Y out

(ψ○ϕ)out

ψout ϕout

Definition 2.10 (Category of C -boxes and wiring diagrams [Spi16]). The category WC of
C -boxes and wiring diagrams is defined as follows:

Objects: An object in WC is a C -box

Morphisms: Amorphismbetween twoC -boxesX andY is awiringdiagramφ ∶X → Y

5

Identities: An identity morphism on X is the identity wiring diagram

Composition: The composition of wiring diagrams is the composition defined in defi-
nition 2.9

2.4 Monoidal structure of the category of boxes

The category WC has a monoidal structure for the parallel composition of boxes, that
corresponds to the intuitive idea of parallelising boxes.

Definition 2.11 (Parallel composition of boxes [Spi16]). Let X = (X in,Xout) and Y =

(Y in, Y out) be two C -boxes.
The parallel composition, or sum, of X and Y , denoted X ⊞ Y , is the box X ⊞ Y =

(X in + Y in,Xout + Y out), where + is the sum of C -typed finite sets (cf. Definition 2.2).

The parallel composition of two C -boxes summarises to the concatenation of both
input ports, and both output ports.

Definition 2.12 (Parallel composition of wiring diagrams [Spi16]). Let ϕ ∶ X → Y =

(ϕin, ϕout) and ψ ∶ Y → Z = (ψin, ψout) be two wiring diagrams.
The parallel composition, or sum, of ϕ and ψ, denoted ϕ ⊞ ψ, is the wiring diagram

ϕ ⊞ ψ = (ϕin + ψin, ϕout + ψout), where + is the sum of C -typed functions (cf. Definition
2.3).

Proposition 2.13. The category WC has the following properties:

• The closed box �, defined as � = (0,0), where 0 is C -typed finite set (∅,∅ → C) defined
in 2.4, is the unit for the sum of boxes ⊞.

• WC has a symmetric monoidal structure for the sum of boxes ⊞, with � as the unit.

Proof. See [Spi16].

2.5 Dependent product of boxes

The aim of this section is to extend the notion of dependent product (Definition 2.5) to
C -boxes and wiring diagrams.

Definition 2.14 (Dependent product of a C -box [Spi16]). The dependent product X
⋀

of the
C -box X = (X in,Xout) is the pair X

⋀

= (X in
⋀

,Xout
⋀

).

Remark 2.15. The dependent product of X0 ⊞X1 is X0 ⊞X1

⋀

= (X in
0

⋀

×X in
1

⋀

,Xout
0

⋀

×Xout
1

⋀

).

Definition 2.16 (Dependent product of wiring diagrams [Spi16]). The dependent product
X
⋀

of the wiring diagram ϕ ∶X → Y is the pair ϕ⋀= (ϕin
⋀

, ϕout
⋀

).

Remark 2.17. The dependent product ϕ0 ⊞ ϕ1 is ϕ0 ⊞ ϕ1
⋀

= (ϕin
0

⋀

× ϕin
1

⋀

, ϕout
0

⋀

× ϕout
1

⋀

).

Proposition 2.18. Let ϕ ∶ X → Y and ψ ∶ Y → Z. The dependent product of ψ ○ ϕ is the pair
ψ ○ ϕ
⋀

= ((ψ ○ ϕ)in
⋀

, (ψ ○ ϕ)out
⋀

) where:

• (ψ ○ ϕ)in
⋀

(x, z) = ϕin
⋀

(ψin
⋀

(z,ϕout
⋀

(x)) , x)

6

• (ψ ○ ϕ)out
⋀

(x) = ψout
⋀

(ϕout
⋀

(x))

Proof. See [Spi16].

Remark 2.19. The dependent product of C -boxes and wiring diagrams could be described
in terms of monoidal functors; however the codomain of this functor is not C × C as
expected, but a category that has the same objects (pairs of objects (A,B) of C) but whose
morphisms are pairs of morphisms (f in

⋀

, fout
⋀

) ∶ (A0,B0) → (A1,B1) such that f in
⋀

is the

morphism f in
⋀

∶ A1 × B0 → A0 in C and fout
⋀

is the morphism fout
⋀

∶ B0 → B1 in C . The
composition law is the one given in Proposition 2.18.

Until now, we have only defined a category of C -boxes, with interesting properties.
These C -boxes are exactly as their name suggests: empty boxes. The extension of the
dependent product to C -boxes is a necessary step in order to define the "inhabitants" of
C -boxes.

3 Discrete systems and their equivalences

In this section and in the rest of this paper, we will consider the special case where
C = Sets. Thus, in general, we will simply call "boxes" what we introduced as "Sets-
boxes". We denote the symmetric monoidal category of boxes as WSets.

