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Abstract: We consider online computation of expectations of additive
state functionals under general path probability measures proportional to
products of unnormalised transition densities. These transition densities are
assumed to be intractable but possible to estimate, with or without bias.
Using pseudo-marginalisation techniques we are able to extend the particle-
based, rapid incremental smoother (PaRIS) algorithm proposed in [J. Ols-
son and J. Westerborn. Efficient particle-based online smoothing in general
hidden Markov models: The PaRIS algorithm. Bernoulli, 23(3):1951–1996,
2017] to this setting. The resulting algorithm, which has a linear complex-
ity in the number of particles and constant memory requirements, applies
to a wide range of challenging path-space Monte Carlo problems, includ-
ing smoothing in partially observed diffusion processes and models with
intractable likelihood. The algorithm is furnished with several theoretical
results, including a central limit theorem, establishing its convergence and
numerical stability. Moreover, under strong mixing assumptions we estab-
lish a novel O(nε) bound on the asymptotic bias of the algorithm, where n

is the path length and ε controls the bias of the density estimators.

Keywords and phrases: central limit theorem, exponential concentra-
tion, partially observed diffusions, particle smoothing, pseudo-marginal meth-
ods, sequential Monte Carlo methods.

1. Introduction

Let (Xn,Xn)n∈N be a sequence of general state spaces and let, for all n ∈ N, Ln :
Xn×Xn+1 → R≥0 be bounded kernels in the sense that supx∈Xn

Ln(x,Xn+1) <
∞. We will assume a dominated model where each kernel Ln has a kernel density
ℓn with respect to some σ-finite reference measure µn+1 on Xn+1. Finally, let
χ be some bounded measure on X0. In the following, we denote state-space
product sets and σ-fields by Xn := X0 × · · · × Xn and Xn := X0 � · · · � Xn,
respectively, and consider probability measures

φ0:n(dx0:n) ∝ χ(dx0)
n−1
∏

m=0

Lm(xm, dxm+1), n ∈ N, (1.1)

on these product spaces.1 Given a sequence (h̃n)n∈N of measurable functions
h̃n : Xn × Xn+1 → R, the aim of the present paper is the online approximation

1We will always use the standard convention
∏

∅
= 1, implying that φ0 ∝ χ.
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of expectations of additive functionals

hn : Xn ∋ x0:n 7→
n−1
∑

m=0

h̃m(xm, xm+1) (1.2)

under the distribution flow (φ0:n)n∈N using sequential Monte Carlo (SMC) meth-
ods.

The generality of the model (1.1) is striking. In the special case where each Ln

can be decomposed as Ln(xn, dxn+1) = gn(xn)Qn(xn, dxn+1) for some Markov
kernelQn and some nonnegative potential function gn, (1.1) yields the Feynman-
Kac path models [9], which are applied in a large variety of scientific and engi-
neering disciplines, including statistics, physics, biology, and signal processing.
In a hidden Markov model (HMM) (see, e.g., [7]), a Markov chain (Xn)n∈N with
kernels (Qn)n∈N and initial distribution χ is only partially observed through
a sequence (Yn)n∈N of observations being conditionally independent given the
Markov states. In that case, gn plays the role of the likelihood of the state Xn

given the corresponding observation Yn, and φ0:n describes the joint-smoothing
distribution, i.e., the joint posterior of the hidden states X0, . . . , Xn given cor-
responding observations (see Example 1 for details). We will adopt this termi-
nology throughout the present paper and refer to the distributions defined in
(1.1) as ‘smoothing distributions’; the problem of computing expectations of
functionals of type (1.2) under these distributions will be referred to as ‘ad-
ditive smoothing’. General state-space HMMs are prevalent in time-series and
sequential-data analysis and are used extensively in, e.g., movement ecology
[26], energy-consumption modeling [5], genomics [37], target tracking [35], en-
hancement and segmentation of speech and audio signals [32]; see also [34, 39]
and the numerous references therein. Operating on models of this sort, online
additive smoothing is instrumental for, e.g.,

– path reconstruction, i.e., the estimation of hidden states given observa-
tions. Especially in fixed-point smoothing, where interest is in computing
the expectations of h(Xm) conditionally to Y0, . . . , Yn for some given m
and test function h as n tends to infinity, a problem that can be cast into
our framework by letting, in (1.2), h̃m(xm, xm+1) = h(xm) and h̃ℓ ≡ 0 for
all ℓ 6= m.

– parameter inference, where additive smoothing is a key ingredient in the
computation of log-likelihood gradients (score functions) via Fisher’s iden-
tity or the intermediate quantity of the expectation-maximisation (EM)
algorithm; see, e.g., [7, Chapter 10]. On-the-fly computation becomes es-
pecially important in online implementations via, e.g., the online EM or
recursive maximum likelihood approaches [6, 21].

As closed-form solutions to this smoothing problem can be obtained only
for linear Gaussian models or models with finite state spaces (Xn)n∈N, loads of
papers have been written over the years with the aim of developing SMC-based
approximative solutions. Most of these works assume that each density ℓn (or, in
the HMM case, the transition density ofQn and the likelihood gn) is available in
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a closed form; however, this is not the case for a large number of interesting mod-
els, including most state-space HMMs governed by stochastic differential equa-
tions. Still, there are a few exceptions in the literature. In [17] (see also [18]), the
authors showed that asymptotically consistent online state estimation in par-
tially observed diffusion processes can be achieved by means of a random-weight
particle filter, in which unavailable importance weights are replaced by unbiased
estimates (produced using so-called generalized Poisson estimators [4]). This ap-
proach is closely related to pseudo-marginal methods [1], since the unbiasedness
allows the true, intractable target to be embedded into an extended distribu-
tion having the target as a marginal; as a consequence, the consistency of the
algorithm follows straightforwardly from standard SMC convergence results. A
similar pseudo-marginal SMC approach was developed in [25] for random effects
models with non-analytic likelihood. In [27], this technology was cast into the
framework of fixed-lag particle smoothing of additive state functionals, where
the well-known particle-path degeneracy of naive particle smoothers is avoided
at the price of a lag-induced bias. Recently, [38] designed a random-weight ver-
sion of the forward-only particle smoother proposed in [10], whose computa-
tional complexity is quadratic in the number N of particles, yielding a strongly
consistent—though computationally demanding—algorithm. Moreover, [19] ex-
tended the random-weight particle filtering approach to the particle-based, rapid
incremental smoother (PaRIS), proposed in [28] as a means for additive smooth-
ing in HMMs, yielding an algorithm with just linear complexity. The complex-
ity of the latter algorithm is appealing; however, the schedule was not furnished
with any theoretical results concerning the asymptotic properties and long-term
stability of the estimator or the effect of the weight randomisation on the accu-
racy. In addition, the algorithm is restricted to partially observed diffusions and
unbiased weight estimation, calling for strong assumptions on the unobserved
process.

In the present paper we further develop the approach in [19] and extend the
PaRIS to online additive smoothing in general models in the form (1.1) and
the scenario where the transition densities (ℓn)n∈N are intractable but can be
estimated by means of simulation. These estimates may be unbiased or biased.
In its original form, the PaRIS avoids particle-path degeneracy by alternat-
ing two sampling operations, one that propagates a sample of forward-filtering
particles and another that resamples a set of backward-smoothing statistics,
and the proposed method replaces the sampling distributions associated with
these operations by suitable pseudo-marginals. This leads to an O(N) algorithm
that can be applied to a wide range of smoothing problems, including additive
smoothing in partially observed diffusion processes and additive approximate
Bayesian computation smoothing [24]. As illustrated by our examples, it covers
the random-weight algorithms proposed in [17] and [19] as special cases and
provides, as another special case, an extension of the original PaRIS proposed
in [28] to general path models (1.1) and auxiliary particle filters. In addition, the
proposed method is furnished with a rigorous theoretical analysis, the results of
which can be summarised as follows.



/A pseudo-marginal SMC online smoothing algorithm 4

• We establish exponential concentration and asymptotic normality of the
estimators produced by the algorithm. These results extend analogous
results established in [28] for the original PaRIS (operating on fully dom-
inated HMMs using the bootstrap particle filter), and the additional ran-
domness of the pseudo-marginals can be shown to effect the asymptotic
variance through an additional positive term. The fact that our smooth-
ing algorithm, as explained above, involves two separate levels of pseudo-
marginalisation makes this extension highly non-trivial.

• Under strong mixing assumptions we establish the long-term stochastic
stability of our algorithm by showing that its asymptotic variance grows
at most linearly in n. As explained in [28, Section 1], this is optimal for
a path-space Monte Carlo estimator. As a by-product of this analysis, we
obtain a time-uniform bound on the asymptotic variance of the random-
weight particle filter.

• As mentioned above, we do not require the estimators of (Ln)n∈N to be
unbiased. The bias is assumed to be regulated by some precision parameter
ε (see (H4)), and under additional strong mixing assumptions we establish
an O(nε) bound on the asymptotic bias of the final estimator. In addition,
we obtain, as a by-product, an O(ε) bound for the random-weight particle
filter. These results are the first of its kind.

The paper is structured as follows. In Section 2 we cast, under the temporary
assumption that each ℓn is tractable, the PaRIS into the general model (1.1) and
auxiliary particle filters and define carefully the two forward and backward sam-
pling operations constituting the algorithm. Since this extension is of indepen-
dent interest, we provide the details. In Section 3 we show how pseudo-marginal
forward and backward sampling allow the temporary tractability assumption to
be abandoned. Section 4 presents all theoretical results and although an exten-
sive numerical study of the proposed scheme is beyond the scope of our paper,
we present a minor numerical illustration of the O(nε) bias bound in Section 5.
Sections A–E contain all proofs.

