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Core mechanisms of drag enhancement on
bodies settling in a stratified fluid

Jie Zhang1,2, Matthieu J. Mercier2 and Jacques Magnaudet2,†
1State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace,

Xi’an Jiaotong University, Shaanxi 710049, China
2Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS, Toulouse, 

France

Stratification due to salt or heat gradients greatly affects the distribution of inert 
particles and living organisms in the ocean and the lower atmosphere. Laboratory 
studies considering the settling of a sphere in a linearly stratified fluid confirmed that 
stratification may dramatically enhance the drag on the body, but failed to identify 
the generic physical mechanism responsible for this increase. We present a rigorous 
splitting scheme of the various contributions to the drag on a settling body, which 
allows them to be properly disentangled whatever the relative magnitude of inertial, 
viscous, diffusive and buoyancy effects. We apply this splitting procedure to data 
obtained via direct numerical simulation of the flow past a settling sphere over a 
range of parameters covering a variety of situations of laboratory and geophysical 
interest. Contrary to widespread belief, we show that, in the parameter range covered 
by the simulations, the drag enhancement is generally not primarily due to the extra 
buoyancy force resulting from the dragging of light fluid by the body, but rather to 
the specific structure of the vorticity field set in by buoyancy effects. Simulations also 
reveal how the different buoyancy-induced contributions to the drag vary with the 
flow parameters. To unravel the origin of these variations, we analyse the different 
possible leading-order balances in the governing equations. Thanks to this procedure, 
we identify several distinct regimes which differ by the relative magnitude of length 
scales associated with stratification, viscosity and diffusivity. We derive the scaling 
laws of the buoyancy-induced drag contributions in each of these regimes. Considering 
tangible examples, we show how these scaling laws combined with numerical results 
may be used to obtain reliable predictions beyond the range of parameters covered 
by the simulations.

Key words: ocean processes, stratified flows, particle/fluid flow

1. Introduction

Plankton, marine snow and Lagrangian floats drifting in oceans and estuaries,
as well as aerosols, dust, volcanic ash and balloons transported in the lower
atmosphere, move in fluid media which locally exhibit large density gradients, owing
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to inhomogeneities in the vertical distribution of salt and/or temperature. Since they
act as barriers hampering vertical motions, these inhomogeneous layers, referred to
as ‘haloclines’ and ‘thermoclines’ in the case of salinity and temperature gradients,
respectively, deeply affect the settling/ascent rate, accumulation and dispersion of
inert bodies and living organisms in oceans and lakes (Riebesell 1992; MacIntyre,
Alldredge & Gotschalk 1995; Bergström & Strömberg 1997; Condie & Bormans 1997;
Widder et al. 1999; Alldredge et al. 2002; Sutor & Dagg 2008) and atmospheric
inversions (Kellogg 1980; Yajima et al. 2004; Burns & Chemel 2015). Identification
and modelling of fundamental mechanical processes at work in these stratified layers
is thus of direct relevance to a better understanding of several key aspects of oceanic
biochemical cycling (Denman & Gargett 1995), climate variability (Turco et al. 1990)
and measurement bias in observing systems (D’Asaro 2003; Bewley & Meneghello
2016).

To this end, the canonical situation of a rigid sphere moving vertically in a
stratified environment has concentrated attention over the last two decades. Controlled
laboratory experiments (Srdic-Mitrovic, Mohamed & Fernando 1999; Abaid et al.

2004; Camassa et al. 2009; Hanazaki, Kashimoto & Okamura 2009a; Yick et al.

2009) and direct numerical simulation of primitive equations (Torres et al. 2000;
Hanazaki, Konishi & Okamura 2009b; Hanazaki, Nakamura & Yoshikawa 2015)
considered either linearly stratified backgrounds or homogeneous fluid layers separated
by a sharply stratified region. These investigations consistently concluded that the
sphere motion distorts the originally horizontal isopycnals, dragging light fluid
downwards over distances frequently much larger than the body size. As a result, the
drag resisting the body settling increases compared to that measured in a homogeneous
fluid. In the presence of a strong stratification, the drag may increase by more than
one order of magnitude (Srdic-Mitrovic et al. 1999; Torres et al. 2000), yielding
residence times within the stratified layer much longer than those predicted on the
basis of standard drag laws. Asymptotic predictions for this drag increase have been
derived under various approximations in the limit of negligible (Zvirin & Chadwick
1975; Camassa et al. 2010; Candelier, Mehaddi & Vauquelin 2014) or weak (Mehaddi,
Candelier & Mehling 2018) inertial effects. However, these theoretical predictions all
assume that stratification only provides a small correction to the total drag, which is
far from the realm of most field conditions. Empirical models aimed at dealing with
more general conditions have been proposed, based on the intuitive idea that the drag
enhancement results from the additional buoyancy provided by the volume of light
fluid dragged by the body. However, no consensus has been reached yet on a suitable
definition of this volume capable of providing realistic estimates of the drag in both
viscosity-dominated (Yick et al. 2009) and inertia-dominated regimes (Srdic-Mitrovic
et al. 1999; Higginson, Dalziel & Linden 2003).

This unsatisfactory situation suggests that the actual cause of the stratification-
induced drag increase has not been properly identified yet. The primary aim of this
paper is to get new insight into this problem by applying a rigorous mathematical
decomposition valid irrespective of the relative magnitude of inertial, viscous,
diffusive and buoyancy effects to the velocity and pressure fields obtained by directly
simulating the flow configuration described above. The governing equations and the
decomposition scheme are established in § 2. Numerical data covering contrasting flow
regimes are discussed in § 3, before the various buoyancy-induced contributions to
the drag are extracted through the splitting procedure. Depending on flow conditions,
these contributions are found to exhibit markedly different variations with the control
parameters. To interpret the observed features, the scaling laws obeyed by each
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FIGURE 1. (Colour online) Sketch of the considered flow configuration.

of these contributions are derived in § 4 by examining the dominant balances in
the governing equations. Section 5 summarizes the main outcomes of the paper.
Details of the numerical procedure and validation tests are discussed in appendix A.
Applicability of predictions provided in the paper to realistic situations of geophysical
and engineering interest is examined in appendix B.

2. Mathematical model and force decomposition

We consider a rigid body with characteristic size a settling with constant velocity
−Wez through a linearly stratified Newtonian fluid with reference density ρ0 and
prescribed vertical density gradient ρz0<0, ez denoting the unit vector pointing upward
(see figure 1). We assume the fluid to have constant viscosity, µ, and molecular
diffusivity, κ , and normalize lengths, velocities, time and contributions to the pressure
and density fields by a, W, a/W, ρ0W2 and −aρz0, respectively. In a system of
axes translating with the body, the velocity at time t and position x = (x, y, z) from
the body centroid (with z along the ascending vertical) is u(x, t) and the density
difference with respect to the reference density ρ0 is t − z + ρ(x, t), ρ standing
for the density disturbance. In the framework of the Boussinesq approximation, the
governing equations for ρ and u then write as (Torres et al. 2000; Hanazaki et al.
2015)

∇ · u = 0, (2.1)

∂tρ + u · ∇ρ = u · ez − 1 + Pe−1∇2ρ, (2.2)

∂tu + u · ∇u = −∇p − Fr−2ρez + Re−1∇2
u. (2.3)

Equations (2.2) and (2.3) involve the Péclet and Reynolds numbers respectively
characterizing the relative magnitude of advective and diffusive effects in density
and momentum balances, Pe = Wa/κ and Re = Wa/ν (with ν = µ/ρ0), the ratio of
which is the Prandtl number, Pr = ν/κ . The ratio of inertial to buoyancy effects
is characterized by the Froude number, Fr = W/(Na), where N = (−gρz0/ρ0)

1/2 is
the Brunt–Väisälä frequency, g denoting gravity. The hydrostatic pressure component
−(ga/W2)z + Fr−2(z2/2 − zt) is incorporated within the pressure p. With the above
definition of ρ, the total density gradient is ∇ρ − ez. Hence, at the body surface (S),
the no-flux and no-slip boundary conditions imply

n · ∇ρ = n · ez and u = 0 on (S), (2.4a,b)



where n stands for the unit normal directed into the fluid. As disturbances vanish in 
the far field, ρ and u also obey

ρ→ 0, and u → ez for ||x|| → ∞. (2.5a,b)

To reveal the mechanisms governing the drag increase, we split the velocity and
pressure fields in the form u = uw + uρ, p = pw + pρ with

∇ · uw = 0, (2.6)

∂tuw + uw · ∇uw = −∇pw + Re−1∇2
uw, (2.7)

uw = 0 on (S), and uw → ez for ||x|| → ∞, (2.8a,b)

∇ · uρ = 0, (2.9)

∂tuρ + (uρ + uw) · ∇uρ + uρ · ∇uw = −∇pρ − Fr−2ρez + Re−1∇2
uρ, (2.10)

uρ = 0 on (S), and uρ → 0 for ||x|| → ∞. (2.11a,b)

Equations (2.6)–(2.8) govern the dynamical problem corresponding to the body
translation in a homogeneous fluid. In contrast, equations (2.9)–(2.11) govern the
velocity disturbance, uρ , induced by buoyancy effects. This disturbance carries
a non-zero vorticity, ωρ = ∇ × uρ , which originates in the baroclinic torque,
Fr−2

ez × ∇ρ, resulting from the distortion of the isopycnals. As the stress tensor
T = −pI+ Re−1(∇u + ∇u

T) (I denoting the Kronecker tensor) is a linear function of
u and p, the hydrodynamic force acting on the body, F =

∫

S
T · n dS , is the sum of

the settling-induced contribution due to (uw, pw), which it would experience in the
absence of any stratification, and the buoyancy-induced contribution resulting from
(uρ, pρ).

The central idea is then to examine how and to which extent the various
mechanisms involved in (2.10) alter the stress distribution on (S), hence the force
on the body, for a given distribution of the density disturbance. To this end, we first
notice that, owing to the divergence-free condition (2.9), (2.10) involves only two
non-solenoidal contributions: one corresponds to the non-zero flux of the advective
term, as is customary with the Navier–Stokes equations, while the other originates
in the vertical variation of the density disturbance. For this reason, it is appropriate
to split the buoyancy-induced pressure disturbance in the form pρ = pρω + pρρ + pρu,
where pρω obeys a Laplace equation, while the other two contributions respectively
satisfy

∇2pρρ = −Fr−2
∇ρ · ez, (2.12)

n · ∇pρρ = −Fr−2ρn · ez on (S), (2.13)

∇2pρu = −∇ · {(uρ + uw) · ∇uρ + uρ · ∇uw}, (2.14)

n · ∇pρu = 0 on (S), (2.15)

with pρρ and pρu vanishing for ||x|| → ∞. Although not unique, boundary conditions
(2.13) and (2.15) arise naturally from the projection of (2.10) onto (S).