3.1 Definition and basic properties

The notions introduced in this section come from [Spi16]. The properties stated here are
proven in the same article.

Definition 3.1 (Discrete systems [Spi16]). Let X = (X in,Xout) ∈ WSets be a box.

Adiscrete system for the boxX , or discrete system for short, is a4-tupleF = (SF , f
rdt, fupd, sF,0)

where:

• SF ∈ Sets is the state set of F
• f rdt ∶ SF →Xout

⋀

is its readout function
• fupd ∶X in
⋀

× SF → SF is its update function
• s0 ∈ SF is its initial state

We denote by DS (X) the set of all discrete systems for the box X .

Remark 3.2. In Proposition 2.13, we defined the closed box � = (0,0), where 0 denotes
(∅, τ ∶ ∅ → Sets). Its dependent product is �

⋀

= (∏p∈∅ τ(p),∏p∈∅ τ(p)) ≅ (1′,1′), where 1′
is any typed finite set of the form (1, τ ∶ 1→ Sets). As a consequence, we have:

DS (�) ≅ {(SF , f
rdt, fupd, sF,0) ∣ S ∈ Sets, f rdt ∶ S → 1, fupd ∶ 1 × SF → SF , sF,0 ∈ SF}

In other words, an inhabitant of a closed box is a dynamical system with no inputs and
no outputs, just a set S and a function S → S.
Remark 3.3. From a set-theoretic point of view, DS (X) is too big to be a set. A potential
solution is to define the DS (X) within a set big enough for our purposes; for example,
the set Vω1 from the von Neumann hierarchy of sets, which contains the usual sets,

7

vector spaces, measurable spaces, Hausdorff spaces, fields, etc. used in mathematics
(Vω×2 suffices [Kun99, Lemma 2.9]).

In the following, we will continue to write DS (X) (and similarly for mappings) with
the state set in SF ∈ Sets for the sake of understandability, but in case set-theoretic
problems emerge, we should not write SF ∈ Sets but SF ∈ Vω1 .

Note that discrete systems can be viewed as a generalisation of automata. They have
no final states, the transition function is always a function, i.e. all discrete systems are
deterministic, the input alphabet can be infinite, and the transition function is always
defined on every input and every state. Discrete systems are not automata that recognize
a language, but rather, automata that take any input stream and return an output stream
based on the states it transitioned to; that is, discrete systems are a generalisation of
transducers as defined in [Sip12]. Alternatively, discrete systems exactly correspond to
the sequential automata in [AT90].

We previously viewed general boxes (objects in WSets) as empty frames. Discrete
systems are the objects that "live" inside. One can draw a parallel with programming: a
C -box is the signature of the function, that is, its accepted types of inputs and outputs,
and the discrete system is the actual code of the function.

In the rest of the article,wewill often represent adiscrete systemF = (SF , f
rdt, fupd, sF,0)

as the following two-arrow graph:

F ∶ X in
⋀

× SF SF Xout
⋀fupd f rdt

The first function describes how a state and an input are transformed into a new state;
the second describes how the state is output, or "read out”. In general, the initial state
sF,0 ∈ SF will not be represented in these diagrams, though it is implicitly there.

Discrete systems are part of the more general class of dynamical systems. We can define
other types of dynamical systems depending on the category C that we are interested in.
If C is the category Euc of Euclidean spaces, then we will refer to continuous systems. For
more examples, see [Spi16].

Definition 3.4 (DS-application of a wiring diagram [Spi16]). Let ϕ ∶ X → Y be a wiring
diagram. Let F = (SF , f

rdt, fupd, sF,0) ∈ DS (X).
The DS-application of ϕ to F , denoted DS (ϕ) (F), is the discrete system DS (ϕ) (F) =

(SG, g
rdt, gupd, sG,0) ∈ DS (Y) such that:

• SG = SF
• grdt ∶ s↦ ϕout

⋀

(f rdt(s))

• gupd ∶ (y, s) ↦ fupd (ϕin
⋀

(y, f rdt(s)) , s)
• sG,0 = sF,0

We can viewDS (ϕ) (F) as the discrete systemwe obtain from F by implementing the
wiring diagram ϕ.

Definition 3.5 (Parallel composition of discrete systems [Spi16]). LetX0,X1 be boxes and
let Fi = (SFi , f

rdt
i , f

upd
i , sFi,0) ∈ DS (Xi) (i ∈ 2) be discrete systems.