2. Preliminaries

We first introduce some general notation. For any (m,n) ∈ Z such that n ≤ m,
we let Jm,nK denote the set {m, . . . , n}. For arbitrary elements aℓ, ℓ ∈ Jm,nK,
we denote vectors by am:n = (am, . . . , an). The sets of measures, probability
measures, and real-valued bounded measurable functions on some given state-
space (X,X ) are denoted by M(X ), M1(X ), and F(X ), respectively. For any
measure µ and measurable function h we let µh :=

∫

h(x)µ(dx) denote the
Lebesgue integral of h with respect to µ whenever this is well defined. We will
write µ2f = (µf)2 (whereas µf2 = µ(f2)). For any finite set S, P(S) denotes
the power set of S. The following kernel notation will be used repeatedly in
the paper. Let (X,X ) and (Y,Y) be general state spaces and K : X×Y → R≥0

some transition kernel. Then K induces two operators, one acting on measurable
functions and the other on measures. More precisely, for any h ∈ F(X �Y) and
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µ ∈ M(X ), let

Kh : X ∋ x 7→
∫

h(x, y)K(x, dy), µK : Y ∋ A 7→
∫

µ(dx)K(x,A)

Moreover, let (Z,Z) be a third state space and K′ : Y × Z → R≥0 another
kernel; then the product of K and K′ is the kernel defined by

KK′ : (x,A) ∋ X×Z 7→
∫

K(x, dy)K′(y,A).

2.1. Model and aim

With notations as in Section 1, define, for each n ∈ N and m ∈ J0, nK, the kernel

Lm,n(x
′
0:m, dx0:n+1) := δx′

0:m
(dx0:m)

n
∏

ℓ=m

Lℓ(xℓ, dxℓ+1) (2.1)

on Xn × Xn+1. In addition, let Ln,n−1 = id. Note that Ln,n is different from
Ln in the sense that the former is defined on Xn × Xn+1 whereas the latter is
defined on Xn×Xn+1. We will always assume that for all n ∈ N, χL0,n−11Xn =
χL0 · · ·Ln−11Xn

> 0. Since each mapping Lm,n1Xn depends only on the last
coordinate xm, a version of this mapping with domain Xm is well defined; we will
denote the latter by the same symbol and write Lm,n1Xn(xm), xm ∈ Xm, when
needed. Using the previous notations, the path measures (1.1) can be expressed
as

φ0:n(dx0:n) =
χL0,n−1(dx0:n)

χL0,n−11Xn

, n ∈ N. (2.2)

For each n ∈ N, let φn : A ∋ Xn 7→ φ0:n(X
n−1 ×A) denote the marginal of φ0:n

with respect to the last component. Note that the path- and marginal-measure
flows can be expressed recursively as

φ0:n+1(dx0:n+1) =
φ0:nLn,n(dx0:n+1)

φ0:nLn,n1Xn+1

=
φ0:nLn,n(dx0:n+1)

φnLn1Xn+1

, n ∈ N, (2.3)

and

φn+1(dxn+1) =
φnLn(dxn+1)

φnLn1Xn+1

, n ∈ N, (2.4)

respectively. Given some sequence (h̃n)n∈N of functions h̃n : Xn × Xn+1 → R,
our aim is, as declared in Section 1, the online approximation of (φ0:nhn)n∈N,
where hn defined by (1.2).

Remark 2.1. Note that our framework is equivalent with the Feynman-Kac mod-
els considered in [9, Section 1.3], where it is assumed that each kernel Ln can
be decomposed into a Markov transition kernel Mn on Xn×Xn+1 and a poten-
tial function gn ∈ F(Xn) according to Ln(xn, dxn+1) = gn(xn)M(xn, dxn+1).
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Indeed, as soon as Ln is bounded, such a decomposition is always possible by let-
tingM(xn, dxn+1) := Ln(xn, dxn+1)/Ln(xn,Xn+1) and gn(xn) := Ln(xn,Xn+1).
However, in our case this potential function is, on the contrary to what is as-
sumed in [9], generally intractable, since Ln(xn,Xn+1) is typically unknown for
the models that we will consider. Moreover, as noted in [9, Section 1.3], the path
model (φ0:n)n∈N and the marginal model (φn)n∈N have the same mathematical
structure in the sense that the path model can be formulated as a marginal
model evolving on the spaces (X′

n,X ′
n)n∈N, where X′

n := Xn and X ′
n := Xn,

according to the initial distribution χ := χ′ and the transition kernels (L′
n)n∈N,

where L′
n := Ln,n. Still, the kernels (L

′
n)n∈N involve transitions according Dirac

measures, which makes the model formed by χ′ and (L′
n)n∈N ill-suited for naive

particle approximation; see Section 2.2.1 for further discussion.

Example 1 (state-space models). Let (X,X ) and (Y,Y) be general state spaces
and (Qn)n∈N and (Gn)n∈N sequences of Markov kernels on X×X and X2 × Y,
respectively. In addition, let χ be some probability measure on X . Consider a
fully dominated model where all Gn and Qn have transition densities gn and
qn with respect to some reference measures ν and µ on Y and X , respectively.
Let {X0, (Xn, Yn) : n ∈ N>0} be the canonical Markov chain induced by the
initial distribution χ and the Markov kernelQn(xn, dxn+1)Gn(xn, xn+1, dyn+1)
(which has no dependence on the yn variable; the same dynamics hence applies
to the first transition X0  (X1, Y1)) and denote by Pχ its law with correspond-
ing expectation Eχ. In this model, we assume that the state process (Xn)n∈N is
latent and only partially observed thought the observation process (Yn)n∈N>0 .
It can be shown that (i) the state process is itself a Markov chain with initial
distribution χ and transition kernels (Qn)n∈N and (ii) conditionally to the state
process, the observations are independent and such that the marginal distribu-
tion of Yn is given by Gn−1(Xn−1, Xn, ·) for all n. In the case where Gn−1 does
not depend on xn−1, the model is a fully adapted general state-space HMM; see
[7, Section 2.2]. In this setting, the joint-smoothing distribution at time n ∈ N is,
for a given record y1:n ∈ Yn of observations, defined as the probability measure

φ0:n〈y1:n〉(dx0:n) := L−1
n (y1:n)χ(dx0)

n−1
∏

m=0

Qm(xm, dxm+1) gm(xm, xm+1, ym+1),

(2.5)
on Xn, where

Ln(y1:n) :=

∫

· · ·
∫

χ(dx0)

n−1
∏

m=0

Qm(xm, dxm+1) gm(xm, xm+1; ym+1) (2.6)

is the observed data likelihood. Along the lines of [7, Proposition 3.1.4] one may
show that φ0:n〈Y1:n〉 is, Pχ-a.s., the conditional distribution of X0:n given Y1:n.
The marginal φn〈y1:n〉 of the joint smoothing distribution with respect to its last
component xn is referred to as the filtering distribution at time n. Consequently,
by defining kernel densities ℓn(xn, xn+1) := gn(xn, xn+1, yn+1)qn(xn, xn+1) for
all n ∈ N (while keeping dependence on observations implicit) and letting Ln



/A pseudo-marginal SMC online smoothing algorithm 7

be the induced transition kernels, the joint-smoothing distributions may be ex-
pressed in the form (2.2).

The measures (2.2) are generally intractable in two ways. First, in many
applications the transition densities (ℓn)n∈N cannot be evaluated pointwise. Re-
turning to Example 1 and the context of smoothing in state-space models, this
is typically the case when the dynamics of the latent process is governed by a
stochastic differential equation (see Example 2 below). Second, even in the case
where these transition densities are evaluable, the normalising constant in (2.2)
is generally intractable. Thus, in order to solve the smoothing problem in full
generality, one needs to be able to handle this double intractability, which is the
goal of the algorithm that we will develop next. We will proceed in two steps.
In the next section, Section 2.2, we will solve the additive smoothing problem
under the temporary assumption that the densities (ℓn)n∈N are tractable; the
resulting extension of the PaRIS proposed in [28] to general models in the form
(1.1) and auxiliary particle filters is of independent interest. Then, in Section 3,
we abandon the temporary assumption of tractability and assume that the user
has only possibly biased proxies of these densities at hand.

2.2. The PaRIS

2.2.1. Auxiliary particle filters

Assume for a moment that each transition density ℓn is available in a closed
form. Then standard SMC methods (see [8] for a recent introduction) can be
used to approximate the distribution flows (φ0:n)n∈N and (φn)n∈N using Monte
Carlo samples generated recursively by means of sequential importance sampling
and resampling operations. In order to set notations, let us recall the most
general class of such algorithms, the so-called auxiliary particle filters [31]. In
the light of Remark 2.1 it is enough to consider particle approximation of the
marginals (φn)n∈N. We proceed recursively and assume that we, at time n ∈ N,
have at hand a sample (ξin, ω

i
n)

N
i=1 of Xn-valued particles (the ξin) and associated

nonnegative importance weights (the ωi
n) such that the self-normalised estimator

φNn h := Ω−1
n

∑N
i=1 ω

i
nh(ξ

i
n), with Ωn :=

∑N
i=1 ω

i
n, approximates φnh for every

φn-integrable function h. Then plugging φNn into the recursion (2.4) yields the

approximation
∑N

i=1 πn(i, dx) of φn+1, where

πn(i, dx) ∝ ωi
nLn(ξ

i
n, dx) (2.7)

is a mixture distribution on P(J1, NK) � Xn+1. In order to form new par-
ticles approximating φn+1, we may draw, using importance sampling, pairs
(Iin+1, ξ

i
n+1)

N
i=1 of indices and particles from πn and discard the former. For

this purpose, we introduce some instrumental mixture distribution

ρn(i, dx) ∝ ωi
nϑn(ξ

i
n)Pn(ξ

i
n, dx) (2.8)

on the same space, where ϑn is a real-valued positive adjustment-weight function
on Xn and Pn is a proposal kernel on Xn ×Xn+1 such that Ln(x, ·)≪ Pn(x, ·)



/A pseudo-marginal SMC online smoothing algorithm 8

for all x ∈ Xn. We will always assume that Pn has a transition density pn
with respect to µn+1. A draw (Iin+1, ξ

i
n+1) from ρn is easily generated by first

drawing Iin+1 from the categorical distribution induced by the adjusted impor-
tance weights and then drawing ξin+1 by moving randomly the selected ancestor