To get new insight into the various contributions to the force F, we employ the
following procedure. Using direct numerical simulation (DNS), we first compute
the flow and density fields governed by (2.1)–(2.5), and, in a separate run, the
‘homogeneous’ flow field obeying (2.6)–(2.8). Integration over (S) of stresses obtained
during this first step provides F and its ‘homogeneous’ counterpart, Fw. Subtracting



(uw, pw) from (u, p) at the same instant of time yields the buoyancy-induced velocity
and pressure fields, uρ and pρ . Making use of the density field, ρ, and evaluating
terms involved in the right-hand side of (2.14), we then solve the two Poisson
problems (2.12)–(2.13) and (2.14)–(2.15), which yields the pressure fields pρρ and
pρu, respectively. Last, we evaluate the excess force due to stratification effects,
Fρ = F − Fw, as

Fρ = −

∫

S

pρρn dS
︸ ︷︷ ︸

Fρρ

−

∫

S

pρun dS
︸ ︷︷ ︸

Fρu

+

∫

S

T ρω · n dS
︸ ︷︷ ︸

Fρω

, (2.16)

with T ρω = −pρωI+ Re−1(∇uρ + ∇u
T
ρ), the superscript T denoting the transpose. The

contribution Fρρ in (2.16) may be thought of as an additional Archimedes force due to
the non-zero pressure gradient induced by the deflection of the isopycnals round the
body, while Fρu is an inertial force resulting from the momentum flux associated with
the velocity field uρ when Re 6= 0. Last, pρω = pρ − (pρρ + pρu) is entirely determined
by the solenoidal contributions to (2.10). Moreover the divergence-free condition (2.9)
combined with the no-slip condition in (2.11) imply (∇uρ +∇u

T
ρ) · n =ωρ × n on (S)

(see e.g. equation (A11) in Magnaudet (2011)). Hence Fρω represents the entire force
due to the vorticity ωρ induced by the baroclinic torque.

The two contributions Fρρ and Fρω are the two sides of the same coin, as they both
result from the misalignment between the pressure and density gradients. However,
this misalignment manifests itself in two different ways. On the one hand it distorts
the vortex lines about the body, which in turn modifies the vorticity, hence the shear
stress at the body surface, yielding the drag contribution Fρω. On the other hand, the
deflection of isopycnals round the body results in the net dragging of a volume of
‘light’ fluid within which the density at every vertical position is smaller than that
of the surrounding fluid. This entrainment, responsible for the drag contribution Fρρ ,
is the mechanism on which the semi-empirical modelling effort (Srdic-Mitrovic et al.

1999; Higginson et al. 2003; Yick et al. 2009) has focused up to now.

3. Simulation results

We now apply the above methodology to the flow induced by a settling sphere
(from now on, a is the sphere radius). Details about the numerical approach used to
solve (2.1)–(2.5) and extensive validation tests are provided in appendix A. We select
Pr = 0.7, 7 and 700, corresponding to the diffusion of heat in the atmosphere, and
that of heat and salt in water under standard conditions, respectively. We consider
the parameter range 0.05 6 Re 6 100, 0.1 6 Fr 6 10, assuming that the flow is
axisymmetric throughout that range. The representativity of this parameter range with
respect to field and laboratory conditions, i.e. the relative density range under which
gravity/buoyancy-driven bodies may effectively experience O(1)-Froude numbers
when their Reynolds number lies in the above interval, is discussed in appendix B.

3.1. Flow field

Figure 2 displays isopycnals, streamlines and levels of the vertical velocity, u · ez − 1,
about the sphere for selected values of Re, Fr and Pr.

When viscous diffusion dominates momentum transport (figure 2a–d), isopycnals
are significantly distorted by the passing sphere only when Pe ≫ 1, i.e. for large



-0.95 -0.50 -0.05 -0.95 -0.50 -0.05 -0.90 -0.41 0.08-0.9 -0.5 -0.1

Pr = 0.7

Fr = 5

Pr = 0.7Pr = 700 Pr = 700

8
(a) (b) (c) (d)

6

4

2

0

-2

-4

-0.9 -0.5 -0.1 -0.8 0.4 1.6-0.9 -0.4 0.1 -0.9 -0.4 0.1

8
(e) (f) (g) (h)

6

4

2

0

-2

-4

-0.9 -0.4 0.1 -0.8 0.2 1.2 -1.0 1.5 4.0-0.8 0 0.8

8
(i) ( j) (k) (l)

6

4

2

0

-2

-4

R
e 

=
 0

.0
5

R
e 

=
 5

R
e 

=
 1

0
0

-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4

Fr = 0.5

FIGURE 2. (Colour online) Influence of Re, Fr and Pr on the flow structure. Colours:
iso-levels of the vertical velocity, u · ez − 1, in the laboratory frame; solid lines: isopycnals,
ρ − z = const. (left half), and streamlines (right half).

enough Pr (figure 2b,d). In this case, the top-down symmetry of the velocity field
is almost unaffected when Fr ≫ 1 (figure 2b), whereas no such symmetry subsists
when Fr . 1 (figure 2d). Instead, for low Fr, a region with upward absolute velocities
u · ez − 1 > 0 takes place at some distance downstream of the sphere. This specific
structure is driven by the baroclinic torque which converts the positive radial density
gradient encountered within the fluid column dragged by the sphere into a vortex
ring with positive azimuthal vorticity, i.e. upward velocities near the symmetry
axis. Decreasing Fr and/or increasing Pr increases the curvature of the streamlines
(figures 2b and 2c), which yields closed flow regions (i.e. toroidal eddies) with
size comparable to the body length when the vertical confinement imposed by the
stratification is strong enough (figure 2d).



In inertia-dominated situations (figure 2e–l), the lower Fr and the larger Re and
Pr, the thinner the dragged fluid column and the larger the upward velocity on
the wake axis. With Fr = 0.5 and Pr = 700 (figures 2h and 2l), the high-Re wake
structure is dominated by a thin upward jet (Torres et al. 2000; Hanazaki et al. 2009a,
2015) with centreline velocities several times larger than the sphere speed. Internal
waves (Mowbray & Rarity 1967) propagating upwards become salient when Fr . 1
(figure 2g–h,k–l). For a given Fr, the size of the closed regions is smaller than in the
low-Re regime; for low Fr, they exhibit a V-shape due to the streamwise modulation
of the vertical velocity by the internal waves (figure 2g–h,k–l). The influence of Pr

is weaker than in the low-Re regime, except within the jet region. In line with the
findings of Torres et al. (2000), no standing eddy (which would correspond to vertical
velocities less than −1 in figure 2) exists at the back of the sphere for Re = 100
throughout the explored range of Fr, in contrast with the homogeneous situation in
which this structure is present for Re & 10 (Batchelor 1967).

3.2. Buoyancy-induced contributions to the drag

The various contributions to the drag acting on the sphere are shown in figure 3. The
drag is only weakly affected by stratification effects for Fr = O(10), with less than
5 % (respectively 25 %) increase compared to the ‘homogeneous’ drag at Re = 0.05
(respectively 100). In contrast, decreasing Fr to lower values makes the drag increase
dramatically whatever Re, especially for large Pr. With Pr = 700 and Fr = 0.5, the
drag almost doubles compared to its value in a homogeneous fluid when Re = 0.05,
and is eight times larger when Re = 100. Decreasing Pr to 0.7, while maintaining Fr

and Re unchanged, reduces the drag enhancement by a factor of 5 (respectively 2) at
low (respectively high) Re.

In all cases, the contribution Fρu due to the inertial pressure correction is negative
(i.e. it provides a downthrust) but is negligibly small in magnitude. The reason for this
may be qualitatively understood by examining the behaviour of the right-hand side of
(2.14), i.e. the momentum flux, in the vicinity of the body surface. As uw and uρ both
obey a no-slip condition on (S), continuity requires that their tangential (respectively
normal) component varies linearly (respectively quadratically) with the distance r − 1
to (S) in the immediate vicinity of the latter (r = ||x||). Therefore (uρ + uw) · ∇uρ +

uρ · ∇uw varies as (r − 1)2 within this surface layer, forcing the momentum flux to
vanish on (S) and be proportional to r − 1 close to it. Consequently the source term
in the Poisson equation (2.14) is nearly zero close to (S), and variations of pρu along
the body surface essentially result from the distribution of the momentum flux at some
distance from (S). This non-locality limits the variations of pρu along (S), hence the
magnitude of Fρu. No such effect exists in the case of Fρρ , since the distribution of
pρρ along (S) is mostly driven by the non-zero near-surface density gradients.

When Re is low, the additional Archimedes force Fρρ is also negligible compared
to the vortical contribution Fρω, although its relative magnitude increases with Pr.
Both contributions are of the same order when Re = 100 and Pr is moderate. However,
when Pr is large, Fρω provides again the major part of the extra drag at Re = 100,
being roughly twice as large as Fρρ . These results reveal that modifications of the
vorticity field resulting from the baroclinic torque play a pivotal role in the drag
increase throughout the explored Re-range. Conversely, density variations at the
body surface play a negligible role at low Re but their relative magnitude gradually
increases with the Reynolds number. This state of affairs seriously questions the
available attempts in which the stratification-induced drag has been modelled by
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FIGURE 3. (Colour online) Contributions, as given in (2.16), to the vertical force on the
sphere versus the Froude number for Re = 0.05 (left) and Re = 100 (right) with, from top
to bottom, Pr = 0.7, 7 and 700. All contributions are normalized by the ‘homogeneous’
drag force, Fw = Fw · ez at the same Re, so that F · ez/Fw = 1 + (Fρρ + Fρu + Fρω) · ez/Fw.

evaluating the buoyancy provided by the volume of light fluid dragged by the body,
especially in the low-Re regime (Yick et al. 2009), or for Reynolds numbers of some
units (Srdic-Mitrovic et al. 1999).

4. Stratification regimes and scaling laws for the buoyancy-induced drag

To better understand how Fρω and Fρρ vary with the control parameters, it is
desirable to rationalize the trends revealed by figure 3. Additionally, obtaining explicit
scaling laws for these two contributions may allow predictions provided by present
numerical results to be extended to a broader range of parameters, especially with
respect to the Reynolds number. To this end, we start from (2.2) and (2.10) and
express the linearized equations governing small disturbances in the density and
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vorticity associated with the buoyancy-induced flow in the form

Dwρ

Dt
− Pe−1∇2ρ = (uρ + uw) · ez − 1, (4.1)

Dwωρ

Dt
+ uρ · ∇ωw − ωρ · ∇uw − ωw · ∇uρ − Re−1∇2

ωρ = Fr−2
ez × ∇ρ, (4.2)

where ωρ =∇ ×uρ and ωw =∇ ×uw denote the vorticity associated with the buoyancy-
induced and homogeneous flow fields, respectively, and Dw/Dt ≡ ∂t + uw · ∇ is the
material derivative with respect to the homogeneous flow. Linearization in (4.1) and
(4.2) assumes that ||uρ|| ≪ ||uw||, ||∇uρ|| ≪ ||∇uw|| and ||ωρ|| ≪ ||ωw||. We make use
of the vorticity balance (4.2) instead of the momentum balance (2.10) to avoid having
to discuss the scaling of the pressure term in each regime. The scaling laws for the
buoyancy-induced forces, Fρω and Fρρ stem from the dominant balances in (4.1) and
(4.2), and the characteristics of the undisturbed velocity field, uw. The cornerstone of
the procedure consists in determining the characteristic length scale, ℓs, over which
buoyancy effects generate a velocity disturbance, uρ , of the same magnitude, u, as
the driving ‘homogeneous’ disturbance, uw · ez − 1, in the sphere vicinity. These effects
must in principle remain small enough for the linearization that led to (4.1) and (4.2)
to be legitimate. By comparing effects of stratification with those of viscosity and
diffusivity, which act over length scales ℓν and ℓκ , respectively, three regimes in which
Fρω and Fρρ vary differently with Fr, Re and Pr may be identified, for both low and
high Reynolds number. A schematic view of the corresponding three configurations is
provided in figure 4 in a low-Re case.