Theparallel composition ofF0 andF1, denotedF0⊠F1, is thediscrete system (SG, g
rdt, gupd, sG,0) ∈

DS (X0 ⊞X1) such that:

• SG = SF0 × SF1

8

• sG,0 = (sF0,0, sF1,0)

• grdt = f rdt0 × f rdt1 ∶ SF0 × SF1 →Xout
0

⋀

×Xout
1

⋀

• gupd ∶X in
0

⋀

×X in
1

⋀

× SF0 × SF1 → SF0 × SF1 makes the following diagram commute:

X in
0

⋀

×X in
1

⋀

× SF0 × SF1 SF0 × SF1

X in
0

⋀

× SF0 ×X
in
1

⋀

× SF1 SF0 × SF1

gupd

≅ =
f
upd
0 ×fupd1

We also define the parallel composition of DS (X0) and DS (X1), denoted DS (X0) ⊠

DS (X1), by:

DS (X0) ⊠DS (X1) = {F0 ⊠ F1 ∣ F0 ∈ DS (X0) , F1 ∈ DS (X1)} .

Proposition 3.6. Parallel composition (F0, F1) ↦ F0 ⊠ F1 provides a natural map DS (X0) ×

DS (X1) → DS (X0 ⊞X1).

Proof. See [Spi16].

Theorem 3.7. Definitions 3.1, 3.4, and 3.5 define a lax monoidal functor DS∶WSets → Sets.

Proof. See [Spi16]

3.2 An external equivalence relation on dynamical systems

Via themonoidal functorDS, a box contains a specified sort of discrete system (depending
on the ports of the box). For an exterior spectator, the content of the box does not matter;
what matters is the way it transforms input streams to output streams. Thus, even if two
boxes contain different discrete systems, for example one with an infinite state set, and
the other with a finite state set, as long as they both give the same output in response to
the same input, then they are viewed as "equivalent" from an external point of view.

The following definitions formalise this idea.

Definition 3.8 (Input and output streams). Let F = (SF , f
rdt, fupd, sF,0) ∈ DS (X).

An input stream (for X) is a finite sequence xin = (xini)
i∈n ∈ (X in
⋀

)
n
, where n ∈ N.

The output stream produced by F when given xin, denoted F (xin), is the stream xout

defined by the following recursive system:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

s0 = sF,0
si+1 = fupd (xini , si)

xouti = f rdt (si+1)

We refer to the state s that F reaches after having processed the input stream xin as
resulting state of F , and denote it Fres(xin). Formally, if xin = (xini)

i∈n, then according to the
previous recursive system, the resulting state of F is Fres(xin) = sn.

Remark 3.9. According to the notation proposed in section 1.1, xin = (xini)
i∈n ∈ (X in
⋀

)
n
will

be written xin ∈X in
⋀

.

9

Remark 3.10. Definition 3.8 is a continuation of the definitions of run maps and behaviours
in [AT90], which are functions that assign respectively the resulting state and the last
output of the automaton given an input stream. The results we obtain with our notations
are similar to those in [AT90].

Definition 3.11 (Equivalence as stream transducers). Let F = (SF , f
rdt, fupd, sF,0) and

G = (SG, g
rdt, gupd, sG,0) be two discrete systems.

We say that F and G are equivalent as stream transducers, and we write F ≡ G, when,
∀xin ∈X in
⋀

, F (xin) = G (xin).

It is easy to see that:

Proposition 3.12. The relation ≡ is an equivalence relation on the set DS (X), for any box X .

3.3 An internal equivalence relation on dynamical systems

The relation ≡ defined above does not give any information on the links between two
discrete systems that are equivalent as stream transducers. In this subsection, we define
another equivalence relation that provides an internal point of view. We then prove that
the two equivalence relations are the same.

In the following, X = (X in,Xout) is any box.

Definition 3.13 (Simulation relation). Suppose given F = (SF , f
rdt, fupd, sF,0) and G =

(SG, g
rdt, gupd, sG,0) in DS (X).

We say that F simulates G, and we write F ⊢ G, if there exists α ∶ SF → SG such
that sG,0 = α (sF,0) and such that α ○ fupd = gupd ○ (id

X in
⋀, α), and f rdt = grdt ○ α; that is,

preserving the initial state and making the following two diagrams commute:

F ∶ X in
⋀

× SF SF Xout
⋀

G ∶ X in
⋀

× SG SG Xout
⋀

(id
Xin
⋀, α)

fupd

α

f rdt

=

gupd grdt

(1)

We refer to α as a simulation function: it witnesses the simulation F ⊢ G.

A priori, the simulation relation does not relate the output of the two discrete systems
F and G (though this does follow; see Lemma 3.18); it only declares a correspondence
between both their state sets and update and readout functions. Both discrete systems
canwork in parallel; their state sets need not be the same, nor even of the same cardinality,
but they somehow coordinate via the map α. The function α draws the parallel between
the internal machinery of F and that of G.