ξ
Ii
n+1

n according to the proposal kernel. These steps are often referred to as
selection and mutation, respectively. Finally, each draw ξin+1 is assigned the
updated importance weight proportional to dπn/dρn(I

i
n+1, ξ

i
n+1), and the esti-

mator φNn+1h = Ω−1
n+1

∑N
i=1 ω

i
n+1h(ξ

i
n+1) approximates φn+1h for every φn+1-

integrable h. The full update, which we will refer to as forward sampling and
express in a short form as,

(ξin+1, ω
i
n+1)

N
i=1 ∼ FS((ξin, ω

i
n)

N
i=1), (2.9)

is summarised in Algorithm 1.2

Data: (ξin, ω
i
n)

N
i=1

Result: (ξin+1, ω
i
n+1)

N
i=1

1 for i = 1→ N do

2 draw Iin+1 ∼ cat({ϑn(ξℓn)ω
ℓ
n}

N
ℓ=1);

3 draw ξin+1 ∼ Pn(ξ
Iin+1
n , ·);

4 set ωi
n+1 ←

ℓn(ξ
Ii
n+1

n ,ξin+1)

ϑn(ξ
Ii
n+1

n )pn(ξ
Ii
n+1

n ,ξi
n+1

)

;

Algorithm 1: Forward sampling, FS

With this terminology, the auxiliary particle filter consists of iterated for-
ward sampling operations, and we will assume that the process is initialised by
sampling independent particles (ξi0)

N
i=1 from some proposal ν on (X0,X0) such

that χ≪ ν and letting ωi
0 := dχ/dν(ξi0) for all i.

Note that we may, in the light of Remark 2.1, obtain particle approximations
(ξi0:n, ω

i
n)

N
i=1, n ∈ N, of the smoothing distribution flow (φ0:n)n∈N by applying

the previous sampling scheme to the model formed by χ′ and (L′
n)n∈N. From

an algorithmic point of view, it is easy to see that the only change needed is to

insert, just after Line 3, the command ξi0:n+1 ← (ξ
Ii
n+1

0:n , ξin+1) storing the particle
paths (in particular, the weight-updating step on Line 4 remains the same). Still,
it is well known that repeated selection operations lead to coalescing paths
(ξi0:n)

N
i=1, and as a consequence the variance of this naive smoothing estimator

increases rapidly with n; indeed, in the case of additive state functionals, the
growth in variance is typically quadratic in n (see [28] for a discussion), which
is unreasonable from a computational point of view. We will thus rely on more
advanced, stochastically stable smoothing technology avoiding the particle-path
degeneracy problem by taking advantage of the time-uniform convergence of the
marginal samples (ξin)

N
i=1. This will be discussed in the next section.

2Mathematically, the forward sampling operation defines a Markov transition kernel, which
motivates the use of the symbol ∼ in (2.9).
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Finally, we note that the re-weighting operation on Line 4 in Algorithm 1
requires the transition density ℓn to be tractable, which is not the case in general.
We will return to the general case in Section 3.

2.2.2. Backward sampling

The following quantities will play a key role in the following. For each m ∈ N,
define the backward Markov kernel

Bm(xm+1, dxm) :=
φm(dxm) ℓm(xm, xm+1)

φm[ℓm(·, xm+1)]
(2.10)

on Xm+1 ×Xm. In addition, for each n ∈ N>0, let the Markov kernel

Tn(xn, dx0:n−1) :=

n−1
∏

m=0

Bm(xm+1, dxm) (2.11)

on Xn × Xn−1 denote the joint law of the backward Markov chain induced by
the kernels (2.10) when initialised at xn ∈ Xn. An important class of sequential
Monte Carlo joint-smoothing methods [15, 20] is based on the following result.

Lemma 2.2.

(i) For all n ∈ N and h ∈ F(Xn � Xn+1),

∫∫

φn(dxn)Ln(xn, dxn+1)h(xn, xn+1)

=

∫∫

φnLn(dxn+1)Bn(xn+1, dxn)h(xn, xn+1). (2.12)

(ii) For all n ∈ N>0 and h ∈ F(Xn), φ0:nh = φnTnh.

In the case of state-space models, the identity (ii) above is a well-known
result typically referred to as the backward decomposition of the joint-smoothing
distribution; still, as far as known to the authors, it has never been established
in the general setting considered in the present paper, and a proof of Lemma 2.2
is hence given in Section A for completeness. Importantly, as noted in [6], the
functions (Tnhn)n∈N>0 can be expressed recursively through

Tn+1hn+1(xn+1) =

∫

(Tnhn(xn) + h̃n(xn, xn+1))Bn(xn+1, dxn), n ∈ N,

(2.13)
with, by convention, T0h0 ≡ 0. Here the backward kernel Bn depends on the
marginal φn; thus, the recursion is driven by the marginal flow (φn)n∈N, which
may again be expressed recursively through (2.4). However, as these marginals
are, as already mentioned, generally intractable, exact computations need typi-
cally to be replaced by approximations. The authors of [10] propose to approxi-
mate the values of each statistic Tnhn at a random, discrete support formed by
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particles. More precisely, assume again that the transition density ℓn is tractable
and, by induction, that we at time step n have at hand a given particle sample
(ξin, ω

i
n)

N
i=1 and a set of statistics (τ in)

N
i=1 such that τ in is an approximation of

Tnhn(ξ
i
n). Then, in order to propagate the statistics (τ in)

N
i=1 forward, one up-

dates, in a first substep, the particle sample (ξin, ω
i
n)

N
i=1 recursively by forward

sampling (Algorithm 1). After forward sampling, one replaces, in the defini-
tion (2.10) of Bn, φn by the corresponding particle approximation, yielding the
updates

τ in+1 =
N
∑

j=1

Πn(i, j)(τ
j
n + h̃n(ξ

j
n, ξ

i
n+1)), i ∈ J1, NK, (2.14)

where we have defined the transition kernel

Πn(i, j) :=
ωj
nℓn(ξ

j
n, ξ

i
n+1)

∑N
j′=1 ω

j′
n ℓn(ξ

j′
n , ξin+1)

(2.15)

on J1, NK×P(J1, NK). Since computing each τ in according to (2.14) has a linear
computational complexity in the number N of particles, the overall complexity
this approach is quadratic in N . In order to deal with this significant compu-
tational burden, the authors of [28] suggest replacing summation by additional
Monte Carlo simulation. More precisely, by sampling, for each i, M ∈ N>0

independent indices (J (i,j))Mj=1 from Πn(i, ·) and replacing (2.14) by

τ in+1 =
1

M

M
∑

j=1

(

τ
J

(i,j)
n+1

n + h̃n(ξ
J

(i,j)
n+1

n , ξin+1)

)

, i ∈ J1, NK, (2.16)

the computational complexity can, as we shall soon see, be reduced significantly.
At each iteration, the self-normalised estimator Ω−1

n

∑N
i=1 ω

i
nτ

i
n serves as an

estimator of the quantity φnTnhn = φ0:nhn of interest. This second operation,
which we will refer to as backward sampling,

(τ in+1)
N
i=1 ∼ BS((ξin, τ

i
n, ω

i
n)

N
i=1, (ξ

i
n+1)

N
i=1),

is summarised in Algorithm 2.

Data: (ξin, τ
i
n, ω

i
n)

N
i=1, (ξ

i
n+1)

N
i=1

Result: (τ in+1)
N
i=1

1 for i = 1→ N do

2 for j = 1→M do

3 draw J
(i,j)
n+1 ∼ Πn(i, ·);

4 set τ in+1 ←
1
M

∑M
j=1

(

τ
J
(i,j)
n+1

n + h̃n(ξ
J
(i,j)
n+1

n , ξin+1)

)

;

Algorithm 2: Backward sampling, BS

Let us examine closer the sampling step on Line 3 in Algorithm 2. In order
to keep the algorithmic complexity at a reasonable level, the computation of the
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normalising constant of Πn(i, ·), which consists of N terms, should be avoided;
otherwise, the overall complexity remains quadratic in N . This is possible using,
e.g.,

– rejection sampling. This approach relies on the mild assumption that there
exists some measurable function c on Xn+1 such that ℓn(xn, xn+1) ≤
c(xn+1) for all xn:n+1 ∈ Xn × Xn+1. Then, following [13], Πn(i, ·) can
be sampled from by generating a candidate J∗ from cat({ωℓ

n}Nℓ=1) and
accepting the same with probability

αR :=
ℓn(ξ

J∗

n , ξin+1)

c(ξin+1)
. (2.17)

The procedure is repeated until acceptance, conditionally to which J∗

is distributed according to Πn(i, ·). Since the cat({ωℓ
n}Nℓ=1) distribution

is independent of i, this circumvents the need to compute a normalising
sum for every i. The approach may reduce significantly the computational
complexity; indeed, as shown in [13, Proposition 2], the expected overall
complexity of the algorithm is linear in N under certain assumptions.

– MCMC methods. Another possibility is to generate the variables (J
(i,j)
n+1 )

M
j=1

using the Metropolis-Hastings algorithm. For this purpose, let ρ be some
proposal transition density on J1, NK2. Then proceeding recursively, given

J
(i,j)
n+1 = J , a candidate J∗ for J

(i,j+1)
n+1 is sampled from the density ρ(J, ·)

and accepted with probability

αMH := 1 ∧ ω
J∗

n ℓn(ξ
J∗

n , ξin+1)ρ(J
∗, J)

ωJ
nℓn(ξ

J
n , ξ

i
n+1)ρ(J, J

∗)
.