4.1. Low-Reynolds-number range

We first consider the low-Re range, in which ℓν = Re−1. Depending on whether Pe
is small (Pr = O(1)) or large (Pr ≫ 1), one then has ℓκ = Pe−1 or Pe−1/3 (Levich
1962; Batchelor 1980). If stratification is strong enough for the condition ℓs ≪ ℓν to
be satisfied, inertial terms are negligible in (4.2). Then the balance between buoyancy
and viscous effects reduces to

Re−1 ∇2
ωρ

︸ ︷︷ ︸

O(u/ℓ3
s )

≈ Fr−2
∇ρ × ez
︸ ︷︷ ︸

O(ρℓ/ℓs)

, (4.3)



so that the density disturbance, ρℓ, associated with the velocity disturbance, u, obeys
ρℓ ∼ Fr2Re−1u/ℓ2

s . If moreover ℓs ≪ ℓκ (which corresponds to configuration (a) in
figure 4), advective effects are negligible in the linearized density balance (4.1) which
then reduces to

Pe−1 ∇2ρ
︸︷︷︸

O(ρℓ/ℓ2
s )

≈ 1 − (uρ + uw) · ez
︸ ︷︷ ︸

O(u)

. (4.4)

Hence the driving term, 1 − uw · ez, is balanced by diffusive effects, which requires
Pe−1ρℓ/ℓ

2
s ∼ u. Note that the buoyancy-induced advective term, uρ · ez, subsists in (4.4),

as it is assumed to have the same magnitude as the driving term, in contrast with the
settling-induced advective contribution, uw · ∇ρ. The disturbance u being small but
arbitrary, compatibility between (4.4) and (4.3) implies ℓ4

s ≈ Fr2/(PeRe). This defines
a viscous–diffusive regime, which we refer to as R1, characterized by a stratification
length scale

ℓs ≈ ℓs1 ≡ (Fr/Re)1/2Pr−1/4. (4.5)

The relevance of this viscous–diffusive length scale was first recognized by List (1971)
and later rediscovered independently by Ardekani & Stocker (2010).

To evaluate Fρω and Fρρ under such conditions, the spatial distribution of the
settling-induced velocity, uw, about the body must be considered. At a distance r
from the sphere centre, the disturbance uw − ez is dominated by the contribution of
the Stokeslet, which makes it decay approximately as r−1 for increasing r. Departures
from this dominant behaviour arise because of the presence of a dipole (required
to satisfy the no-slip condition on (S)), and of inertial corrections required for the
solution to be valid throughout the fluid domain, including the outer region r ≫ Re−1

(Batchelor 1967). These additional contributions make the settling-induced velocity
field decay slightly faster than O(r−1), so that we may consider that, for r ≫ 1,
|uw · ez − 1| approximately behaves as r−(1+α) with α & 0. The vortical force, Fρω,
scales as the viscous traction at the body surface, Re−1

n · (∇uρ + ∇u
T
ρ). On (S),

||uw − ez|| = 1 due to the no-slip condition, whereas at the radial position r = 1 + ℓs1,
||uw − ez|| ≪ 1 provided ℓs1 ≫ 1, owing to the r−(1+α)-decay. From a physical point of
view, assuming ℓs1 ≫ 1 implies that we are considering a characteristic stratification
length scale much larger than the body size (or equivalently, that the sphere is seen
as a point force). This condition is fulfilled throughout the range covered by the
low-Re computations. The variation δu of ||uw − ez|| from r = 1 + ℓs1 to r = 1 is
then of O(1), and so is that of ||uρ||, due to our definition of the stratification length
scale. Assuming that the above scaling for ℓs1, derived under the assumption u ≪ 1,
holds up to δu = O(1) leads to the conclusion that n · ∇uρ ∼ 1/ℓs1 on (S). Hence
Fρω ∼ (Reℓs)

−1, which in the viscous–diffusive R1 regime implies

Fρω ≡ Fρω1 ∼ (FrRe)−1/2Pr1/4. (4.6)

The above result was obtained without considering the contribution of the pressure
component pρω. However the latter exists only to ensure that the velocity field uρ is
solenoidal (i.e. pρω plays the role of a Lagrange multiplier), which implies that its
variations round the body have the same order of magnitude as those of the viscous
traction defined above. Hence the contributions of pρωn and Re−1

n · (∇uρ + ∇u
T
ρ)

to Fρω have the same magnitude whatever the Reynolds number (for the same
reason, it is well known (Batchelor 1967) that the surface shear stress (respectively
pressure) provides 2/3 (respectively 1/3) of the drag force on a sphere in the
low-Reynolds-number regime, and the same ratios hold in the limit of very large
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FIGURE 5. (Colour online) Variations of normalized force components Fρρ · ez/Fw

(triangles, red online) and Fρω · ez/Fw (circles, blue online) in the low-Re regime (Re =
0.05); dash-dotted line: Pr = 0.7, solid line: Pr = 700.

Reynolds numbers for a sphere obeying a shear-free condition, i.e. a bubble with a
negligible inner viscosity (Kang & Leal 1988)).

The force component Fρρ is directly proportional to the pressure component pρρ on
(S). From (2.12) and (2.13) one infers that ∇pρρ ∼ −Fr−2ρez near the body, so that
the surface value of pρρ scales as Fr−2ρℓz, with z the vertical position with respect to
the sphere centre. Hence one has Fρρ ∼ Fr−2ρℓ, with ρℓ evaluated on (S). To estimate
ρℓ, one has to return to (4.4) and make use of the various estimates obtained above,
which yields

Pe−1 ∇2ρ
︸︷︷︸

O(ρℓ/ℓ
2
s1)

+ uρ · ez
︸ ︷︷ ︸

O(ρℓRe ℓ2
s1/Fr2)

≈ 1 − uw · ez
︸ ︷︷ ︸

O(r−(1+α))

. (4.7)

Integrating the right-hand side twice and balancing with the diffusive term yields
ρℓ ∼ Peℓs1 (the non-zero, albeit small, α avoids a logarithmic divergence during
this integration). Similarly, provided ℓs1 ≫ 1,

∫ r=1+ℓs1

r=1 |uw · ez − 1|dr ≈ 1, so that on
average |uw · ez − 1| is of O(1/ℓs1) in between r = 1 + ℓs1 and r = 1. Then, balancing
uρ · ez with this averaged driving term and assuming ρ ≈ 0 for r & 1 + ℓs1 yields
ρℓ ∼ Fr2/(Reℓ3

s1) at r = 1. Given (4.5), both estimates imply ρℓ ∼ (ReFr)1/2Pr3/4 near
the sphere surface, from which one concludes that in the R1 regime

Fρρ ≡ Fρρ1 ∼ Fr−3/2Re1/2Pr3/4. (4.8)

Variations of the buoyancy-induced drag components with the Froude number
predicted by (4.6) and (4.8) are compared with numerical data in figure 5 for
Re = 0.05. Results (4.6) and (4.8) apply provided ℓs1 is much smaller than ℓν
and ℓκ . Hence if Re and Pe are both small, the R1 regime takes place provided
that Fr ≪ min(Re−1Pr1/2, Re−1Pr−3/2), which with Re = 0.05 and Pr = 0.7 implies
approximately Fr ≪ 15. In contrast, if Re is small but Pe is large, the second of the
above bounds changes into Fr ≪ Re1/3Pr−1/6, which with Pr = 700 implies Fr ≪ 0.1 at
the same Reynolds number. Hence the R1 regime is only expected to exist for Pr =0.7



 in figure 5. Panels (a) and (c) in figure 2 correspond to this regime. In figure 5, the

−3/2 slope predicted by (4.8) covers the entire explored Fr-range, whereas the −1/2
slope corresponding to (4.6) is only identified for Fr . 1. Comparing predictions (4.6)
and (4.8) indicates that, for a given Fr, the ratio Fρρ1/Fρω1 varies as RePr1/2. Hence
Fρρ is expected to be negligibly small for Re ≪ 1, the buoyancy-induced drag being
dominated by the vortical contribution in this limit. This is confirmed by figure 5
which shows that Fρρ is two orders of magnitude smaller than Fρω throughout the
R1 regime. At the moderate value Pr = 7, the low-Fr low-Re conditions considered
in the DNS also belong to the R1 regime. These results may be used to check
the Pr1/4-dependence predicted by (4.6), although the comparison is limited to one
decade (0.7 6 Pr 6 7). As panels (a) and (b) in figure 3 indicate for Fr = 0.1, the
ratio Fρω(Pr = 7)/Fρω(Pr = 0.7) is close to 2.0, which compares reasonably well
with the expected ratio 101/4 ≈ 1.8. The same check can be performed regarding the
Pr3/4-dependence of Fρρ predicted by (4.8), although the numerical values are too
small for the difference to be visible in figure 3. The corresponding ratio is found to
be 5.6, which compares well with the predicted ratio 103/4 = 5.25. The scaling (4.6) is
similar to that found by Candelier et al. (2014) who computed the buoyancy-induced
correction to the drag using matched asymptotic expansions. These authors made use
of the viscous Richardson number, Ri = Re/Fr2, and found this correction, normalized
by the Stokes drag, to be 0.66(PeRi)1/4. Hence the corresponding force behaves as
Re−1(PeRi)1/4, in line with (4.6).

If stratification is such that ℓκ ≪ ℓs ≪ ℓν (which corresponds to configuration (b) in
figure 4), the transport of the density disturbance at distances of O(ℓs) from the body
is dominated by advective effects, be the Péclet number small or large. Thus, in the
quasi-steady approximation, the mass balance (4.1) becomes at leading order

uw · ∇ρ
︸ ︷︷ ︸

O(ρℓ/ℓs)

≈ (uρ + uw) · ez − 1
︸ ︷︷ ︸

O(u)

, (4.9)

so that ρℓ ∼ ℓsu, assuming that ||uw|| ≈ 1 at a distance r ≈ 1 + ℓs from the sphere
centre. Compatibility with the unchanged condition resulting from (4.3) then defines
a viscous–advective regime, R2, characterized by (Chadwick & Zvirin 1974; Zvirin &
Chadwick 1975)

ℓs ∼ ℓs2 ≡ (Fr2/Re)1/3. (4.10)

Still assuming ℓs2 ≫ 1, repeating the above reasoning implies that the scaling law for
the buoyancy-induced vortical force is now

Fρω2 ∼ (ReFr)−2/3. (4.11)

Making again use of (4.3), the typical orders of magnitude in (4.9) are

uw · ∇ρ
︸ ︷︷ ︸

O(ρℓ/ℓs2)

− uρ · ez
︸ ︷︷ ︸

O(ρℓ Re ℓ2
s2/Fr2)

≈ uw · ez − 1
︸ ︷︷ ︸

O(ℓ
−(1+α)
s2 )

. (4.12)

Given (4.10), both terms on the left-hand side are of O(ρℓ/ℓs2). Hence with α → 0,
the leading-order balance in (4.12) implies ρℓ ∼ 1 on (S). The reasoning used in the
R1 regime then immediately yields

Fρρ2 ∼ Fr−2. (4.13)