For the rest of the article, we will be more interested in the simulation relation F ⊢ G
than any particular simulation function witnessing it: any one will do.
Remark 3.14. Definition 3.13 refers to the existence of morphisms between two automata
as described in the automata theory litterature [AT90]. The existence of such morphisms
suffices for our purposes. We are a bit more restrictive here, as the outputs need to be the
same in both automata, while in the usual definition of morphisms, automata can have
different output alphabets, as long as there is a function to convert one output into the
other.

10

The simulation relation is not necessarily an equivalence relation and is not enough
for our purpose, but we can use it to generate the equivalence relation we actually need.

Definition 3.15 (Internal equivalence relation on DS (X)). Let F,G ∈ DS (X).
We say that F and G are simulation-equivalent, and we write F ∼ G, if there exists a

finite sequence (Hi)i∈N ∈ DS (X) such that:

F H2 . . . H2n G

H1 H2n+1

It is not hard to check that:

Theorem 3.16. The equivalence relation ∼ is the equivalence relation generated by ⊢, that is, ∼ is
the smallest equivalence relation R such that ⊢ ⊆ R.

Finally, we need to show that the equivalence relation ∼ actually groups discrete sys-
tems that have the same behaviour as a stream transducer, in the sense of Definition 3.11;
that is, the external and the internal equivalence relation are the same.

Lemma 3.17. Let F,G ∈ DS (X). If F ≡ G then ∃H ∈ DS (X) such that H ⊢ F and H ⊢ G.

Proof. Let F = (SF , f
rdt, fupd, sF,0) and G = (SG, g

rdt, gupd, sG,0).

Take H = (SH , h
rdt, hupd, sH,0) such that:

• SH = {(s, s′) ∈ SF × SG ∣ ∃xin such that Fres(xin) = s and Gres(xin) = s
′ }

• hupd (x, (s, s′)) = (fupd (x, s) , gupd (x, s′))
• hrdt (s, s′) = f rdt(s)
• sH,0 = (sF,0, sG,0)

Take as simulation functions the respective projections πSF
and πSG

.
It is easy to see that the required diagrams in Definition 3.13 do commute. For all

(s, s′) ∈ SH , we have hrdt ○πSF
(s, s′) = f rdt(s) by defintion of hrdt. Also, for all (s, s′) ∈ SH ,

hrdt ○ πSG
(s, s′) = f rdt(s) = grdt(s′) because there exists some stream xin such that F

results in s andG results in s′; besides, as F ≡ G, we have F (xin) = G (xin), which implies
f rdt(s) = grdt(s′). Consequently, the diagrams commute and H simulates both F and G.

Lemma 3.18. Let F,G ∈ DS (X). If F ⊢ G then F ≡ G.

Proof. Follows by induction on the length of an input stream (xini)
i∈n ∈X

in
⋀

.

Theorem 3.19. ∀F,G ∈ DS (X) , F ≡ G ⇔ F ∼ G; or equivalently: ≡ = ∼.

Proof. To prove ≡ = ∼, we need ≡ ⊆ ∼ and ∼ ⊆ ≡.
Suppose first that F,G ∈ DS (X) are dynamical systems such that F ≡ G. According

to Lemma 3.17, there exists a H ∈ DS (X) such that H ⊢ F and H ⊢ G, and hence F ∼ G
by Definition 3.15. This establishes ≡ ⊆ ∼.

We now show that ∼ ⊆ ≡. According to Proposition 3.12, ≡ is an equivalence relation,
and according to Lemma 3.18, ≡ contains ⊢. Theorem 3.16 states that ∼ is the smallest
equivalence relation that contains ⊢; necessarily, we have ∼ ⊆ ≡.

11

The goal of this article is to show that the behaviour of a general discrete system can be
emulated by some specific wiring of some other discrete system, chosen with constraints
(for example, on its internal structure). As far as we know, this result cannot be obtained
with a pure equality. However, we have a description of what it means to be equivalent,
both from an internal and from an external point of view, with the assurance that, seen
as a blackbox, the "inhabited" box remains unchanged.

As we are not using real equalities, we need to define relations between sets that
correspond to the usual inclusion and equality.

Definition 3.20 (Inclusion/equality up to equivalence). Let A,B ⊆ DS (X). We consider
the equivalence relation ∼ from Definition 3.15 (or, equivalently, in Definition 3.11).

We say that A is a subset of B up to equivalence, and we write A ⊑ B, when ∀a ∈ A,∃b ∈
B,a ∼ b.

We say that A is equal to B up to equivalence, or A is equivalent to B, and we write A ≈ B,
when A ⊑ B and A ⊒ B.