If rejection, then J
(i,j+1)
n+1 = J . It is close at hand is to let ρ take the form

of an independent proposal given by the cat({ωi
n}Ni=1) distribution; in that

case αMH simplifies to

αMH = 1 ∧ ℓn(ξ
J∗

n , ξin+1)

ℓn(ξJn , ξ
i
n+1)

. (2.18)

With this approach, the variables (J
(i,j)
n+1 )

M
j=1 are conditionally dependent;

this can be counteracted by including only an m-skeleton of this sequence
in the update (2.16). An important advantage of this approach over rejec-
tion sampling is that it does not require ℓn to be dominated.

Finally, combining the forward and backward sampling operations in accor-
dance with Algorithm 3 yields a generalisation of the PaRIS proposed in [28]
to a general framework comprising Feynman-Kac models and auxiliary particle
filters.

Algorithm 3 is initialised by drawing (ξi0)
N
i=1 ∼ ν�N and letting ωi

0 = dχ/dν(ξi0)
and τ in = 0.

In this scheme, the sample size M of the backward sampling operation is an
algorithmic parameter that has to be set by the user. As shown in Section 4, the
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Data: (ξin, τ
i
n, ω

i
n)

N
i=1

Result: (ξin+1, τ
i
n+1, ω

i
n+1)

N
i=1

1 run (ξin+1, ω
i
n+1)

N
i=1 ∼ FS((ξin, ω

i
n)

N
i=1);

2 run (τ in+1)
N
i=1 ∼ BS((ξin, τ

i
n, ω

i
n)

N
i=1, (ξ

i
n+1)

N
i=1);

Algorithm 3: Full PaRIS update.

produced estimators are, for all n ∈ N, consistent and asymptotically normal
for any fixed M larger than or equal to one. In addition, for any fixed M ≥ 2
the algorithm is stochastically stable with an O(n) variance, which is optimal;
see [28, Section 1] for a discussion. These results form a nontrivial extension of
similar results obtained by [28] in the simpler setting of state-space models and
bootstrap particle filters.

Finally, we remind the reader that we have here considered the idealised
situation where the unnormalised transition densities (ℓn)n∈N can be evaluated
pointwise, which will generally not be the case for the applications we will
consider. Thus, in the next section we will approach the more general case where
these transition densities are intractable but may be estimated, and we will show
how consistent, asymptotically normal, and stochastically stable estimators can
be produced also in such a scenario by pseudo-marginalising separately the
forward and backward sampling operations.

3. Pseudo-marginal PaRIS algorithms

3.1. Pseudo marginalisation in Monte Carlo methods

Pseudo-marginalisationwas originally proposed in [3] in the framework of MCMC
methods, and in [1] the method was developed further and provided with a solid
theoretical basis. In the following we recapitulate briefly the main idea behind
this approach. Consider the problem of sampling from some target distribution
π defined on some measurable space (X,X ) and having a density with respect to
some reference measure µ. This density is assumed to be proportional to some
intractable nonnegative measurable function ℓ on X, i.e., π(dx) = λ(dx)/λ1X,
where λ(dx) := ℓ(x)µ(dx) is finite. While the target density is intractable we
assume that there exist some additional state space (Z,Z), a Markov kernel R
on X×Z, and some nonnegative measurable function X× Z ∋ (x, z) 7→ ℓ〈z〉(x)
known up to a constant of proportionality and such that for all x ∈ X,

∫

ℓ〈z〉(x)R(x, dz) = ℓ(x). (3.1)

Thus, a pointwise estimate of ℓ(x) can be obtained by generating ζ fromR(x, dz)
and computing the statistic ℓ〈ζ〉(x), the pseudo marginal. In Monte Carlo meth-
ods, the measure to replace, when necessary, the true marginal ℓ by its pseudo
marginal is referred to as pseudo marginalisation. Interestingly, even though
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pseudo marginalisation is based on the plug-in principle, it preserves typically
the consistency of an algorithm. In order to see the this, let X̄ := X × Z and
X̄ := X � Z; then one may define an extended target distribution π̄(dx̄) :=
λ̄(dx̄)/λ̄1X̄ = λ̄(dx̄)/λ1X on (X̄, X̄ ), where

λ̄(dx̄) := ℓ〈z〉(x)R(x, dz)µ(dx) (3.2)

(with x̄ = (x, z)). By (3.1), π is the marginal of π̄ with respect to the x compo-
nent. This means that we may produce a random sample (ξi)Ni=1 in X targeting
π by generating a sample (ξi, ζi)Ni=1 targeting π̄ and simply discarding the Z-
valued variables (ζi)Ni=1. Let ρ be a Markov transition density on X with respect
to the reference measure µ. Then following [1], a Markov chain (ξm, ζm)m∈N

targeting π̄ can be produced on the basis of the Metropolis-Hastings algorithm
as follows. Given a state (ξm, ζm), a candidate (ξ∗, ζ∗) for the next state is gen-
erated by drawing ξ∗ ∼ ρ(x)µ(dx) and ζ∗ ∼ R(ξ∗, dz) and accepting the same
with probability

α := 1 ∧ ℓ〈ζ∗〉(ξ∗)ρ(ξ∗, ξm)

ℓ〈ζm〉(ξm)ρ(ξm, ξ∗)
,

which is tractable. Note that α is indeed a pseudo-marginal version of the ex-
act acceptance probability 1∧ ℓ(ξ∗)ρ(ξ∗, ξm)/ℓ(ξm)ρ(ξm, ξ

∗) obtained if ℓ would
be known. Note that the auxiliary variable ζ enters α only through the esti-
mates ℓ〈ζ∗〉(ξ∗) and ℓ〈ζm〉(ξm), and since the latter has already been computed
at the previous iteration there is no need of recomputing this quantity. In the
Monte-Carlo-within-Metropolis algorithm (see again [1]) ℓ〈z〉(x) is a pointwise
importance sampling estimate of ℓ(x) based on a Monte Carlo sample ζ gen-
erated from R(x, ·). Alternatively, the extended distribution π̄ can be sampled
using rejection sampling or importance sampling, leading to consistent pseudo-
marginal formulations of these algorithms as well.

In the present paper we will generalise the pseudo-marginal approach towards
biased estimation by allowing the function

ℓε(x) :=

∫

ℓ〈z〉(x)R(x, dz) (3.3)

on X to be different from ℓ. Here ε ≥ 0 is some accuracy parameter describing
the distance between ℓε and ℓ. Such biased estimates appear naturally when the
law π is, e.g., governed by a diffusion process and the density ℓ is approximated
on the basis of different discretisation schemes; see the next section. In that
case, ε plays the role of the discretisation step size. In (3.3), also the estimator
ℓ〈z〉(x) and the kernel R(x, dz) may depend on ε, even though this is suppressed
in the notation. By introducing the possibly unnormalised measure λε(dx) :=
ℓε(dx)µ(dx) on X we may define the skew target probability measure

πε(dx) :=
λε(dx)

λε1X

on X . In the biased case, generating a sample (ξi, ζi, ωi)Ni=1 targeting (3.2) will,
by (3.3), provide a sample (ξi, ωi)Ni=1 targeting πε as a by-product. Thus, of
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outmost importance is to obtain control over the bias between π and πε, which
is possible under the assumption that there exists a constant c ≥ 0 such that
for all h ∈ F(X ) and ε,

|λεh− λh| ≤ cε‖h‖∞. (3.4)

For instance, in the diffusion process case mentioned above, a condition of type
(3.4) holds, as we will see in Section 4, typically true in the case where the
density is approximated using the Durham-Gallant estimator [16]. Using that
for all h ∈ F(X ),

πεh− πh = πεh

(

1− λε1X

λ1X

)

+
λεh− λh
λ1X

,

we straightforwardly obtain the bound

|πεh− πh| ≤ ε 2c

λ1X

‖h‖∞

on the systematic error induced by the skew model. Note that the unbiased case
(3.1) corresponds to letting ε = 0 in assumption (3.4). In the next section we
will present a solution to the main problem addressed in Section 2.1 exploring
a pseudo-marginalised version of the PaRIS discussed in Section 2.2.

3.2. Pseudo-marginal PaRIS

The algorithm that we will propose relies on the following assumption.

(H1) Let (Zn,Zn)n∈N>0 be a sequence of general state spaces. For each n ∈ N

there exist a Markov kernel Rn on Xn × Xn+1 × Zn+1 and a positive
measurable function ℓn〈z〉(xn, xn+1) on Xn × Xn+1 × Zn+1 such that for
every xn:n+1 ∈ Xn × Xn+1, drawing ζ ∼ Rn(xn:n+1, dz) and computing
ℓn〈ζ〉(xn, xn+1) yields an estimate of ℓn(xn, xn+1).

Under (H1), we denote, for every n ∈ N and xn:n+1 ∈ Xn × Xn+1, by

ℓεn(xn, xn+1) :=

∫

Rn(xn:n+1, dz) ℓn〈z〉(xn, xn+1) (3.5)

the expectation of the statistic ℓn〈ζ〉(xn, xn+1). Here ε is an accuracy param-
eter belonging to some parameter space E ⊂ R and controlling the bias of the
estimated model with respect to the true model; this will be discussed in depth
in Section 4.3. For each n ∈ N we define the unnormalised kernel

Lε
n(xn, dxn+1) = ℓεn(xn, xn+1)µn+1(dxn+1) (3.6)

on Xn ×Xn+1.
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3.2.1. Pseudo-marginal forward sampling

In the case where each ℓn is intractable, so is the mixture distribution πn defined
in (2.7). Under (H1) , we may, as in Section 3.1, aim at consistent pseudo-
marginalisation of the forward-sampling operation by applying self-normalised
importance sampling to the extended mixture

π̄n(i, dx, dz) ∝ ωi
nℓn〈z〉(ξin, x)µn+1(dx)Rn(ξ

i
n, x, dz)

on X̄n+1 := P(J1, NK) � Xn+1 � Zn+1 using the instrumental distribution

ρ̄n(i, dx, dz) ∝ ωi
nϑn(ξ

i
n)Pn(ξ

i
n, dx)Rn(ξ

i
n, x, dz)

on the same space. Note that the marginal of π̄n with respect to (i, x) is the
distribution proportional to ωi

nL
ε
n(ξ

i
n, dx), whose distance to the target πn of

interest is controlled by the precision parameter ε. Here the adjustment multi-
plier ϑn and the proposal kernel Pn of the instrumental distribution are as in
Section 2.2.1. Each draw from ρ̄n is assigned an importance weight given by the
(tractable) Radon–Nikodym derivative of π̄n to ρ̄n. It is easily seen that this
sampling operation, which is detailed in Algorithm 4, corresponds to replacing
the intractable transition density ℓn on Line 4 in Algorithm 1 by an estimate
provided by (H1); we will hence refer to Algorithm 4 as pseudo-marginal forward
sampling and express it concisely as

(ξin+1, ω
i
n+1)

N
i=1 ∼ pmFS((ξin, ω

i
n)

N
i=1).