If Pe ≪ 1 but Pr is large (a combination never met in present computations), the
condition ℓκ ≪ ℓs ≪ ℓν implies that the R2 regime takes place if the Froude number
satisfies Pr−3/2Re−1 ≪ Fr ≪ Re−1. In contrast, ℓκ = Pe−1/3 if Pe ≫ 1 (Levich 1962;
Batchelor 1980), in which case the R2 regime takes place if the Froude number
stands in the range Pr−1/2 ≪ Fr ≪ Re−1. With Re = 0.05 and Pr = 700, hence
Pe = 35, this condition corresponds to 0.04 ≪ Fr ≪ 20. Variations of Fρω with Fr

in figure 5 suggest that this regime actually takes place only up to Fr ≈ 1 (panel
d in figure 2 corresponds to this regime). Things are less clear at first glance with
Fρρ for which the −2 slope is approximately found only for Fr & 5. The reason is
that this contribution is affected by finite-ℓs corrections when Fr is small enough
because the estimate ρℓ ≈ 1 no longer holds. It may be shown that the most general
prediction for the density disturbance obtained without assuming ℓs2 ≫ 1 is actually
ρℓ(r)∼ (ℓs2/r)

3. Hence the general scaling for Fρρ2 is Fρρ2 ∼ Re−1(1 + (Fr2/Re)1/3)−3,
which reduces to (4.13) only in the limit ℓs2 ≫ 1. In contrast the general expression
predicts Fρρ2 ∼ Re−1 when ℓs2 is very small, i.e. when Fr ≪ 1. This is why in
figure 5 the negative slope of the corresponding line is seen to decrease with Fr (a
qualitatively similar alteration of (4.8) is expected to take place when ℓs1 ≪ 1 and
may be computed with similar arguments; however this regime is not reached in
present computations). Comparing (4.11) and (4.13) shows that Fρρ2/Fρω2 varies as
Re2/3 at a given Fr. Hence Fρρ is again expected to be negligibly small for Re ≪ 1 in
the R2 regime, but the ratio Fρρ/Fρω is larger than in the R1 regime, as confirmed
by figure 5. Predictions corresponding to the R2 regime were obtained using matched
asymptotic expansions by Zvirin & Chadwick (1975) who found the drag correction,
normalized by the Stokes drag, to be 1.06Ri1/3 in the limit Pe → ∞. This implies a
Re−1Ri1/3-scaling of the buoyancy-induced drag, equivalent to (4.11).

Finally, an inertial–advective regime, R3, emerges if stratification is so weak
that ℓs ≫ ℓν (hence ℓs ≫ ℓκ , given the range of Pr considered here). Under such
circumstances, which correspond to configuration (c) in figure 4, advection dominates
over viscous effects. Consequently, the relevant quasi-steady approximation of (4.2)
to be considered is at leading order

uw · ∇ωρ
︸ ︷︷ ︸

O(u/ℓ2
s )

+ uρ · ∇ωw
︸ ︷︷ ︸

O(u/ℓ2
s )

− ωρ · ∇uw
︸ ︷︷ ︸

O(u/ℓ2
s )

− ωw · ∇uρ
︸ ︷︷ ︸

O(u/ℓ2
s )

≈ Fr−2
∇ρ × ez
︸ ︷︷ ︸

O(ρℓ/ℓs)

, (4.14)

which implies ρℓ ∼ Fr2u/ℓs. As the relevant density balance is still (4.9), which
imposes ρℓ ∼ ℓsu, compatibility implies

ℓs ∼ ℓs3 ≡ Fr, (4.15)

and the reasoning that led to (4.6) immediately yields

Fρω3 ∼ (FrRe)−1. (4.16)

At r = 1 + ℓs3, the velocity disturbance due to the body motion is governed by
the Oseen equation. Considering moderate Froude numbers such that ℓs & Re−1, we
assume that uw · ez − 1 still behaves approximately as r−(1+α) with α & 0 at such
distances from the body, so that the typical orders of magnitude in (4.9) are

uw · ∇ρ
︸ ︷︷ ︸

O(ρℓ/ℓs3)

− uρ · ez
︸ ︷︷ ︸

O(ρℓ ℓs3/Fr2)

≈ uw · ez − 1
︸ ︷︷ ︸

O(ℓ
−(1+α)
s3 )

. (4.17)



Again this yields ρℓ ∼ 1, so that the scaling of Fρρ3 is found to be similar to that of 
Fρρ2, viz.

Fρρ3 ∼ Fr−2. (4.18)

Variations of Fρω shown in figure 5 display the −1 slope predicted by (4.16) for
both Pr = 0.7 and Pr = 700 when Fr & 5. Thus, the R1–R3 and R2–R3 transitions
are found to take place for Fr-values of some units in both cases (panel b in figure 2
corresponds to the lower limit of the R3 regime in the high-Pr case). Mehaddi et al.

(2018) determined asymptotically the first-order drag corrections due to stratification
or inertia effects in the limit Re ≪ 1 and ℓs1 ≫ 1 but did not identify the R3
regime. This is because Fr is much larger than Re−1 there (provided Pr & 1), which
implies Fρω3 ≪ 1 according to (4.16). Hence the corresponding buoyancy-induced
drag correction is much smaller than the O(1) Oseen inertial contribution, which was
the leading-order correction computed in the limit FrRe ≫ 1 by these authors.

To finish with the low-Re range, it is interesting to have a look at the empirical
low-Re buoyancy-induced drag correction proposed by Yick et al. (2009). In this
work, it was suggested that the relative increase of the drag coefficient behaves as
Ri1/2 provided Re is small and Pr is large (their equation (5.2)). This correlation was
based on experimental and numerical results obtained for Pr = 700 with two different
Reynolds numbers, Re = 0.05 and 0.5, and Froude numbers up to Fr = 2. With
Pr = 700 and Re = 0.05, one has ℓν ≈ 20, ℓκ ≈ 0.3, ℓs1 ≈ 0.9 Fr1/2 and ℓs2 ≈ 4.5Fr2/3.
Hence, according to the present analysis, the whole range 0.4 6 Fr 6 2 stands
essentially in the R2 regime. Similarly, with Pr = 700 and Re = 0.5, one has ℓν ≈ 2,
ℓκ ≈ 0.15, ℓs1 ≈ 0.3 Fr1/2 and ℓs2 ≈ 2.1 Fr2/3. Hence data in these series approach the
R1 regime for Fr ≈ 0.4 (since ℓs1 ≈ ℓκ there) and the R3 regime for Fr & 1 (since
ℓs3 ≈ ℓν there) but they also essentially stand in the intermediate R2 regime. As
mentioned above, (4.11) implies that the relative drag increase behaves as Ri1/3 in
this regime, which suggests that, at a given Fr, it should be approximately 2.2 larger
for Re = 0.5 than for Re = 0.05 when Fr & 1, in line with the ratio deduced from data
reported by Yick et al. (2009). Conversely, in the R1 regime, equation (4.6) implies
that the relative drag increase is proportional to (Re/Fr)1/2 at a given Pr, so that the
ratio of the two relative drag increases should be close to 3.15 for Fr ≈ 0.4, which
is again in agreement with their data. Hence the correlation proposed in Yick et al.

(2009) appears to be an ad hoc approximation which actually mixes two different
asymptotic regimes (see § B.2 in appendix B for more details).

4.2. High-Reynolds-number range

When the Reynolds number is large, ℓν = Re−1/2, owing to the presence of the viscous
boundary layer (hereinafter abbreviated to VBL). In this Re-range, the thickness of the
diffusive boundary layer obeys ℓκ = Re−1/2Pr−1/3 (Acrivos 1960; Levich 1962), since
we are only considering moderate-to-large Prandtl numbers. Although the scalings
Fρω ∼ (Reℓs)

−1δu and Fρρ ∼ Fr−2ρℓ derived in § 4.1 still apply, the presence of
the VBL, the thickness of which is much smaller than the body radius, prevents the
existence of a simple expression for uw about the sphere. Details of the uw-distribution
within the VBL are especially important in the strongly stratified R1 and R2 regimes,
since the corresponding stratification length scales are by definition (much) smaller
than ℓν . These features make the overall situation less tractable with qualitative scaling
arguments than in the low-Re case, restricting the validity range of the corresponding
predictions, especially at low Froude number.



Let us first assume that the Froude number is large enough for the stratification
length scale to be such that ℓs ≫ ℓν Max(1, Pr−1/3). Under such conditions, neither
molecular diffusion nor viscosity affects the buoyancy-induced flow, defining a high-
Re R3 regime. Panels (i) and ( j) of figure 2 provide two examples of this regime.
The corresponding situation is similar to the low-Re R3 regime except that, close
to the body, it involves much larger velocity gradients. This makes it necessary to
determine the scaling of ℓs within the VBL. To this end, one has to recognize that,
except in the top region of the sphere where the upward jet originates, variations in
directions parallel to the body surface are much slower than in the radial direction. For
this reason one has to distinguish between longitudinal (∇‖) and radial (∇⊥) gradient
components, and longitudinal (Ls) and radial (ℓs) buoyancy length scales. One also has
to take into account the fact that u

‖
w and u

⊥
w are respectively of O(1) and O(ℓν) near

the outer edge of the VBL, owing to continuity. The buoyancy-induced vorticity ωρ

being of O(u/ℓs) within the VBL, the leading-order approximations of (4.1) and (4.2)
for r = O(1 + ℓν) respectively reduce to

u
‖
w · ∇‖ρ

︸ ︷︷ ︸

O(ρℓ/Ls)

+ u
⊥
w · ∇⊥ρ

︸ ︷︷ ︸

O(ρℓℓν/ℓs)

≈ (uρ + uw) · ez − 1
︸ ︷︷ ︸

O(u)

, (4.19)

u
‖
w · ∇‖ωρ

︸ ︷︷ ︸

O(u/(ℓsLs))

+ u
⊥
w · ∇⊥ωρ

︸ ︷︷ ︸

O(u ℓν/ℓ2
s )

+ · · · ≈ Fr−2
∇ρ × ez
︸ ︷︷ ︸

O(ρℓ/ℓs)

. (4.20)

Terms on the left-hand side have the same magnitude provided that Ls = ℓ−1
ν ℓs, and

compatibility between (4.19) and (4.20) implies that, close to the body,

ℓs ∼ ℓs3 ≡ ℓνFr = Re−1/2Fr. (4.21)

It may then be concluded that the condition ℓs ≫ ℓν Max(1, Pr−1/3) defining
the high-Re R3 regime corresponds to values of the Froude number such that
Fr ≫ Max(1,Pr−1/3), i.e. Fr ≫ 1 since we are not considering low Prandtl numbers. As
ℓs3/ℓν ≫ 1, the driving term in (4.19) is small at r ≈ 1 + ℓs3, so that the approximation
δu ≈ 1 holds in between (S) and r = 1 + ℓs3. Hence the scaling Fρω ∼ (Reℓs)

−1 derived
in § 4.1 is still valid, implying

Fρω3 ∼ Fr−1Re−1/2. (4.22)

Within the VBL, spatial variations of the forcing term 1 − uw · ez in (4.7) deeply
differ from the low-Re case. They now correspond to a boundary-layer-type solution,
F(η), with η = (r − 1)/ℓν , supplemented by wake corrections. Unfortunately, the
explicit form of F(η) is unknown except in the limit η≪ 1, especially in the wake
region where most of the distortion of the isopycnals takes place. For this reason,
a direct qualitative integration of (4.19) from r = 1 to r = 1 + ℓs3 is not possible.
This is why one has to resort to a different strategy to estimate Fρρ3. The alternative
approach calls on a Lagrangian energy balance over an infinitesimal fluid element,
from its initial arbitrary position to its final position close to the body surface. This
balance is established in appendix C. Its final outcome is (C 6) which allows us to
conclude that, close to the body but at distances from its surface larger than the VBL
thickness, ρℓ ∼ Fr(1 + O(Re−1)). Since pρρ scales as Fr−2ρℓ z on (S) (see § 4.1), one
has in this regime and provided Re ≫ 1

Fρρ3 ∼ Fr−1. (4.23)
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FIGURE 6. (Colour online) Variations of normalized force components Fρρ · ez/Fw

(triangles, red online) and Fρω · ez/Fw (circles, blue online) in the high-Re regime (Re =
100); dash-dotted line: Pr = 0.7, solid line: Pr = 700.