If F,G ∶ WSets → Sets are functors, then we write F ⊑ G when, for all box X , we have
F (X) ⊑ G(X). We write F ≈ G, when F ⊑ G and F ⊒ G.

IfM,N ∶ WSets → Sets are mappings (not necessarily functors), then we writeM ⊆ N
when, for all boxes X and Y , we have M(X) ⊆ N(X) and MorSets (M(X),M(Y)) ⊆

MorSets (N(X),N(Y)).

4 Main results

Before we introduce the actual results of the paper, we need a few more notions.

4.1 Algebras and closures

Definition 4.1 (Algebra). Given a monoidal category C , a functor F ∶ C → Sets is called
an algebra over C when it is a lax monoidal functor.

In our case, C = WSets, and DS is an algebra by Theorem 3.7.

Definition 4.2 (Subalgebra). Let A ∶ WSets → Sets be an algebra over WSets. Let σX,Y ∶

A(X) ×A(Y) → A (X ⊞ Y) denote its first coherence map (we recall that ⊞ is the parallel
composition of boxes (cf. Definition 2.11)).

A functor B ∶ WSets → Sets is called a subalgebra of Awhen:

• ∀X ∈ WSets, B(X) ⊆ A(X)

• ∀X,Y ∈ WSets,∀F ∈ B(X),∀G ∈ B(Y), σX,Y (F,G) ∈ B(X ⊞ Y)

• ∀ϕ ∶X → Y ∈ WSets,∀F ∈ B(X),A(ϕ)(F) ∈ B(Y)

Here,A andB are functors that transformboxes into sets. In our setting, the conditions
can be interpreted as follows:

• (First item) Discrete systems generated by B are included in those generated by A;
• (Second item) The parallel composition of two discrete systems F and G generated

by B is also generated by B.
• (Third item)B is stable throughwiringdiagrams: wiringadiscrete systemgenerated

by B gives another discrete system generated by B.

12

Note that a subalgebra is itself an algebra.

Definition 4.3 (Closure). Let A ∶ WSets → Sets be an algebra over WSets.
Let B ∶ ObWSets

→ ObSets be any map such that ∀X ∈ WSets, B(X) ⊆ A(X). The
closure of B, denoted Clos (B), is the intersection of all subalgebras of A that contain
B(X) for all X ∈ WSets. (Any intersection of subalgebras is a subalgebra.)

The closure of a map B can be understood as the minimal lax monoidal functor (or
algebra) containing B.

4.2 Memoryless systems

Our first main result concerns the subclass of discrete systems that we callmemoryless. We
show that wiring together memoryless systems can lead to systems that have memory.

Definition 4.4 (Memoryless discrete systems). Let X = (X in,Xout) be a box.
A memoryless discrete system for the box X , or memoryless discrete system for short, is a

discrete system F = (SF , f
rdt, fupd, sF,0) ∈ DS (X) such that fupd immediately discards

the previous state and uses only the current input; more precisely, such that fupd factors
as

fupd =X in
⋀

× SF
π
X in
⋀

ÐÐ→X in
⋀ fu

Ð→ SF

for some fu ∶X in
⋀

→ SF .
We denote by DSML (X) the set of all memoryless discrete systems for the box X :

DSML (X) = {(SF , f
rdt, fupd, sF,0) ∈ DS (X) ∣ ∃fu ∶X in

⋀

→ SF , f
upd = fu ○ π

X in
⋀}.

We call thesediscrete systemsmemorylessbecausewe see the states as a kindofmemory
(as in Example ??). The discrete systems defined above transition fromone state to another
without checking their current state, i.e. without checking their memory.

The following definition is a natural restriction of memoryless discrete systems; as
these systems are memoryless, the only goal of their states is to produce the output via
their readout function. The simplest case is when the readout function is the identity.

Definition 4.5 (Direct-output discrete systems). Let X = (X in,Xout) be a box.
A direct-output memoryless discrete system for the boxX , or direct-output discrete system for

short, is a discrete system F = (SF , f
rdt, fupd, sF,0) ∈ DS (X) such that:

• SF =Xout
⋀

• f rdt = id
Xout
⋀

• fupd = fu ○ π
X in
⋀ for some fu ∶X in

⋀

→Xout
⋀

We denote by DSML
out (X) the set of all direct-output discrete systems for the box X :

DSML
out (X) = {(SF , f

rdt, fupd, sF,0) ∈ DSML
(X) ∣ S =Xout
⋀

, f rdt = id
Xout
⋀}

= {(Xout
⋀

, id
Xout
⋀, fupd, S0) ∈ DS (X) ∣ ∃fu ∶X in

⋀

→Xout
⋀

, fupd = fu ○ π
X in
⋀}

Remark 4.6. The maps DSML ∶ WSets → Sets and DSML
out ∶ WSets → Sets are not functors,

because they are not closed under wiring. Indeed, the whole point is that the result of
wiring together memoryless systems is not necessarily memoryless.