Data: (ξin, ω
i
n)

N
i=1

Result: (ξin+1, ω
i
n+1)

N
i=1

1 for i = 1→ N do

2 draw Iin+1 ∼ cat({ϑn(ξℓn)ω
ℓ
n}

N
ℓ=1);

3 draw ξin+1 ∼ Pn(ξ
Iin+1
n , ·);

4 draw ζin+1 ∼ Rn(ξ
Iin+1
n , ξin+1, ·);

5 set ωi
n+1 ←

ℓn〈ζin+1〉(ξ
Iin+1
n , ξin+1)

ϑn(ξ
Ii
n+1

n )pn(ξ
Ii
n+1

n , ξin+1)

;

Algorithm 4: Pseudo-marginal forward sampling, pmFS.

Iterating recursively, after initialisation as in Section 2.2.1, pseudo-marginal
forward sampling yields a generalisation of the random-weight particle filter
proposed in [17] in the context of partially observed diffusion processes.

3.2.2. Pseudo-marginal backward sampling

Let us turn our focus to backward sampling. As intractability of ℓn implies
intractability of the kernel Πn (defined in (2.15)), we aim at further pseudo
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marginalisation by embedding Πn into the extended kernel

Π̄n(i, j, dz) ∝ ωj
nℓn〈z〉(ξjn, ξin+1)Rn(ξ

j
n, ξ

i
n+1, dz)

on J1, NK×P(J1, NK)�Zn+1. For every i, the marginal of Π̄n(i, ·) with respect
to the j component is, by (3.5), proportional to ωj

nℓ
ε
n(ξ

j
n, ξ

i
n+1), a distribution

that we expect to be close to Πn(i, ·) for small ε. The intractable sampling step
on Line 3 in Algorithm 2 can therefore be replaced by sampling from Π̄n(i, ·),
after which the auxiliary variables are discarded. The latter sampling operation
will be examined in detail in the next section. This approach, which we express
concisely as

(τ in+1)
N
i=1 ∼ pmBS((ξin, τ

i
n, ω

i
n)

N
i=1, (ξ

i
n+1)

N
i=1),

is summarised in Algorithm 5.

Data: (ξin, τ
i
n, ω

i
n)

N
i=1, (ξ

i
n+1)

N
i=1

Result: (τ in+1)
N
i=1

1 for i = 1→ N do

2 for j = 1→M do

3 draw (J
(i,j)
n+1 , ζ

(i,j)
n+1 ) ∼ Π̄n(i, ·);

4 set τ in+1 ←
1
M

∑M
j=1

(

τ
J
(i,j)
n+1

n + h̃n(ξ
J
(i,j)
n+1

n , ξin+1)

)

;

Algorithm 5: Pseudo-marginal backward sampling, pmBS.

It remains to discuss how to sample from the extended distribution Π̄n(i, ·).
In the following we propose two possible approaches, which can be viewed as
pseudo-marginal versions of the techniques discussed in Section 2.2.2.

Rejection sampling from Π̄n

Assume that there exists some measurable nonnegative function c on Xn+1 such
that for all (xn:n+1, z) ∈ Xn × Xn+1 × Zn+1, ℓn〈z〉(xn, xn+1) ≤ c(xn+1). Since
this condition allows the Radon–Nikodym derivative of Π̄n(i, ·) with respect to
the probability measure

ρin(j, dz) ∝ ωj
nR(ξjn, ξ

i
n+1, dz) (3.7)

on P(J1, NK) � Zn+1 to be bounded uniformly as

dΠ̄n(i, ·)
dρin

(j, z) ≤ c(ξin+1)Ωn
∑N

i′=1 ω
i′
n ℓ

ε
n(ξ

i′
n , ξ

i
n+1)

,

we may sample from the target Π̄n(i, ·) using rejection sampling. Thus, the
following procedure is iterated until acceptance: simulate a candidate (J∗, ζ∗)
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from ρin by drawing J∗ ∼ cat({ωℓ
n}Nℓ=1) and ζ

∗ ∼ R(ξJ
∗

n , ξin+1, dz); then accept
the same with (tractable) probability

ᾱR :=
ℓn〈ζ∗〉(ξJ

∗

n , ξin+1)

c(ξin+1)
.

Then conditionally to acceptance, the candidate has distribution Π̄n(i, ·). No-
tably, the probability ᾱR is obtained by simply plugging a transition density
estimate provided by (H1) into the probability αR (see (2.17)) corresponding
to the case where ℓn is known. Moreover, since the proposal density is inde-
pendent of i, the expected complexity of this sampling schedule is linear in the
number of particles (we refer again to [13]).

MCMC sampling from Π̄n

In some cases, bounding the estimator ℓn〈z〉(xn, xn+1) uniformly in z and xn
is not possible. Still, we may sample from Π̄n(i, ·) using the Metropolis-Hastings

algorithmwith ρn (in (3.7)) as independent proposal. In this case, (J
(i,j)
n+1 , ζ

(i,j)
n+1 )

M
j=1

is a Markov chain generated recursively by the following mechanism. Given a

state J
(i,j)
n+1 = J and ζ

(i,j)
n+1 = ζ, a candidate (J∗, ζ∗) for the next state is drawn

from ρn (as described above) and accepted with probability

ᾱMH := 1 ∧ ℓn〈ζ
∗〉(ξJ∗

n , ξin+1)

ℓn〈ζ〉(ξJn , ξin+1)
.

In the case of rejection, the next state is assigned the previous state. The re-
sulting Markov chain has Π̄n(i, ·) as stationary distribution and similar to the
case of rejection sampling, the acceptance probability ᾱMH can be viewed as a
plug-in estimate of the corresponding probability αMH (see (2.18)).

3.2.3. Pseudo-marginal PaRIS: full update

Combining the pseudo-marginal forward and backward sampling operations
yields a pseudo-marginal PaRIS update described in the following algorithm,
which is the main contribution of this section.

Data: (ξin, τ
i
n, ω

i
n)

N
i=1

Result: (ξin+1, τ
i
n+1, ω

i
n+1)

N
i=1

1 run (ξin+1, ω
i
n+1)

N
i=1 ∼ pmFS((ξin, ω

i
n)

N
i=1);

2 run (τ in+1)
N
i=1 ∼ pmBS((ξin, τ

i
n, ω

i
n)

N
i=1, (ξ

i
n+1)

N
i=1);

Algorithm 6: Full pseudo-marginal PaRIS update.

Algorithm 6 is initialised by drawing (ξi0)
N
i=1 ∼ χ�N and letting ωi

0 = dχ/dν(ξi0)
and τ in = 0.

We now illustrate (H1) by a few examples.
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Example 2 (Durham–Gallant estimator). As an illustration, we return to the
state-space model framework discussed in Example 1. Let X := R

dx and Y := R
dy

be equipped with their respective Borel σ-fields X and Y, and let (Xt)t>0 be
some diffusion process on X driven by the homogeneous stochastic differential
equation

dXt = µ(Xt) dt+ σ(Xt) dWt, t > 0, (3.8)

where X0 = 0, (Wt)t>0 is dx-dimensional Brownian motion, b : X → X and σ :
X→ X2 are twice differentiable with bounded first and second order derivatives.
In addition, the matrix σσ⊺ is uniformly non-degenerate. Let (Ft)t>0 be the
natural filtration generated by the process (Xt)t>0. The state sequence (Xt)t>0

is latent but partially observed at discrete time points (tn)n∈N>0 which are
assumed to be equally spaced for simplicity, i.e., tn = t1 + δ(n − 1) for all n
and some δ > 0. Abusing notations, we denote Xn := Xtn and let qδ be the
transition density of (Xn)n∈N>0 . Denote by Qδ the transition kernel induced
by qδ. In general, qδ is intractable, which makes the problem of computing
online, for a given data stream (yn)n∈N>0 in Y, the sequence of joint-smoothing
distributions (2.5) in models of this sort very challenging. Still, using the Euler
scheme, one may, for small δ, approximate qδ by

q̄δ(xn, xn+1) := φ(xn+1;xn + δµ(xn), δσ
2(xn)),

where φ(·;m, s2) is the density of the Gaussian distribution with mean m and
variance s2. Let Q̄δ be the transition kernel induced by q̄δ. Since the approxi-
mation q̄δ is poor for δ not small enough, we may instead, as suggested in [16],
pick some finer step size ε ∈ Eδ := {δ/n : n ∈ N>0} and estimate the density
qδ(xn, xn+1) by qδ〈ζ〉(xn, xn+1), where ζ = (ζi)Li=1 are independent draws from
some proposal r(xn, xn+1, z) dz on X2 ×X δ/ε−1 and

qδ〈z〉(xn, xn+1) :=
1

L

L
∑

i=1

∏δ/ε
k=1 q̄ε(z

i
k−1, z

i
k)

r(xn, xn+1, zi)
,

with zi = (zi1, . . . , z
i
δ/ε−1) and, by convention, zi0 = xn and ziδ/ε = xn+1. In [16],

r(xn, xn+1, z) dz is the distribution of a discretised (possibly modified) Brownian
bridge, i.e., Brownian motion started at xn and conditioned to terminate at
xn+1.