Predictions (4.22) and (4.23) are confirmed in figure 6 in which both drag components
are seen to exhibit a −1 slope beyond Fr ≈ 1 for Pr = 0.7 and, with some slight
deviations, for Pr = 700. A crucial property revealed by (4.23) is that Fρρ3 does not
depend on Re, while according to (4.22) Fρω3 still varies as Re−1/2. This is reflected
in the relative magnitude of the two drag components which is now of O(1) for Re =

100, although Fρω is still typically twice as large as Fρρ as soon as Fr is of O(1) or
larger (see also panels d and f in figure 3). This is in stark contrast with the low-Re

regime in which the vortical contribution is always responsible for almost the entire
buoyancy-induced drag increase.

Let us now examine the two low-Fr regimes. The viscous–diffusive R1 regime takes
place if ℓs1 ≪ min(ℓν, ℓκ), i.e. Fr ≪ min(1, Pr−1/6), with ℓs1 still given by (4.5).
Since Pr−1/6 ≈ 0.3 for Pr = 700, this regime may only be observed for Pr = 0.7
and Pr = 7 in present computations (figure 2(k) stands near the higher-Fr bound of
this regime). The reasoning that led to (4.6) remains unchanged. Despite the VBL
structure, the estimate δu = O(1) in between r = 1 and r = 1 + ℓs1 still holds, provided
ℓs1, hence Fr, is ‘not too small’. This may be seen by assuming that the flow near
the sphere surface may locally be roughly approximated by Blasius’ boundary-layer
solution over a flat plate. Then, considering for instance Fr =0.1 and Pr =0.7, one has
ℓs1/ℓν =η≈0.35, a position at which the local tangential velocity predicted by Blasius’
solution is approximately 55 % of the free-stream velocity. Hence u has changed from
u = 1 at the sphere surface to u ≈ 0.5 at r = 1 + ℓs1 for the shortest ℓs1, which makes
the approximation δu = O(1) still reasonable. Consequently the scaling law (4.6) for
Fρω1 is unchanged at leading order. This is confirmed in figure 6 in the subrange
0.16Fr . 0.3, in which the expected −1/2 slope is observed. This is also confirmed
regarding the Pr1/4-dependence, by comparing results displayed in panels (d) and (e)
of figure 3. Indeed, for Fr = 0.1, Fρω(Pr = 7)/Fρω(Pr = 0.7) ≈ 1.85, which is close
to the expected ratio 101/4 ≈ 1.8. Similar to the R3 regime, one has to rely on the
Lagrangian energy balance established in appendix C to estimate Fρρ1, since most
of the distortion of the isopycnals takes place outside the sublayer 1 < r 6 1 + ℓs1.



In this case, equation (C 6) implies ρℓ ∼ Fr(1 + O(Re−1/2)) near the body surface,
which leaves the leading-order estimate for Fρρ unchanged, viz.

Fρρ1 ∼ Fr−1. (4.24)

The Fr−1-behaviour is observed in figure 6 for Pr = 0.7 and Fr . 0.3. Again, the
high-Re predictions suggest that the vortical component to the buoyancy-induced
drag decreases as Re−1/2, and the Archimedes-like component is independent of
the Reynolds number. However, while the former is still larger than the latter for
Re = 100 in the case of the R3 regime, the situation is reversed in the R1 regime, the
ratio Fρω/Fρρ being close to 0.5 for Fr = 0.1 according to figure 6. This situation is
also to be compared with the low-Re R1 regime in which this ratio is typically two
orders of magnitude larger. Finally, it must be noticed that, although Fρω1 varies with
the Prandtl number according to (4.6), (4.24) predicts that Fρρ1 does not. Comparing
panels (d) and (e) in figure 3 confirms that increasing Pr from 0.7 to 7 leaves Fρρ

unchanged in the low-Fr range.
The R2 regime also exists when Pr ≫ 1, provided the Froude number is such

that ℓκ ≪ ℓs ≪ ℓν . If these inequalities hold, the relevant orders of magnitude in the
vorticity equation arise from (4.3), implying ρℓ ∼ Fr2Re−1u/ℓ2

s . In the density equation,
they would be similar to those resulting from (4.19) if ℓs2 were only ‘slightly smaller’
than ℓν , since the two components of uw were evaluated near the outer edge of the
VBL in (4.19). If this were the case, the density equation would imply ρℓ ∼ (ℓs/ℓν)u.
However the decrease of both components of uw with η cannot be ignored if ℓs2 is
significantly smaller than ℓν , i.e. η(ℓs2)≪ 1. In particular, Blasius’ solution suggests
that ||u⊥

w || varies approximately linearly (respectively quadratically) with η in the
range 0.2 6 η6 0.7 (respectively 0<η< 0.2). Hence in the former range, ||u⊥

w || ∼ ℓs,
so that the corresponding advective term in (4.19) is of O(ρℓ), and the balance with
the right-hand side implies ρℓ ∼ u. Although there is no reason to expect uw to
vary as a power law of η for η> 0.2 (Blasius’ solution rather suggests a hyperbolic
tangent behaviour), the above two distinct scalings arising from the density equation
may be qualitatively gathered in the form ρℓ ∼ (ℓs/ℓν)

βu, with β decreasing from
1 to 0 as ℓs/ℓν decreases from O(1)- to O(10−1)-values. Compatibility between the
leading-order balances provided by (4.3) and (4.19) then yields

ℓs ∼ ℓs2 ≡ Re−1/2Fr2/(2+β), (4.25)

which predicts the R2 regime to take place in the Fr-range Pr−1/3 ≪ Fr ≪ 1, since
the lower bound of ℓs2 is reached with β ≈ 0. We previously showed that the estimate
δu = O(1) is still legitimate for stratification lengths significantly smaller than ℓν . So,
in the above range of ℓs/ℓν , the vortical component of the buoyancy-induced drag may
still be considered to scale as Fρω2 ∼ (Reℓs2)

−1, i.e.

Fρω2 ∼ Re−1/2Fr−2/(2+β). (4.26)

Therefore the above reasoning predicts that variations of Fρω in the high-Re R2 regime
should be close to a power law with an exponent standing in between −2/3 and −1,
depending on the actual ratio ℓs2/ℓν . For Re = 100 and Pr = 700, ℓκ ≈ 0.1ℓν and, with
β = 0, Pr−(2+β)/6 = Pr−1/3 ≈ 0.11. Consequently the R2 regime is expected to cover a
limited extent in the range 0.1 ≪ Fr ≪ 1. A subrange with a slope corresponding to an
exponent in between −2/3 and −1 is observed in the corresponding plot of figure 6,
confirming the above predictions.



Flow conditions R1 R2 R3

Re ≪ 1, Pe ≪ 1 (4.6), (4.8), Fr ≪ Re−1Pr−3/2 — (4.16), (4.18), Fr ≫ Re−1

Re ≪ 1, Pe ≫ 1 (4.6), (4.8), Fr ≪ Re1/3Pr−1/6 (4.11), (4.13), (4.16), (4.18), Fr ≫ Re−1

Pr−1/2 ≪ Fr ≪ Re−1

Re ≫ 1, Pr = O(1) (4.6), (4.24), Fr ≪ Pr−1/6 — (4.22), (4.23), Fr ≫ 1
Re ≫ 1, Pr ≫ 1 (4.6), (4.24), Fr ≪ Pr−1/6 (4.26), (4.24), (4.22), (4.23), Fr ≫ 1

Pr−1/3 ≪ Fr ≪ 1

TABLE 1. Domains of existence of the various stratification regimes. Numbers in each row
refer to the equation providing the corresponding scaling law for Fρω and Fρρ , respectively.
The bounds of some regimes have been simplified by considering only Pr in the range
[1, ∞].

The situation regarding the determination of the Archimedes-like component is
similar to that discussed in the R1 regime, so that the scaling (4.24) applies to Fρρ2.
In figure 6, the slope of the Fρρ-curve corresponding to Pr = 700 is observed to
change for Fr ≈ 0.3, similar to that of Fρω. For lower Fr, this slope is close to −1
as predicted by (4.24). Similar to the other two high-Re regimes, the scaling (4.26)
predicts that Fρω2 decreases as Re−1/2, while Fρρ2 no longer varies with the Reynolds
number. However, figure 6 shows that the former is still approximately twice as large
as the latter for Re = 100, similar to the behaviour observed in the R3 regime.

4.3. Discussion

Table 1 summarizes the predicted domain of existence of the various asymptotic
regimes derived in § § 4.1 and 4.2. It has to be noticed that, while the low-Re R1
and R2 regimes may be associated with stratification lengths significantly larger
than the body even at low Fr (thanks to the Re−1/2 and Re−1/3 dependencies of
ℓs1 and ℓs2, respectively), this is by no means the case at high Reynolds number.
Rather, the high-Re R1 and R2 regimes correspond to situations in which the flow
structure in the vicinity of the body is deeply affected by stratification, as may be
realized by coming back to the longitudinal and radial buoyancy scales introduced
in § 4.2. As deduced from (4.19) and (4.20), Ls = ℓ−1

ν ℓs, i.e. Ls ∼ Fr1/2Pr−1/4 in R1
and Ls ∼ Fr2/(2+β) in R2, with 0 6 β 6 1. According to the bounds established for
these two regimes, this implies that the longitudinal scale is such that Ls ≪ Pr−1/3

in R1 and Pr−1/3 ≪ Ls ≪ 1 in R2 whatever β. Hence in both cases, Ls is smaller
than unity, so that the characteristic scale of buoyancy effects in directions parallel to
(S) is smaller than the body scale. In other words, in these high-Re low-Fr regimes,
stratification effects are strong enough to impose a vertical layering of the flow within
the boundary layer at scales smaller than the body size.

Nevertheless, the most noticeable point regarding high-Re predictions is that Fρρ

is expected to become independent of the Reynolds number in all three regimes
while Fρω always behaves as Re−1/2, as does the ‘homogeneous’ drag, Fw. The
predicted difference in the high-Re behaviours of Fρω and Fρρ is confirmed in
figure 7 where their variations with Fr, normalized by those of Fw, are compared at
two Reynolds numbers, Re = 50 and 100. Figure 7(a) confirms that Fρω/Fw tends
to become independent of Re, especially when stratification effects are large: no
significant variation of the normalized force is observed for Fr 6 5 (respectively 62)
when Pr = 700 (respectively 0.7). Conversely, figure 7(b) confirms that Fρρ/Fw is
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still increasing with Re whatever Fr and Pr. Since Fw ∼ Re−1/2, the normalized Fρρ

component is expected to grow as Re1/2, i.e. to increase by a factor of approximately
1.4 from Re = 50 to Re = 100. The order of magnitude of the observed increase is
consistent with this estimate.