13

We can now prove one of the main results of this paper, which is that every discrete
system can be obtained (up to equivalence) by a memoryless system and a feedback loop.
The feedback loop is responsible for holding the state that was originally in the discrete
system.

Here is the formal statement.

Theorem 4.7. Clos (DSML
out) ≈ DS.

Proof. We have DSML
out ⊆ DSML ⊆ DS, so Clos (DSML

out) ⊆ DS, thus Clos (DSML
out) ⊑ DS. We

need the opposite inclusion (up to equivalence) Clos (DSML
out) ⊒ DS.

Let Y = (Y in, Y out) ∈ WSets, and let G = (SG, g
rdt, gupd, sG,0) ∈ DS (Y). We will find

X ∈ WSets, F ∈ DSML
out (X) and ϕ ∶X → Y such that DS (ϕ) (F) ∼ G.

Let δSG
= ⟨SG⟩ ∈ TFSSets be the list with one element, SG, and consider the box

(δSG
, δSG

) with only that port on the left and the right. We define X as the parallel
composition of this box (δSG

, δSG
) and Y , that is:

X = (X in,Xout)

= (δSG
, δSG

) ⊞ Y

= (δSG
+ Y in, δSG

+ Y out)

Note that X in
⋀

= SG × Y
in
⋀

and Xout
⋀

= SG × Y
out
⋀

. Thus, if xin ∈ X in
⋀

, then xin = (s, yin).

Similarly, if xout ∈Xout
⋀

, then xout = (s, yout).

We choose ϕ ∶X → Y as the pair (ϕin, ϕout) of coproduct inclusions:

• ϕin ∶ {
δSG

+ Y in Ð→ Y in + δSG
+ Y out

x z→ x

• ϕout ∶ {
Y out Ð→ δSG

+ Y out

x z→ x

It follows from 2.16 that their dependent products ϕin
⋀

∶ Y in
⋀

× SG × Y
out
⋀

→ SG × Y
in
⋀

and
ϕout
⋀

∶ SG × Y
out
⋀

→ Y out
⋀

are projections.
Recall that thegoal is tofindF = (SF , f

rdt, fupd, sF,0) ∈ DSML
out (X) such thatDS (ϕ) (F) ∼

G. So define F as follows:

• SF =Xout
⋀

= SG × Y
out
⋀

• f rdt = id
Xout
⋀

• fupd (xin, xout) = fupd (s, yin, s′, yout) = (gupd (yin, s) , grdt (gupd (yin, s)))

• sF,0 = (sG,0, g
rdt (sG,0))

It is easy to see that F is in DSML
out (X) because f rdt and fupd have the correct form. So

let (SH , hrdt, hupd, sH,0) = DS (ϕ) (F); we need to show it is equivalent to G. We compute
each part of DS (ϕ) (F) according to Definition 3.4.

Its state set is as follows:

SH = SF =Xout
⋀

= SG × Y
out
⋀

14

Its readout function is defined on an arbitrary xout as follows:

hrdt (xout) = hrdt (s, yout)

= ϕout
⋀

(f rdt (s, yout))

= π
Y out
⋀(id

Xout
⋀(s, yout))

= yout

Its update function is defined on an arbitrary (yin, s, yout) as follows:

hupd (yin, s, yout) = fupd (ϕin
⋀

(yin, f rdt (s, yout)) , (s, yout))

= fupd (s, yin, s, yout)

= (gupd (yin, s) , grdt (gupd (yin, s)))

Finally, its start state is as follows:

sF,0 = (sG,0, g
rdt

(sG,0))

Consequently, the following diagram commutes:

G ∶ Y in
⋀

× SG SG Y out
⋀

DS (ϕ) (F) ∶ Y in
⋀

× SG × Y
out
⋀

SG × Y
out
⋀

Y out
⋀

id
Xin
⋀×α

gupd

α

grdt

=

hupd hrdt

where α = (idSG
, grdt). This yields G ⊢ DS (ϕ) (F) and hence DS (ϕ) (F) ∼ G, which

concludes the proof.

Corollary 4.8. Clos (DSML) ≈ DS.

Corollary 4.9. For allG ∈ DS (Y), ifG has finite state set, then there existsH ∈ Clos (DSML) (Y)

with finite state set such that H ∼ G.

Proof. In the proof of Theorem 4.7, take H = DS (ϕ) (F), but instead of SF = SG × Y out
⋀

,
take SF = SG × g

rdt (SG) ⊆ SG × Y
out
⋀

. If SG is finite, so is SF .
In that case, H is no more in Clos (DSML

out) (Y) but in Clos (DSML) (Y).