Let Yn denote the Y-valued observation at time tn. We will consider two
different models for the observation process (Yn)n∈N.

Case 1

First, assume that for all n ∈ N>0,

Yn | Ftn ∼ gn−1(Xn−1, Xn, yn) dyn,

where gn−1 is some tractable transition density with respect to Lebesgue mea-
sure. In this case, (H1) holds with the estimator

ℓn〈z〉(xn, xn+1) = qδ〈z〉(xn, xn+1)gn(xn, xn+1, yn+1)
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and the instrumental kernel

Rn(xn, xn+1, dz) =

L
∏

i=1

r(xn, xn+1, z
i) dzi.

Finally, we note that

Lε
n(xn, dxn+1) = Q̄δ/ε

ε (xn, dxn+1) gn(xn, xn+1, yn+1), (3.9)

which is generally intractable.

Case 2

Alternatively, we may assume that (Yn)n∈N>0 are discrete observations of the
solution to the stochastic differential equation

dYt = µ̃(Xt, Yt) dt+ σ̃(Xt, Yt) dW̃t, t > 0,

where Y = 0, (W̃t)t>0 is dy-dimensional Brownian motion independent of
(Wt)t>0 and µ̃ : X × Y → Y and σ̃ : X × Y → Y2 are known functions which
are twice differentiable with bounded first and second order derivatives. In ad-
dition, the matrix σ̃σ̃⊺ is uniformly non-degenerate. Denote by pδ the transition
density of (Xt, Yt)t>0. In this case, the joint-smoothing distributions can, for
a given data stream (yn)n∈N>0 , be expressed as path measures (2.2) induced
by ℓn(xn, xn+1) = pδ(xn, yn, xn+1, yn+1), n ∈ N. Since also pδ is generally in-
tractable we subject the bivariate process to Euler discretisation, yielding the
approximation

p̄δ(xn, yn, xn+1, yn+1)

:= φ
(

xn+1, yn+1; (xn + δµ(xn), yn + δµ̃(xn, yn))
⊺, δ diag(σ2(xn), σ̃

2(xn, yn))
)

(3.10)

of pδ. Denote by P̄δ the Markov kernel induced by p̄δ. In the case of sparse
observations we may improve the approximation p̄δ by picking again some
finer step size ε ∈ Eδ and computing (by swapping, in (3.9), q̄δ for p̄δ and
letting r(xn, yn, xn+1, yn+1, z) dz be the distribution of a discretised, Rdx+dy -
valued Brownian bridge started in (xn, yn) and conditioned to terminate in
(xn+1, yn+1)) the Durham–Gallant estimator pδ〈z〉. In this case, ℓn〈z〉(xn, xn+1) =
pδ〈z〉(xn, yn, xn+1, yn+1), which yields

Lε
n(xn, dxn+1) = p̄δ/εε (xn, yn, xn+1, yn+1) dxn+1, (3.11)

where p̄
δ/ε
ε denotes the transition density of (the δ/ε-skeleton) P̄

δ/ε
ε .

Example 3 (the exact algorithm). We consider again the partially observed
diffusion process model in Example 2. In the special case where the diffusion
process governed by (3.8) can be transformed into one with a constant diffusion
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term through the Lamperti transformation, it was shown in [4, 17] how unbiased
estimation of qδ can be achieved using generalised Poisson estimators. In our
setup, this simply yields ℓεn = ℓn for all n. We refer to the mentioned papers for
details.

Example 4 (approximate Bayesian computation smoothing). Consider smooth-
ing in a fully dominated general state-space HMM for which the state likelihood
functions (gn(·, yn))n∈N are intractable (or expensive to evaluate) for any given
sequence (yn)n∈N of observations in R

dy . In the case where it is possible (or
faster) to sample observation emissions according to the kernels (Gn)n∈N one
may then take an approximate-Bayesian-computation (ABC) approach (see e.g.
[23]), and replace any value gn(xn, yn) by a point estimate κε(ζn − yn), where
ζn ∼ Gn(xn, ·) and κε is a dy-dimensional kernel density scaled by some band-
width ε > 0. In [24], the authors apply the forward-only smoothing approach
of [10] to this approximate model, yielding a particle-based ABC smoothing al-
gorithm. Also this framework is covered by (H1), by letting ℓn〈z〉(xn, xn+1) =
qn(xn, xn+1)κε(z − yn+1) and Rn(xn, xn+1, dz) = Gn(xn+1, dz). In this case,

Lε
n(xn, dxn+1) = Qn(xn, dxn+1)

∫

κε(z − yn+1)Gn(xn+1, dz). (3.12)

4. Theoretical results

4.1. Convergence of pseudo-marginal PaRIS estimates

4.1.1. Convergence of Algorithm 6

In [28], the authors established strong consistency and asymptotic normality
of the PaRIS in the framework of fully dominated general state-space HMMs
and the bootstrap particle filter, i.e., in the simple case where ϑn ≡ 1 and
pn ≡ qn for all n. In the following we will extend these results to the consid-
erably more general setting comprising models (1.1) and the pseudo-marginal
PaRIS in Algorithm 6. More precisely, we will show that each weighted sample
(ξin, τ

i
n, ω

i
n)

N
i=1, n ∈ N, produced by Algorithm 6 satisfies exponential concen-

tration (Theorem 4.1) and asymptotic normality (Theorem 4.2) with respect to
the expected additive functional hn under the skew path model

φε0:n(dx0:n) ∝ χ(dx0)
n−1
∏

m=0

Lε
m(xm, dxm+1), n ∈ N.

Even though these results are established along the lines of the corresponding
proofs in [28], it is the matter of non-trivial adaptations. As explained in Sec-
tion 1, a random-weight particle filter (iterated pseudo-marginal forward sam-
pling) can be viewed as a standard particle filter evolving on an extended state
space comprising also the states of the auxiliary variables, and hence its con-
vergence follows from standard SMC convergence results [17]. On the contrary,
since Algorithm 6 involves two levels of pseudo marginalisation (with respect to
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both the forward-sampling and the backward-sampling operations), it cannot
be described equivalently as a special instance of the original PaRIS (even in
its general form given by Algorithm 3) operating on an extended space. Thus,
there is no free lunch when it concerns the theoretical analysis of this scheme.
Furthermore, in the case of fully dominated HMMs and when forward sampling
is guided by the bootstrap filter, which was the setting in [28], the conditional
distribution of the particles given their ancestors (i.e., the marginal of ρn in
(2.8) with respect to x) coincides, at any time point n, with the denominator of
the backward kernel. Mathematically, this enables a cancellation that facilitates
the analysis significantly. However, this simplification is not possible once the
particle dynamics is guided by general proposal kernels, which is necessarily the
case in Algorithm 6. This complicates the analysis; see Remark C.4 for further
details.

To be able to describe our results in full detail, we also need to introduce, for
every n ∈ N, the skew backward Markov kernels

Bε
n(xn+1, dxn) :=

φεn(dxn) ℓ
ε
n(xn, xn+1)

φεn[ℓ
ε
n(·, xn+1)]

on Xn+1 ×Xn as well as the joint law

Tε
n(xn, dx0:n−1) :=

n−1
∏

m=0

Bε
m(xm+1, dxm) (4.1)

on Xn ×Xn−1.
The analysis will be carried through under the following assumption.

(H2) For all n ∈ N, the functions ϑn and

wn : Xn × Xn+1 × Zn+1 ∋ (xn, xn+1, z) 7→
ℓn〈z〉(xn, xn+1)

ϑn(x)pn(xn, xn+1)
,

wε
n : Xn × Xn+1 ∋ (xn, xn+1) 7→

ℓεn(xn, xn+1)

ϑn(xn)pn(xn, xn+1)

are bounded. So is also w−1 : X0 ∋ x0 7→ dχ/dν(x0).

Hoeffding inequality

Our first theoretical result is the following Hoeffding-type concentration inequal-
ity, which also plays a critical role for the derivation of the central limit theorem
(CLT) in Theorem 4.2. For every n ∈ N, let A(Xn) denote the set of additive
functionals (1.2) such that h̃m ∈ F(Xm � Xm+1) for all m ∈ J0, n− 1K.

Theorem 4.1. Assume (H1–2) . Then for every n ∈ N, ε ∈ E, hn ∈ A(Xn),
and M ∈ N>0 there exists (cn, dn) ∈ R

2
>0 such that for all N ∈ N>0 and ǫ > 0,

P

(∣

∣

∣

∣

∣

N
∑

i=1

ωi
n

Ωn
τ in − φε0:nhn

∣

∣

∣

∣

∣

≥ ǫ
)

≤ cn exp
(

−dnNǫ2
)

.
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The proof of Proposition 4.1, which is an adaptation of the proof of [28,
Theorem 1], is presented in Section B. Since we proceed by induction and the
objective functions (hn)n∈N are additive, it is, following [28], necessary to estab-

lish the result for estimators in the form
∑N

i=1 ω
i
n{fn(ξin)τ in+ f̃n(ξin)}/Ωn, where

(fn, f̃n) ∈ F(Xn)
2. This is done in Proposition B.1, and Theorem 4.1 follows as

a corollary of that result.
The previous bound describes the pointwise convergence of the estimator

delivered by Algorithm 6 as N grows for n fixed, and here no attempt has
been made to obtain a bound that is uniform in n. As we shall see shortly, in
Theorem 4.6, the numerical stability of the algorithm can instead be established
by bounding the asymptotic variance of the estimator. Finally, note that the
previous bound implies that the estimator

∑N
i=1 ω

i
nτ

i
n/Ωn tends P-a.s. to φε0:nhn

as N tends to infinity.