This critical difference between the low- and high-Re scalings suggests that,
although the vortical contribution Fρω generally dominates the stratification-induced
drag up to Reynolds numbers of O(102), the extra Archimedes force Fρρ becomes the
dominant contribution when Re becomes very large. However, this high-Re prediction
must of course be taken with some caution since the analysis carried out here
assumes that the flow is steady and axisymmetric, which is unlikely to be the case
when Re → ∞.

Numerical results provided in § 3 and scaling laws derived in § 4 may be combined
to obtain predictions of the drag increase, hence of the reduction of the settling/rising
speed, beyond the bounds of the Reynolds-number range explored computationally
here. To this end, one must first refer to table 1 to identify the relevant stratification
regime. With this information, the relevant equations in § 4 provide the scaling laws
for Fρω and Fρρ . The missing pre-factors are finally obtained by examining the
numerical data relevant to that regime in figure 3. Examples of this extrapolation
strategy are provided in appendix B in real flow configurations with settling Reynolds
numbers typically two orders of magnitude beyond the upper and lower bounds
considered in the simulations, respectively. Predictions obtained through this procedure
are shown to agree quantitatively well with experimental data, suggesting that this
extrapolation strategy is valid, even under conditions in which the instantaneous
flow is presumably no longer axisymmetric (Akiyama et al. 2019) and small-scale
turbulence is present.

5. Concluding remarks

In this paper, we derived a rational splitting procedure of the flow field aimed at
disentangling the various physical effects that contribute to produce an extra drag
on bodies settling with a constant speed in a linearly stratified fluid. This splitting
identifies three distinct contributions, out of which two dominate the buoyancy-induced
drag. One is due to the alteration of the flow structure by stratifications effects, and



results in an extra stress at the body surface originating in the vorticity generated by 
the baroclinic torque. The other is an Archimedes-like force due to the non-uniform 
pressure distribution resulting from the density disturbance, i.e. the distortion of the 
isopycnals, at the body surface. We applied this splitting scheme to a series of direct 
simulations spanning three decades of Reynolds number, from viscosity-dominated 
to inertia-dominated regimes. Similarly, we considered Prandtl numbers ranging from 
O(1)-values typical of gases to the value Pr = 700 characterizing the diffusion of salt 
in water. While the drag is only weakly affected by stratification effects for Fr = 10 
whatever the Reynolds and Prandtl numbers, its increase is significant even for Froude 
numbers of some units when Re ≪ 1, and exceeds by far the ‘homogeneous’ drag 
for Fr . 1 when Re ≫ 1. The relative magnitude of the two buoyancy-induced drag 
components varies with the flow parameters but the former dominates whatever Pr 
when Re is low, and at least up to Re = O(102) when Pr is large. This conclusion 
clearly challenges the possibility of deriving regime-independent models based on a 
well-defined ‘entrained’ volume of fluid to predict the drag of light settling bodies 
and particles, especially in the ocean.

To unravel the variations of the two dominant contributions to the drag increase, 
we derived their scaling laws by considering the leading-order balance resulting from 
the governing equations. We identified the existence of three different stratification 
regimes at both low and high Reynolds number, depending on the strength of 
stratification compared to that of viscous and diffusive effects. This yields a total of 
twelve scaling laws, the predictions of which are supported by the numerical results. 
Although present computations span a limited range in Reynolds number, their 
bounds are sufficiently far apart to provide quantitative predictions corresponding to 
viscous-dominated and inertia-dominated regimes, respectively. Obviously, the scaling 
laws do not suffer from the same limitation with respect to the Reynolds number. 
This is why, as we showed on several real examples, they may be combined with the 
numerical results to obtain quantitative predictions of the drag increase for Reynolds 
numbers at least two orders of magnitude beyond the bounds considered in the 
computations.

Present results were obtained assuming a prescribed settling speed. However, they 
can be used to predict the settling speed of gravity-driven bodies for which the 
drag and net weight are in balance, provided acceleration effects are small and 
the path remains approximately vertical. Under such conditions, results provided in
§§ 3 and 4 may be combined in the way discussed in appendix B to determine the
ratio KS(Re, Fr) = CD(Re, Fr)/CH

D(Re) of the actual drag coefficient corresponding
to the set of parameters (Re, Fr) to its ‘homogeneous’ counterpart, CH

D(Re). This
determination requires an iterative process since the body speed, hence Re and Fr, is
unknown. Once this process is converged, the vertical position of the body centroid
may be predicted as a function of time. Additionally, moderate acceleration effects
can be taken into account in a semi-empirical manner by incorporating the inertia
force due to the body inertia and the added-mass force evaluated with the reference
fluid density ρ0 in the vertical force balance. Numerical results discussed in § 3 are
restricted to the specific case of a sphere. In contrast, the scaling laws derived in
§ 4 are not, since the derivation only involves properties of the far-field flow at low
Reynolds number, and local properties of the boundary layer at high Reynolds number.
Consequently, the strategy used here straightforwardly generalizes to arbitrarily shaped
bodies as far as the body does not rotate. For instance, in the case of a body with no
axial symmetry about the vertical direction, separate computations with a prescribed
velocity along every relevant direction of space must first be performed to compute



the corresponding drag opposing the prescribed motion and the possible sideways
force. Having determined the pre-factors involved in the various components of Fρω

and Fρρ through this procedure allows the quasi-static force balance along each
direction to be solved, yielding all relevant components of the body velocity.
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Appendix A. Numerical techniques and validation tests

The DNS results discussed in § 3 were obtained with the JADIM code developed at
IMFT. As this code has been documented in numerous papers, we only summarize the
methods it is based on, and describe in more detail the specific developments carried
out in direct relation with the present study.

A.1. Numerical schemes

The JADIM code makes use of a finite-volume discretization of the governing
equations with a staggered arrangement of velocity and pressure nodes (Magnaudet,
Rivero & Fabre 1995). The solution of the Navier–Stokes equations is advanced
in time by combining a third-order Runge–Kutta algorithm with a semi-implicit
Crank–Nicolson scheme for the viscous terms. Incompressibility is satisfied to
machine accuracy at the end of each time step, thanks to a projection step during
which an auxiliary potential corresponding to a pressure correction is determined by
solving a Poisson equation. The resulting velocity and pressure fields are second-order
accurate in both time and space (Calmet & Magnaudet 1997).

In JADIM, spatial derivatives involved in the equation governing the transport
of a scalar are usually approached with second-order centred schemes (Calmet &
Magnaudet 1997), as are those involved in the momentum equation. However, this
approach undergoes well-known limitations when diffusive effects become very weak,
resulting in the occurrence of wiggles in the numerical solution. To preserve the
monotonicity of the density field when considering high Péclet numbers, we replaced
the centred discretization of the density disturbance ρ in the advective flux ∇ · (ρu) by
an upwind discretization based on the total variation diminishing (TVD) ‘monotonized
central’ van Leer limiter (van Leer 1977). The corresponding improvement in the
numerical solution is illustrated in figure 8. This figure shows how, on a given
grid, the sphere drag coefficient and vertical velocity field evolve in a configuration
corresponding to a strong stratification (Fr = 0.3) and a very large Péclet number
(Pe = 7 × 104). The marked, irregular oscillations originally detected in the drag
coefficient for t & 10 (figure 8a) almost disappear with the TVD scheme (figure 8b),
as do those seen in the spatial distribution of the vertical velocity in the upstream
jet.

To make sure that the use of the TVD scheme does not alter the results in regions
where molecular diffusion is likely to be important, we performed an additional test
by evaluating the Nusselt number on a spherical bubble immersed in a high-Reynolds-
number uniform flow. To achieve this test, the no-slip condition at the sphere surface
was replaced by a shear-free boundary condition, the source term u · ez − 1 was
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FIGURE 8. (Colour online) Evolution of the drag coefficient, CD, and vertical fluid
velocity, u · ez − 1, for Re = 100, Pr = 700 and Fr = 0.3. (a) Centred scheme; (b) van Leer
TVD scheme.

Pr 1 10 100

Theory (Rückenstein 1959) 79.79 252.31 797.88
Centred scheme 79.55 248.72 782.30
TVD scheme 79.55 248.79 783.66

TABLE 2. Nusselt number for the heat/mass transfer at the surface of a spherical bubble
immersed in a high-Reynolds-number uniform flow. The theoretical prediction corresponds
to the limit Re → ∞, while the numerical predictions were obtained with Re = 2500.

switched off in the density equation and the inhomogeneous Neumann condition n ·

∇ρ = n · ez was replaced by a Dirichlet boundary condition ρ = 1 on (S). If Re ≫ 1,
the flow past the bubble is close to a potential flow (up to a thin and weak boundary
layer (Moore 1963)), and the Nusselt number, Nu = (2π)−1

∫

S
n ·∇ρdS , obeys the law

Nu = (8π
−1Pe)1/2 (Rückenstein 1959). Table 2 shows that the numerical results closely

follow the theoretical prediction and are unaltered by the switch from the centred
discretization to the TVD approximation.

A.2. Grid design and grid-independence tests

Computations were carried out on a spherical grid with a non-uniform distribution of
cells in both the radial (r) and polar (θ ) directions. Along the latter, to allow for an
accurate description of the wake region, the grid is divided into two parts (figure 9a).
Region 1, within which the distribution of cells in the θ -direction is non-uniform,
corresponds to a conical subdomain with a 60◦ half-top angle and is centred on the
upper half of the flow axis. Region 2 covers the rest of the flow and has a uniform
polar distribution of cells. In region 1, the polar grid spacing is decreased as the
upper pole is approached, using a geometrical distribution with a common ratio of
1.04. In the r-direction, previous grid-independence studies (e.g. Blanco & Magnaudet
(1995), Auguste & Magnaudet (2018)) showed that the present code properly captures
boundary layers provided they are discretized over at least 4 cells. Here we went
beyond that rule of thumb and designed the grid so that 8 cells lie within the diffusive
boundary layer (or the viscous boundary layer if Pr < 1). Starting from the sphere
surface (r = 1), the grid spacing increases in the radial direction through a geometrical
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distribution with a common ratio of 1.08. The outer boundary is located at r = rmax =

40 for Re > 5 and rmax = 80 for smaller Reynolds numbers. These values result from
a series of tests which showed very little influence of the exact location of the outer
boundary on the results (especially on the drag force and the density and vertical
velocity distributions at the rear of the sphere) when rmax was taken twice as large as
the above values. The most difficult case considered in the paper, i.e. the one involving
the weakest diffusive effects and the strongest stratification influence, corresponds to
Re = 100, Pr = 700 and Fr = 0.1. With the above requirements and characteristics,
the corresponding (r, θ) grid involves 160 × 200 cells, 80 % of which lie in region 1
(figure 9b). At the sphere surface, the minimum grid spacing in the r-direction, δr, and
the grid spacing in the polar direction next to the upper pole, δθ , are identical, with
δr = δθ = 1.0 × 10−3. As the diffusive boundary layer is much thicker when Re = O(1)
or less, these values are increased up to δr = δθ = 1.0 × 10−2 when Re< 5.