Corollary 4.10. (Assuming the axiom of choice) For all G ∈ DS (Y), if G has an infinite state
set, then there existsH ∈ Clos (DSML) (Y) with a state set of the same cardinality as G, such that
H ∼ G.

Proof. In the proof of Theorem 4.7, take H = DS (ϕ) (F), but instead of SF = SG × Y out
⋀

,
take SF = SG × g

rdt (SG) ⊆ SG × Y
out
⋀

. The axiom of choice gives card (SF) = card (SG) ×
card (grdt (SG)) = card (SG).

In that case, H is no more in Clos (DSML
out) (Y) but in Clos (DSML) (Y).

15

Theorem 4.7 states that systems without memory can be wired together to form
systems with memory. In fact, the result is more subtle. It states that for any discrete
system, we can find (or build) a memoryless discrete system with the certain wiring such
that both systems are equivalent as stream transducers. The internal equivalence relation
described in Theorem 3.19 is instrumental to prove Theorem 4.7, while the result is stated
with regard to the external equivalence relation.

4.3 Finite-state systems

The second result is a refinement of Theorem 4.7, and is somewhat similar to it. We show
that wiring together two-state discrete systems can generate a finite-state system with
memory.

We can view the result as the generalisation of transistors being wired together in
order to build a computer, or a system of neurons wired together to form a brain with
finite memory.

Definition 4.11 (Finite-state systems). Let X = (X in,Xout) be a box.
A finite-state discrete system for the box X , or finite-state system for short, is a discrete

system F = (SF , f
rdt, fupd, sF,0) ∈ DS (X) such that SF is a finite set.

We denote by DSFin (X) the set of all finite-state discrete systems for the box X :
DSFin (X) = {(SF , f

rdt, fupd, sF,0) ∈ DS (X) ∣ card (SF) ∈ N}. For a wiring diagram φ, we
set DSFin (ϕ) = DS (ϕ).

It is easy to see that:

Proposition 4.12. The map DSFin ∶ WSets → Sets is a subalgebra of DS.

Proof. Follows from Definition 4.2.

Definition 4.13 (Boolean systems). Let X = (X in,Xout) be a box.
A boolean memoryless discrete system for the box X , or boolean system for short, is a

discrete system F = (SF , f
rdt, fupd, sF,0) ∈ DSFin (X) such that F is memoryless and

SF = 2n = {0,1}n.
We denote by DSML

Bool (X) the set of all boolean memoryless discrete systems for the
box X : DSML

Bool (X) = {(SF , f
rdt, fupd, sF,0) ∈ DSML (X) ∣ SF = {0,1}n}.

Remark 4.14. The map DSML
Bool ∶ WSets → Sets is not a functor, for the same reason as in

remark 4.6.

Lemma 4.15. DSML
Bool ≈ DSML ∩DSFin.

Proof. By construction, DSML
Bool ⊆ DSML∩DSFin, so DSML

Bool ⊑ DSML∩DSFin. We need to show
the other inclusion, so let G = (SG, g

rdt, gupd, sG,0) ∈ DSML (X) ∩DSFin (X), and it suffices
to show that there is F ∈ DSML

Bool (X) with G ∼ F .
We have gupd = gu ○ π

X in
⋀ and SG finite. Let N = ⌈log2 (card (SG))⌉. There exists an

injection i ∶ SG → 2N and a surjection p ∶ 2N → SG such that p ○ i = idSG
. This is just a

binary encoding of SG.
Define F = (SF , f

rdt, fupd, sF,0) such that:

• SF = 2N

16

• f rdt = grdt ○ p
• fupd = gupd ○ p
• sF,0 = i (sG,0)

Then the following diagram commutes:

G ∶ Y in
⋀

× SG SG Xout
⋀

F ∶ X in
⋀

× 2N 2N Xout
⋀

id
Xin
⋀×i

gupd

i

grdt

=

fupd f rdt

We have F ∈ DSML
Bool (X) and G ⊢ F (with i as simulation function), so F ∼ G, hence

the result.

Lemma 4.16. DSFin ≈ Clos (DSML) ∩DSFin.

Proof. Observe that DSFin = DS ∩ DSFin. By Corollary 4.8, we have DS ≈ Clos (DSML).
In particular, Clos (DSML) ⊆ DS, so Clos (DSML) ∩ DSFin ⊆ DS ∩ DSFin. This gives one
inclusion, Clos (DSML) ∩DSFin ⊑ DS ∩DSFin.