Central limit theorem

We now focus on the asymptotic properties of Algorithm 6 and furnish, in
Theorem 4.2 below, this scheme with a CLT. On the basis of this result, the
stochastic stability of the algorithm is expressed by establishing, in Theorem 4.6,
an O(n) bound on the asymptotic variances. In order to be able to state these
results accurately, we need some additional notation. First, let for (xn, xn+1) ∈
Xn × Xn+1,

ς2n(xn, xn+1)

:=
1

wε
n(xn, xn+1)

∫

{wn(xn, xn+1, z)− wε
n(xn, xn+1)}2 Rn(xn, xn+1, dz) (4.2)

denote the conditional relative variance of the (random) weight ωi
n+1 given

ξ
Ii
n

n = xn and ξin+1 = xn+1. In addition, for each n ∈ N and m ∈ J0, nK, define
the kernel

R
ε
m,n(x

′
m, dx0:n) := δx′

m
(dxm)Tε

m(xm, dx0:m−1)

n−1
∏

ℓ=m

Lε
ℓ(xℓ, dxℓ+1) (4.3)

on Xm ×Xn as well as the centered version

R̄
ε
m,nh(xm) := R

ε
m,n(h− φε0:nh)(xm) (4.4)

on the same space.
The following is the main result of this section.

Theorem 4.2. Assume (H1–2) . Then for all n ∈ N, ε ∈ E, M ∈ N>0, and
hn ∈ A(Xn),

√
N

(

N
∑

i=1

ωi
n

Ωn
τ in − φε0:nhn

)

D−→ σn(hn)Z,
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where Z is standard normally distributed and

σ2
n(hn) :=

χ(w−1R̄
ε
0,nhn)

2

(χLε
0,n−11Xn)2

+ σ2
n〈(wε

ℓ )
n−1
ℓ=0 〉(hn) + σ2

n〈(ς2ℓ )n−1
ℓ=0 〉(hn) (4.5)

and

σ2
n〈(ϕℓ)

n−1
ℓ=0 〉(hn) :=

n−1
∑

m=0

φεmϑmφ
ε
mLε

m(ϕm[R̄
ε
m+1,nhn]

2)

(φεmLε
m,n−11Xn)2

+

n−1
∑

m=0

m
∑

ℓ=0

φεmϑmφ
ε
ℓL

ε
ℓ{Bε

ℓ(T
ε
ℓhℓ + h̃ℓ −Tε

ℓ+1hℓ+1)
2Lε

ℓ+1,m(Bε
mϕm[Lε

m+1,n−11Xn ]2)}
Mm−ℓ+1(φεℓL

ε
ℓ,m−11Xm)(φεmLε

m,n−11Xn)2

(4.6)

for any sequence (ϕℓ)ℓ∈N of measurable functions ϕℓ : Xℓ × Xℓ+1 → R≥0.

Remark 4.3. The first term of (4.5) corresponds to the contribution of the
initialisation step to the asymptotic variance. This term is incorrectly missing
in the asymptotic-variance expressions given in [29, Theorem 3 and Corollary 5].
The last term corresponds to the additional variance induced by the estimation
of (ℓn)n∈N regulated by (H1). Finally, as we shall see in Section 4.1.2, the first
two terms correspond jointly to the variance of the ideal PaRIS in Algorithm 3,
for which (ℓn)n∈N are assumed to be known and tractable.

Theorem 4.2 is established in Section C. The structure of the proof is adopted
from [29] (however, we remark again that it is, as explained above, the matter
of a non-trivial extension), and the CLT in Theorem 4.2 is obtained directly as

a corollary of a more general CLT for estimators of form
∑N

i=1 ω
i
n{fn(ξin)τ in +

f̃n(ξ
i
n)}/Ωn, where (fn, f̃n) ∈ F(Xn)

2; see Theorem C.1.

4.1.2. Convergence of Algorithm 4

Our analysis provides, as a by-product, also a CLT for the random-weight par-
ticle filter obtained by iterating the forward-sampling operation in Algorithm 4;
indeed, this result, which is similar to [17, Theorem 3], follows immediately by
letting fn ≡ 0 in Theorem C.1, and we state it below for completeness.

Proposition 4.4. Assume (H1–2) and let (ξin, ω
i
n)

N
i=1, n ∈ N, be generated by

Algorithm 4. Then for all n ∈ N, ε ∈ E, and h ∈ F(Xn),

√
N

(

N
∑

i=1

ωi
n

Ωn
h(ξin)− φεnh

)

D−→ σ̃n(h)Z,

where Z is standard normally distributed and

σ̃2
n(h) :=

χ{w−1L
ε
0 · · ·Lε

n−1(h− φεnh)}2
(χLε

0 · · ·Lε
n−11Xn

)2
+ σ̃2

n〈(wε
ℓ )

n−1
ℓ=0 〉(h) + σ̃2

n〈(ς2ℓ )n−1
ℓ=0 〉(h)

(4.7)
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and

σ̃2
n〈(ϕℓ)

n−1
ℓ=0 〉(h) :=

n−1
∑

m=0

φεmϑmφ
ε
mLε

m(ϕm[Lε
m+1 · · ·Lε

n−1(h− φεnh)]2)
(φεmLε

m · · ·Lε
n−11Xn

)2
(4.8)

for any sequence (ϕℓ)ℓ∈N of measurable functions ϕℓ : Xℓ × Xℓ+1 → R≥0.

4.1.3. Convergence of Algorithm 3

Importantly, Theorem 4.2 provides, as another by-product, also a CLT for the
ideal PaRIS in Algorithm 3. Indeed, in the case where every ℓn is tractable, we
may set

ℓn〈z〉(xn, xn+1) = ℓn(xn, xn+1) (4.9)

for all z and define Rn arbitrarily. This implies that the relative variance (4.2)
is identically zero, which eliminates the last term of (4.5). Thus, in this case the
asymptotic variance is given by the first two terms of (4.5), but now induced by
the original dynamics (Ln)n∈N (as (4.9) implies that also ℓεn = ℓn). This result
is formulated in the following corollary, where we have defined, for each n ∈ N

and m ∈ J0, nK, the kernel

Lm,n(x
′
m, dx0:n) := δx′

m
(dxm)Tn(xm, dx0:m−1)

n−1
∏

ℓ=m

Lℓ(xℓ, dxℓ+1) (4.10)

on Xm ×Xn as well as the centered version

L̄m,nh(xm) := Lm,n(h− φ0:nh)(xm)

on the same space.

Corollary 4.5. For each n ∈ N, assume that the functions ϑn and

w̄n : Xn × Xn+1 ∋ (xn, xn+1) 7→
ℓn(xn, xn+1)

ϑn(x)pn(xn, xn+1)

are bounded and let (ξin, τ
i
n, ω

i
n)

N
i=1, n ∈ N, be generated by Algorithm 3. Then

for all n ∈ N, ε ∈ E, M ∈ N>0, and hn ∈ A(Xn),

√
N

(

N
∑

i=1

ωi
n

Ωn
τ in − φ0:nhn

)

D−→ σ̄n(hn)Z,

where Z is standard normally distributed and

σ̄2
n(hn) :=

χ(w−1L̄0,nhn)
2

(χLε
0,n−11Xn)2

+

n−1
∑

m=0

φmϑmφmLm(w̄m[L̄m+1,nhn]
2)

(φmLm,n−11Xn
)2

+

n−1
∑

m=0

m
∑

ℓ=0

φmϑmφℓLℓ{Bℓ(Tℓhℓ + h̃ℓ −Tℓ+1hℓ+1)
2Lℓ+1,m(Bmw̄m[Lm+1,n−11Xn ]2)}

Mm−ℓ+1(φℓLℓ,m−11Xm
)(φmLm,n−11Xn

)2
.

(4.11)

Corollary 4.5 extends [29, Corollary 5] to general models (1.1) and auxiliary-
particle-filter-guided forward sampling.
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4.2. Long-term stochastic stability

In this section we establish the long-term stochastic stability of Algorithm 6
by providing an O(n) bound on the sequence (σ2

n(hn))n∈N for M ≥ 2. Using
M ≥ 2 is critical, since, as noted in [28], using M = 1 in the PaRIS leads to
a path-degeneracy phenomenon similar to that of the naive smoother described
in Section 2.2.1; we refer to [28, Section 3.1] for a detailed discussion. Still,
the variance bounds that we will present are of order n(1 + 1/(M − 1)), which
means that large M do not serve to reduce the variance significantly. This is in
good agreement with simulations, where M = 2 leads generally to good results.
In addition, we shall see that our analysis, which is carried through in detail
in Section E, yields, as by-products, a similar bound for the ideal PaRIS in
Algorithm 3 as well as a time-uniform bound on the sequence (σ̃2(h))n∈N of
asymptotic variances of the random-weight-particle-filter estimators generated
by Algorithm 4. As far as we know, the latter result is the first of its kind. The
analysis will be carried through under the following strong-mixing assumption,
which is now classical (see, e.g., [9, Chapter 4] and [7, Section 4.3]) and typically
requires the state spaces (Xn)n∈N to be compact sets.

(H3) There exist constants 0 < σ− < σ+ < ∞ such that for all m ∈ N and
(xm, xm+1) ∈ Xm × Xm+1,

σ− ≤ ℓm(xm, xm+1) ≤ σ+

and
σ− ≤ inf

ε∈E
ℓεm(xm, xm+1), sup

ε∈E
ℓεm(xm, xm+1) ≤ σ+.

Note that under (H3) , each reference measure µm is finite; we may hence,
without loss of generality, assume that each µm is a probability measure. Under
(H3), define the mixing rate

ρ := 1− σ−
σ+

(4.12)

as well as the constants

c(σ±) :=
1

ρ2(1− ρ)5σ−
, d(σ±) :=

1

(1− ρ)4σ2
−

(

2 +
1

1− ρ

)2

,

and

c̃(σ±) :=
1

(1 − ρ)3σ−

(

1

ρ2(1− ρ2) + 1

)

.

Having introduced these quantities, we are ready to present the main result
of this section.