Conditions also have to be specified on the outer surface of the computational
domain, r = rmax. The undisturbed velocity u = ez was prescribed on the part of this
boundary belonging to region 2, while the non-reflecting outlet condition described in
Magnaudet et al. (1995) (which makes use of a parabolized form of the momentum
equation) was prescribed on the part lying in region 1. A specific treatment was
applied to the density equation in order to prevent the spurious reflection of internal
waves on the outer boundary. This treatment consists in considering the last five cells
in the r-direction next to the outer boundary as a sponge layer within which the
density disturbance is damped thanks to a linear Rayleigh damping (Slinn & Riley
1998; Chongsiripinyo & Sarkar 2017). More specifically, a term −ψ(r)ρ was added
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to the right-hand side of (2.2), with a weighting function ψ(r) growing quadratically
with r from 0 at the inner edge of the sponge layer to 1 at r = rmax. Applying a
similar procedure to (2.3) was found to produce negligible difference in the results.
Consequently, no damping term was introduced in the momentum equation.

To make sure that results discussed in the paper are grid independent, the specific
case Re = 100, Pr = 700 and Fr = 0.1, supposed to be the most demanding, was
computed on three different grids. Starting from the Nr × Nθ = 160 × 200 grid
detailed above (grid I), two finer grids were built by increasing the number of cells
in the r-direction and redistributing the 200 cells available in the θ -direction so as
to cluster more of them in the wake region in such a way that δθ is kept identical
to δr. This yielded grid II with Nr × Nθ = 420 × 200 and δr = δθ = 5.0 × 10−4, and
grid III with the same number of cells in each direction but δr = δθ = 2.5 × 10−4.
The corresponding results for the evolution of the drag coefficient and the variations
of the vertical velocity on the wake centreline are shown in figure 10. All three
curves superimpose almost perfectly, indicating that grid I is sufficient to resolve
the boundary layer and wake regions even in this case. Consequently, this grid was
used throughout the present study for Re > 5. As already mentioned, another grid
extending up to rmax = 80 was used for cases corresponding to Re< 5; this grid has
Nr × Nθ = 150 × 200 cells and δr = δθ = 1.0 × 10−2.

A.3. Validation against available results

To complete these preliminary tests, computational predictions for the flow past a
sphere settling with a prescribed speed in a linearly stratified fluid were compared
with available results in both low- and high-Reynolds-number regimes.

As mentioned in § 4.1, a correlation for the extra drag experienced by a sphere for
Pr = 700 and Re 6 0.5 was proposed by Yick et al. (2009), based on a fit of their
computational findings. This correlation expresses the relative increase of the drag
coefficient, CD, in the form CD/C

H
D − 1, where CH

D stands for the drag coefficient
at the same Re in the homogeneous case. According to this correlation, CD/C

H
D −

1 ≈ 1.91Ri0.41, with Ri = Re/Fr2. The comparison of present results with this fit is
displayed in figure 11(a), which reveals a very good agreement down to Ri ≈ 10−2

(accuracy of the computational results reported by Yick et al. (2009) in the limit Ri →
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0 (i.e. Fr →∞) was probably limited by confinement effects, since their computational
domain extended only up to rmax = 40). We also performed a comparison with the
asymptotic prediction CD/C

H
D − 1 ≈ 0.662(PeRi)1/4 derived by Candelier et al. (2014)

in the limit ℓs1 ≫ Pe−1/3, with ℓs1 defined in (4.5). Setting Re = 0.05, Pr = 0.7 and
varying Fr over one decade, we obtained the results reported in figure 11(b). The
agreement with the theoretical prediction is excellent.

In the high-Re range, we checked our predictions against those of Hanazaki et al.
(2015) for Re = 100 and Pr = 700. Figure 12 shows how the drag coefficients
compare throughout the Fr-range considered in that reference (0.3 6 Fr 6 10). The
agreement is very good whatever Fr, with a difference less than 4 % for Fr = 0.3.
Last, figure 13 displays iso-contours of the steady vertical velocity for Fr = 0.3.
The two distributions are found to be in excellent agreement, not only regarding
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the maximum and minimum velocities in the jet that takes place downstream of the
sphere, but also for the position and shape of the various iso-contours.

Appendix B. When and where are O(1) Froude numbers encountered under field

and laboratory conditions?

Extensive laboratory experiments and DNS have been carried out over the last
two decades to describe the specific features exhibited by the stratified flow past a
sphere translating vertically. However, a good part of these investigations considered
configurations in which the sphere is towed at a constant speed. This is especially
true in simulations, since the body is usually kept fixed and experiences a prescribed
upstream velocity irrespective of its drag, hence of the strength of stratification
effects (Torres et al. 2000; Hanazaki et al. 2009b, 2015). This is also the case in
experiments in which the sphere motion is driven by a motor to which the body is
connected by rigid wires (Hanazaki et al. 2009a; Okino, Akiyama & Hanazaki 2017;
Akiyama et al. 2019). It is often non-intuitive to figure out the actual characteristics,
especially the relative body-to-fluid density contrast, 1ρ, that must be achieved for a
gravity/buoyancy-driven body to settle or rise with prescribed values of the Reynolds
and Froude numbers. Conversely, knowing the body characteristics, it is important to
estimate the density gradient, i.e. the Brunt–Väisälä frequency, required for the body
motion to be significantly affected by stratification effects.
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These questions are examined in this appendix with two distinct but complementary
goals. One is to determine the Froude number experienced by settling bodies in some
real configurations, especially in the ocean. The other is to take advantage of the
corresponding data to check whether or not results provided in §§ 3 and 4 may be
useful to predict the settling characteristics in these systems.

B.1. A high-Re example: Lagrangian floats

We start by considering a well-documented high-Re case relevant to ocean observa-
tional systems, namely a Lagrangian Argo float close to its neutral buoyancy level
(D’Asaro 2003). Argo floats are 1 m high cylinders maintained very close to this level
by extruding a piston in and out so as to adjust their internal volume to the local water
density at the desired depth. Once they reach this depth, these floats are stabilized by
opening a flexible horizontal ‘drogue’ with a frontal area A=0.8 m2. Figure 14 shows
how the net mass 1M of the float relative to the fluid varies with its vertical velocity
W, in a case with N ≈ 0.015 s−1. It emphasizes the existence of two distinct regimes:
the variation is quadratic when W>1 cm s−1, but is linear when W<1 cm s−1. Data
reported in this figure indicate for instance that floats with 1M = 0.3 kg have an
upward velocity W ≈ 9.1 cm s−1, while the threshold velocity W = 1 cm s−1 between
the two regimes is reached with 1M ≈ 0.027 kg. To compare the corresponding
conditions with those used in present simulations, the equivalent radius of the float
(with the ‘drogue’ open in both cases) is set by imposing that the frontal area be
conserved. Hence, writing A= πa2 yields a ≈ 0.50 m. Then, in the above two cases,
the relative densities of the equivalent sphere are 1ρ=1M/(4/3πa3)≈ 0.56 kg m−3

(hence 1ρ/ρ0 ≈ 5.4 × 10−4) and 0.05 kg m−3 (1ρ/ρ0 ≈ 4.9 × 10−5), respectively.



With W = 9.1 cm s−1 and the above values for N and a, Fr = W/(aN) ≈ 12 and 
Re = aW/ν ≈ 4.6 × 104. Similarly, with W = 1 cm s−1, Fr = 1.32 and Re ≈ 5 × 103.

The corresponding drag coefficients may be determined by balancing the drag and 
net weight of the body in the form

4

3
πa31ρg =

π

2
KSCH

Da2ρ0W2, (B 1)

with CH
D(Re) the drag coefficient in a homogeneous fluid, and KS(Re, Fr) =

CD(Re, Fr)/CH
D(Re) the factor by which the drag is increased by stratification effects.

The above balance may also be re-written in the form

1ρ

ρ0

=
3

8
KSCH

D

N2a

g
Fr2 ≡

3

8
KSCH

D

N2a

g

( ν

Na2

)2

Re2. (B 2)

Inserting the value of 1ρ/ρ0 corresponding to W = 9.1 cm s−1 in (B 2) yields
KSCH

D ≈ 0.86, i.e. CH
D ≈ 0.86, since stratification effects only have a small influence for

Fr = 12. Repeating the procedure with the low 1ρ/ρ0 corresponding to W = 1 cm s−1

yields KSCH
D ≈ 6.47. The homogeneous drag coefficient CH

D is almost constant when
Re is very large: for a sphere, CH

D(Re = 4.6 × 104)≈ 0.42 and CH
D(Re = 5 × 103)≈ 0.46.

Therefore, considering that CH
D does not change either throughout that range for the

float, one concludes that KS(Fr = 1.32, Re = 5 × 103) ≈ 7.5, i.e. stratification effects
increase the drag of the float by nearly one order of magnitude.

The maximum Reynolds number reached in the present simulations is 102, which
is 50 times smaller than in the above application. Therefore the corresponding flow
is likely to be three-dimensional and turbulent. Nevertheless, with all due caution,
we can extrapolate the computational predictions to the appropriate Reynolds number
by making use of the scaling laws derived in § 4. Since Fr & 1, the case under
consideration belongs to the high-Re R3 regime, so that according to (4.22) and
(4.23), Fρω ∼ Re−1/2Fr−1 and Fρρ ∼ Fr−1. As KS = 1 + Fρω/Fw + Fρρ/Fw (assuming
that the inertial contribution Fρu stays negligible whatever Re), we can make use of
these scaling laws to infer KS(Fr = 1.32, Re = 5 × 103) from the numerical results
at Re = 100, for instance with Fr = 1. According to figure 3( f ), Fρω/Fw ≈ 2.7
and Fρρ/Fw ≈ 0.8 for this set of parameters. Applying (4.22) and (4.23) and
assuming a Re−1/2-variation for Fw, we then infer Fρω/Fw ≈ 2.7Fr−1 ≈ 2.05 and
Fρρ/Fw ≈ 0.8Fr−1(Re/100)1/2 ≈ 4.3 for (Fr = 1.32, Re = 5 × 103). These estimates
imply KS(Fr = 1.32, Re = 5 × 103) ≈ 1 + 2.05 + 4.3 = 7.35, which is within 2 % of
the experimentally determined drag. Although the 2 %-difference must not be taken
too seriously because of uncertainties and possible error compensations, the overall
agreement between this extrapolation and the actual drag of the float provides an
important support to the scaling laws derived in § 4.2. Note that both Fρρ and Fρω
contribute significantly to the drag increase under the above conditions, although the
former is now roughly twice as large as the latter. This result indicates that, for
O(1)-Froude numbers, the vortical contribution to the drag increase cannot be ignored
even for Reynolds numbers as large as 5 × 103.

B.2. Low Reynolds numbers

In this case it is appropriate to write the vertical force balance in the form

4
3
πa31ρg = 6πKSνρ0aW, (B 3)
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FIGURE 15. Parameter range covered by laboratory experiments performed in a linear
stratified fluid with polystyrene spheres with a = 196 µm (experiments 1, 2, 3, 5, 6, 9 and
10) and a = 390 µm (experiments 4, 7, 8 and 11). Values of N range from N ≈ 1.7 s−1

(e.g. in runs 1 and 2), to N ≈ 3 s−1 (e.g. in runs 3 and 6). From Yick et al. (2009), with
permission from Cambridge University Press.

where KS now denotes the fraction by which the drag is increased by stratification
effects and inertial corrections (KS = 1 under usual Stokes conditions). This balance
may also be re-expressed in the form

1ρ

ρ0

=
9KS

2

νN

ga
Fr ≡

9KS

2

ν2

ga3
Re. (B 4)

To reach O(1)-Froude numbers, laboratory experiments make use of very light
spheres; e.g. polystyrene particles (Srdic-Mitrovic et al. 1999; Yick et al. 2009),
or porous agarose spheres mimicking marine snow (Kindler, Khalili & Stocker
2010; Camassa et al. 2013). In these devices, values of the Brunt–Väisälä frequency
typically two orders of magnitude larger than in the ocean, from 1.5 s−1 6 N 6 3 s−1

(Yick et al. 2009) to N ≈ 7.2 s−1 (Kindler et al. 2010), have been used to reveal
effects of stratification within reasonably tall tanks (some tens of centimetres). By
the time particles are released at the top of the tank, their relative density ratio is
typically 1 − 4 % and the corresponding Froude number is moderate or even large. As
they settle in denser water, 1ρ/ρ0 decreases, until it is reduced to some per thousand.
It is during this late stage that stratification effects become prominent. This evolution
is clearly seen in figure 15.