As for the reverse inclusion (up to equivalence), letX beaboxand letF ∈ (DS ∩DSFin) (X).
By Corollary 4.8, there exists G ∈ Clos (DSML) such that G ∼ F . By Corollary 4.9, we can
choose G so that G ∈ DSFin (X), hence the result.

Theorem 4.17. Clos (DSML
Bool) ≈ DSFin.

Proof. Clearly, Clos (DSML
Bool) ⊑ DSFin. ByLemma4.15, inorder toproveDSFin ⊑ Clos (DSML

Bool),
it suffices to proveDSFin ⊑ Clos (DSML ∩DSFin). Furthermore, sinceDSFin ≈ Clos (DSML)∩

DSFin (Lemma4.16),we reduce toproving that: Clos (DSML)∩DSFin ⊑ Clos (DSML ∩DSFin).

Let Y ∈ WSets be a box, and let G ∈ (Clos (DSML) ∩DSFin) (Y). We have G ∈

Clos (DSML) (Y), so according to Corollary 4.8, there exist a box X ∈ WSets, a wiring
diagram ϕ ∶ X → Y , and a F ∈ DSML (X) such that DS (ϕ) (F) ∼ G. Furthermore, accord-
ing to Corollary 4.9, we can chooseF with finite state set. Finally, F ∈ (DSML ∩DSFin) (X),
and DS (ϕ) (F) ∼ G, so Clos (DSML) ∩DSFin ⊑ Clos (DSML ∩DSFin), hence the result.

5 Conclusion

Boxes are empty frames that condition the inputs and outputs of their content, a gener-
alisation of automata called discrete systems. Such systems come with a state set that
represents their memory of previous inputs. In a sense, discrete systems can learn. How-
ever, we can define a subclass of discrete systems that do not store any experience of their
past. We see these as reactive, in the sense that they still react to any input, but their past
experience does not influence that reaction. Unlike typical discrete systems, they do not
keep a memory of the previous inputs.

In this paper, we use a category-theoretic framework to give a constructive proof that
any discrete system with memory can be simulated by some correctly-wired memoryless

17

system. This result can be understood as a phenomenon of emergence in a complex
system.

This construction opens a number of newquestions. A possible questionmight consist
in finding the "best" memoryless system, where "best" could depend on the definition of
some valuation function, e.g. the most parsimonious in terms of state set. A similar
question could be asked with respect to wiring diagrams, whose number of feedback
loops could be bounded by a cost function.

Possible extensions of this work could concern dynamical systems other than DS.
For instance, can we establish the same kind of results when considering measurable or
continuous dynamical systems?

6 Data availability

No data were used to support this study.

7 Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this
paper.

References

[AT90] Jiri Adamek and Vera Trnkova. Automata and Algebras in Categories. Kluwer
Academic Publishers, Norwell, MA, USA, 1st edition, 1990.

[BKP+17] Mike Behrisch, Sebastian Kerkhoff, Reinhard Pöschel, Friedrich Martin Schnei-
der, and Stefan Siegmund. Dynamical systems in categories. Applied Categorical
Structures, 25(1):29–57, Feb 2017.

[Bor94] Francis Borceux. Handbook of Categorical Algebra, volume 2 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press, 1994.

[BPS18] Erwan Beurier, Dominique Pastor, and David Spivak. Memoryless systems
generate the class of dynamical systems. 2018.

[BW98] Michael Barr andCharlesWells. Category Theory for Computing Science. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1998.

[Kun99] Kenneth Kunen. Set theory - An introduction to independence proofs, volume 102
of Studies in logic and the foundations of mathematics. North-Holland Publishing
Company, seventh edition, 1999.

[RN10] Stuart J. Russel and Peter Norvig. Artificial Intelligence: a modern approach.
Prentice Hall series in artifical intelligence. Prentice Hall Press, Upper Saddle
River, NJ, USA, third edition, 2010.

[Sip12] Michael Sipser. Introduction to the theory of computation. Cengage Learning, third
edition, 2012.

18

[Spi16] David I. Spivak. The steady states of coupled dynamical systems compose ac-
cording to matrix arithmetic. Available online: https://arxiv.org/abs/
1512.00802, 2016.

19

https://arxiv.org/abs/1512.00802
https://arxiv.org/abs/1512.00802

	Introduction
	Notation

	Boxes and wiring diagrams
	The category of typed finite sets
	Dependent products
	The category of boxes and wiring diagrams
	Monoidal structure of the category of boxes
	Dependent product of boxes

	Discrete systems and their equivalences
	Definition and basic properties
	An external equivalence relation on dynamical systems
	An internal equivalence relation on dynamical systems

	Main results
	Algebras and closures
	Memoryless systems
	Finite-state systems

	Conclusion