Runs 1 and 2 in this figure were performed with a ≈ 0.2 mm, N = 1.7 s−1 and
ν = 1.15 × 10−6 m2 s−1, in which case the relation Re/Fr = Na2/ν implies Re ≈ 0.06
for Fr = 1. According to figure 5, with Pr = 700 such conditions correspond to
the low-Re R2 regime in which (4.11) and (4.13) indicate that Fρω/Fw and Fρρ/Fw

scale as (Re/Fr2)1/3 and Re/Fr2, respectively. Nevertheless, Fρρ is two orders of
magnitude smaller than Fρω, as figure 3(c) confirms. Hence the drag enhancement
factor essentially behaves as KS(Fr = 1, Pr = 700)≈ 1 + β2Re1/3. Figure 3(c) provides
Fρω/Fw ≈ 0.5 for Re = 0.05 and Fr = 1, hence β2 ≈ 1.35. With this pre-factor one
gets KS ≈ 1.53 for Re = 0.06, which corresponds to a 53 % stratification-induced



drag increase. This is consistent with curve 1 in figure 15, in which the Froude 
number decreases gradually from 1.6 until 0.25. From (B 4) one then deduces that 
the pivotal value Fr = 1 is reached when 1ρ/ρ0 ≈ 7 × 10−3. Just as we showed in
§ B.1, the scaling laws derived in § 4.1 may also be used to predict KS for Reynolds 
numbers lower than those considered in the DNS. For instance, the extreme point 
(Fr = 0.1, Re = 0.01) reached at the end of run 3 in figure 15 also belongs to the 
R2 regime (see table 1). Setting again KS(Fr, Re, Pr = 700) ≈ 1 + 1.35(Re/Fr2)1/3, 
one infers KS(0.1, 0.01) ≈ 2.35, which reveals a 135 % drag increase yielding 
1ρ/ρ0 ≈ 1.25 × 10−3 according to (B 4). Given the large N, the decrease in 1ρ/ρ0 
from the position where Fr = 1 until that where Fr = 0.1 takes place within 2 cm in 
this experiment.

Note that if the Reynolds number becomes so small that the actual conditions rather 
belong to the R1 regime, equation (4.6) and the negligible magnitude of Fρρ imply 
KS = 1 + β1(Re/Fr)1/2Pr1/4. Results displayed in figure 3(a) for (Pr = 0.7, Re = 0.05) 
may be used to determine β1. In particular, considering the drag increase observed 
for Fr = 0.1 yields β1 ≈ 0.75. This closes the expression for KS, which may then be 
employed to obtain predictions at the desired 1ρ/ρ0 with Pr = 700.

In the upper ocean and estuarine zones, the most relevant low-Re particles, the 
fate of which is recognized to be affected by stratification effects, are the aggregates 
commonly referred to as marine snow. ‘Abnormal’ retention of marine snow is 
primarily observed in strong haloclines characterized by values of N significantly 
larger than the standard value N = 0.01 s−1 corresponding to the average vertical 
density distribution in the ocean. For instance, high concentrations of marine snow 
were observed in haloclines with 0.04 s−1 6 N 6 0.07 s−1 by MacIntyre et al. (1995) 
and Alldredge et al. (2002). They may a fortiori happen with larger N, especially in 
estuaries and fjords where values of N up to 0.2 s−1 have been reported (Farmer & 
Armi 1999). The size distribution of marine snow is broad, from less than 100 µm 
to approximately 1 cm. Its excess relative density is very low when the porosity φP 
goes beyond 0.99; e.g. 1ρ/ρ0 ≈ 1.9 × 10−4 with φP ≈ 0.996 (Ploug et al. 1999; 
Ploug, Iversen & Fischer 2008). Assuming N = 0.05 s−1 and keeping the above value 
a = 0.2 mm unchanged, the ratio Re/Fr appropriate to such aggregates is typically 
35 times smaller than in the laboratory experiments discussed above. This situation 
still belongs to the R2 regime. With 1ρ/ρ0 ≈ 1.9 × 10−4, equation (B 4) yields 
Fr ≈ 1.25, which confirms that the settling of such aggregates is deeply influenced by 
stratification effects.

B.3. Immiscible fluids with similar viscosities

Finally, it is worth mentioning that O(1)-Froude numbers are also encountered during 
the settling or rise of particles and drops through interfaces separating immiscible 
fluids with similar viscosities. In this case, capillary effects characterized by a 
capillary length ℓc = (γ /(ρ2 − ρ1)g)

1/2 are involved (ρ2 and ρ1 denote the densities of 
the heavy and light fluids, respectively, and γ is the interfacial tension). Nevertheless, 
provided a ≫ ℓc and/or inertia effects dominate the flow past the particle in the initial 
fluid, the settling or rise is governed by the particle Reynolds and Froude numbers, 
the latter being now based on an equivalent Brunt–Väisälä frequency defined as 
N2 = (2g)/a(ρ2 − ρ1)/(ρ2 + ρ1). An example of such a situation is shown in figure 16. 
In this case, the particle crosses the interface separating a silicone oil top layer from 
a bottom layer made of a water–glycerin mixture, both with viscosities in the range 
50 − 90 cP. Here, ρ2/ρ1 ≈ 1.26, 1ρ/ρ1 ≈ 1.25, Re ≈ 30, Fr ≈ 3, based on ρ1 and



FIGURE 16. A 10 mm diameter Teflon sphere settling through a silicone oil/water–
glycerin set-up, with 1ρ/ρ1 = 1.25, Re ≈ 30, Fr ≈ 3. From Pierson & Magnaudet (2018),
with permission from Cambridge University Press.

W1, the settling speed in the upper fluid. As the figure suggests, large buoyancy
effects take place in this configuration, due to the long tail entrained by the particle.
The origin of this tail is similar to the distortion of the isopycnals in the miscible
case, although the stratification is by no means linear in the present case, making
the particle velocity change over time. More specifically, the particle speed passes
through a minimum W(t)≈ 0.67W1, before it slightly re-increases up to a final value
W2 ≈ 0.75W1. Existence of this minimum is characteristic of O(1)-Fr situations in
two-layer set-ups, both with immiscible and miscible fluids (see e.g. Srdic-Mitrovic
et al. (1999) and Blanchette & Shapiro (2012) for the latter), and constitutes the
footprint of buoyancy-induced effects on the time variation of the settling speed.
Note that in this case, the large N (N ≈ 21 s−1) allows 1ρ/ρ1 to be much larger than
in miscible situations considered so far, and the large viscosity limits the Reynolds
number to a few tens, even for centimetre-size particles. The configuration just
described is encountered in many engineering applications; e.g. steel elaboration
(with impurities crossing the interface separating the liquid metal from the top slag
layer), encapsulation, the liquid–liquid extraction process in chemical engineering,
scenarios of nuclear accidents with bubbles rising through stratified corium layers,
etc.

Appendix C. Lagrangian energy balance over a fluid element

Consider a fluid element initially at rest at position x0 = (x0, y0, z0) with respect to
the sphere centre. At the current instant of time, the sphere has moved downward by
a distance t and the fluid element stands at position x = (x, y, z) with respect to the
current position of its centre. Neglecting diffusive effects, the density balance (2.2)
reduces to

D

Dt
{ρ − z + t} = 0, (C 1)

where D/Dt denotes the material derivative and the identity Dz/Dt = u · ez has been
used. Thus, assuming that the initial density disturbance is zero, the density of the



fluid element evolves according to

ρ(x, t) + t = z − z0. (C 2) 
Forming the dot product of the momentum balance (2.3) with u, the energy balance 
on the fluid element may be written in the form

D

Dt

(
u · u

2

)

= ∇ · (u · T )− Fr−2ρ
Dz

Dt
− ǫ, (C 3)

where ǫ = 1/2Re−1(∇u + ∇u
T) : (∇u + ∇u

T) is the viscous dissipation rate and T =
−pI + Re−1(∇u + ∇u

T) is the stress tensor. To reveal the complete expression of
the potential energy, one has to remove the contribution proportional to Fr−2 in the
pressure field p. This amounts to introducing the pressure field p∗ = p + Fr−2(zt − z2/2)
which does not involve any buoyancy contribution, and the corresponding stress tensor
T

∗ = −p∗
I+ Re−1(∇u + ∇u

T). Then (C 3) becomes

D

Dt

(
u · u

2

)

= ∇ · (u · T
∗)− Fr−2(ρ + t − z)

Dz

Dt
− ǫ. (C 4)

According to (C 2), one has (ρ + t − z)Dz/Dt = 1/2(D/Dt)((ρ + t)2 − z2). Considering
a fluid element that eventually comes to rest with respect to the body, integration of
(C 4) then yields

−
1

2
+

1

2
Fr−2[(ρ(x, t)+ t)2 + z2

0 − z2] =

∫ t

0

∇ · (u · T
∗) dt′ −

∫ t

0

ǫ dt′, (C 5)

where all variables in the integrands depend on the current position x
′ and time t′

along the path. The two terms on the left-hand side of (C 5) respectively represent the
total variation of the kinetic and potential energies of the fluid element along its path.
The two terms on the right-hand side respectively represent the cumulated stress
flux exchanged through its surface with the surrounding fluid and the cumulated
dissipation within the fluid element. Thanks to (C 2), the term in square brackets
reduces to 1/2[(z − z0)

2 + z2
0 − z2] = z0(z0 − z), which on average equals z2

0 on the
sphere surface. Thus if the fluid element reaches (S) or comes very close to it, the
typical magnitude of the total density disturbance, ρ + t, on (S) is ρℓ ≈ z0. In (C 5),
the dissipation rate is of O(Re−1) in the bulk and of O(1) within the boundary layer
since Re ≫ 1. Nevertheless, most of the distortion of the isopycnals takes place in
the bulk. Moreover, as ℓν ∼ Re−1/2, the time spent by the fluid element within the
boundary layer is typically smaller by a factor of O(Re−1/2) compared to the time it
spends in the bulk. Hence, viscous effects only play a secondary role in (C 5), making
variations of the potential and kinetic energies essentially in balance. Consequently
(C 5) yields

z0(z0 − z)
︸ ︷︷ ︸

O(ρ2
ℓ
)

≈ Fr2(1 + O(Re−n)), (C 6)

with n=1 if the fluid element eventually stands outside the boundary later (R3 regime)
and n = 1/2 if it stands within it (R1 and R2 regimes). This implies the leading-order
scaling ρℓ ∼ Fr in both cases, in line with the conclusion reached by Higginson et al.
(2003) in the inviscid limit.
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