Theorem 4.6. Assume (H1–3). Then for every ε ∈ E, M ≥ 2, hn ∈ A(Xn),
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and sequence (ϕℓ)ℓ∈N of bounded measurable functions ϕℓ : Xℓ × Xℓ+1 → R≥0,

lim sup
n→∞

1

n
σ2
n〈(ϕℓ)

n−1
ℓ=0 〉(hn)

≤
(

c(σ±) +
1

M − 1
d(σ±)

)

sup
ℓ∈N

‖h̃ℓ‖2∞ sup
ℓ∈N

‖ϑℓ‖∞ sup
ℓ∈N

‖ϕℓ‖∞.

Using Theorem 4.6, O(n) bounds on the asymptotic variances of Algorithm 6
and Algorithm 3 are readily obtained.

Corollary 4.7. Assume (H1–3) . Then for every ε ∈ E, M ≥ 2, and hn ∈
A(Xn),

lim sup
n→∞

1

n
σ2
n(hn)

≤
(

c(σ±) +
1

M − 1
d(σ±)

)

sup
ℓ∈N

‖h̃ℓ‖2∞ sup
ℓ∈N

‖ϑℓ‖∞
(

sup
ℓ∈N

‖wε
ℓ‖∞ + sup

ℓ∈N

‖ς2ℓ ‖∞
)

+
1

ρ2(1− ρ)4(χ1X0)
2
sup
ℓ∈N

‖h̃ℓ‖2∞. (4.13)

Corollary 4.8. Assume (H1–3). Then for every M ≥ 2 and hn ∈ A(Xn),

lim sup
n→∞

1

n
σ̄2
n(hn) ≤

(

c(σ±) +
1

M − 1
d(σ±)

)

sup
ℓ∈N

‖h̃ℓ‖2∞ sup
ℓ∈N

‖ϑℓ‖∞ sup
ℓ∈N

‖w̄ℓ‖∞

+
1

ρ2(1− ρ)4(χ1X0)
2
sup
ℓ∈N

‖h̃ℓ‖2∞,

where (σ̄2
n)n∈N is given by (4.11).

Finally, we provide, for completeness, a time-uniform bound on the asymp-
totic variances of the random-weight particle filter corresponding to repeated
forward sampling (Algorithm 4). This bound is obtained more or less for free
while establishing Theorem 4.6 (see Section E for details).

Proposition 4.9. Assume (H1–2) and (H3) . Then for every ε ∈ E and
h ∈ F(Xn),

σ̃2
n(h) ≤ c̃(σ±)‖h‖2∞ sup

ℓ∈N

‖ϑℓ‖∞
(

sup
ℓ∈N

‖wε
ℓ‖∞ + sup

ℓ∈N

‖ς2ℓ ‖∞
)

+ ‖h‖2∞
ρ2n

ρ4(1− ρ)2(χ1X0)
2
,

where (σ̃2
n)n∈N are given by (4.7).

4.3. Bounds on asymptotic bias

In the previous section we saw that asymptotically, as N tends to infinity, the
estimator produced by n iterations of Algorithm 6 converges to the ‘skew’ ex-
pectation φε0:nhn. In this part we will study the discrepancy between φε0:nhn and
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φ0:nhn and establish an O(nε) bound on the same. The analysis will be per-
formed under the assumption that the precision parameter ε controls, uniformly
in n, the bias of the estimators provided by (H1) in the following sense.

(H4) There exists a constant c > 0 such that for all n ∈ N, ε ∈ E , h ∈ F(Xn �
Xn+1), and x ∈ Xn,

|Lε
nh(x) − Lnh(x)| ≤ cε‖h‖∞.

Example 5 (Durham–Gallant estimator, cont.). We check (H4) for the Durham–
Gallant estimator in Example 2.

Case 1

Assume that the emission densities of the model are uniformly bounded, i.e.,
there exists σ+ ∈ R>0 such that ‖gn‖∞ ≤ σ+ for all n ∈ N. In the case of
the Euler scheme and under the given assumptions on equation (3.8), it can
be shown that there exist cδ > 0 and dδ > 0 such that for all ε ∈ Eδ and
(xn, xn+1) ∈ X2,

∣

∣

∣

∣

qδ(xn, xn+1)−
∫

Q̄δ/ε−1
ε (xn, dx) q̄ε(x, xn+1)

∣

∣

∣

∣

≤ cδ
ε

δ
exp

(

−dδ‖xn+1 − xn‖2
)

;

(4.14)
see [2] (see also [11] for an application to SMC methods). Thus, using (3.9), for
all xn and h ∈ F(X�2),

|Lε
nh(xn)− Lnh(xn)|

≤ cδ
ε

δ

∫

h(xn, xn+1)g(xn, xn+1, yn+1) exp
(

−dδ‖xn+1 − xn‖2
)

dxn+1

≤ cδ
ε

δ

(

π

dδ

)dx/2

σ+‖h‖∞.

Case 2

The second case can be treated straightforwardly by combining the bound
(4.14), applied to the bivariate process (Xt, Yt)t>0, with (3.11). This provides
the existence of constants c̃δ > 0 and d̃δ > 0 such that for all ε ∈ Eδ and
(xn, yn, yn+1) ∈ X× Y2 and h ∈ F(X�2),

|Lε
nh(xn)− Lnh(xn)|

≤ c̃δ
ε

δ
exp

(

−d̃δ‖yn+1 − yn‖2
)

∫

h(xn, xn+1) exp
(

−d̃δ‖xn+1 − xn‖2
)

dxn+1

≤ c̃δ
ε

δ

(

π

d̃δ

)dx/2

‖h‖∞.
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Example 6 (the exact algorithm, cont.). In this case, the estimator is unbiased;
thus, (H4) holds true for ε = 0.

Example 7 (ABC smoothing, cont.). In [24], the authors carry through their
theoretical analysis under the assumption that each emission density gn is Lip-
schitz in the sense that there exists some constant L ∈ R>0 such that

sup
xn∈Xn

|gn(xn, yn)− gn(xn, y′n)| ≤ L‖yn − y′n‖1 (4.15)

for all yn and y′n in R
dy . For the purpose of illustration, assume that κε is a zero-

mean multivariate normal distribution with covariance matrix ε2Idy
for ε > 0.

It is then easily shown that the condition (4.15) implies (H4); indeed, in this
case, for all xn ∈ Xn and h ∈ F(Xn � Xn+1), using (3.12),

|Lε
nh(xn)− Lnh(xn)| ≤ L‖h‖∞

∫

κε(z − yn+1)‖z − yn+1‖1 dz ≤ εdyL‖h‖∞.

Under (H3) and (H4) we may establish the next theorem, whose proof is
postponed to Section D.

Theorem 4.10. Assume (H1) and (H3–4). Then for all n ∈ N, ε ∈ E, and
hn ∈ A(Xn),

ε−1
∣

∣φε0:nhn − φ0:nhn
∣

∣ ≤ 2c
σ+
σ2
−

n−1
∑

k=0

‖h̃k‖∞
(

n−1
∑

m=1

ρ|k−m|−1 + 1

)

≤ 2cn
σ+
σ2
−

(

1 +
1

ρ
+

2

1− ρ

)

sup
k∈J0,n−1K

‖h̃k‖∞,

where c is the constant in (H4).

In the case where supk∈N ‖h̃k‖∞ <∞, the bound provided by Theorem 4.10 is

O(n). Moreover, by letting h̃k ≡ 0, for k ∈ J0, n−2K and h̃n−1(xn−1, xn) = h(xn)
for some given objective function h ∈ F(Xn), Theorem 4.10 provides, as a by-
product, the following uniform error bound for the marginals (a result referred
to as the filter sensitivity in the case of parametric state-space models).

Corollary 4.11. Assume (H1) and (H3–4). Then for all n ∈ N, ε ∈ E, and
h ∈ A(Xn),

ε−1
∣

∣φεnh− φnh
∣

∣ ≤ 2c
σ+
σ2
−
‖h‖∞

(

1 +
1

ρ(1− ρ)

)

.

Remark 4.12. Consider now a parameterised version of the model, where the
transition densities (ℓn;θ)k∈N are indexed by some parameter θ belonging to
some parameter space Θ being a subset of Rd. Assume further that all (ℓn;θ)n∈N

are differentiable with respect to θ and such that for all n ∈ N, xn ∈ X, and
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h ∈ F(Xn+1),

∇θ

∫

ℓn;θ(xn, xn+1)h(xn+1)µn+1(dxn+1)

=

∫

∇θℓn;θ(xn, xn+1)h(xn+1)µn+1(dxn+1)

and

sup
θ∈Θ

∫

|∇θℓn;θ(xn, xn+1)|µn+1(dxn+1) ≤ c <∞

for some positive constant c, implying (H4) in the sense that for all n ∈ N,
h ∈ F(Xn+1), and xn ∈ X,

|Ln;θh(xn)− Ln;θ′h(xn)| ≤ c‖θ − θ′‖‖h‖∞
(i.e., ε = ‖θ − θ′‖ in this case). Finally, assume also that family satisfies (H3)
uniformly over the parameter space in the sense that for all n ∈ N, (xn, xn+1) ∈
X2, and θ ∈ Θ, σ− ≤ ℓn;θ(xn, xn+1) ≤ σ+. Then Theorem 4.10 provides a
positive constant d such that for all n ∈ N,

∣

∣φ0:n;θhn − φ0:n;θ′hn
∣

∣ ≤ dn‖θ − θ′‖ sup
k∈N

‖h̃k‖∞.

This extends previous results on the uniform continuity of the filter distribution
(see, e.g., [30, 22]) to smoothing of additive state functionals.

5. A numerical example

An exhaustive numerical analysis of the methods and results presented above
is beyond the scope of the present paper, and is left as future research. Some
numerical illustrations of Algorithm 6 in the special case of unbiased pseudo-
marginalisation (ε = 0) via the exact algorithm (see Example 3 and Example 6)
are provided in [19]. In this section, we focus on biased estimation (ε > 0) and
illustrate the Lipschitz continuity established by Theorem 4.10 on the basis of
a simple model that allows, as a comparison, a fully analytical solution to the
additive smoothing problem.

In the following we will consider an instance of Example 2, Case 1, where
the latent diffusion (Xt)t>0 is an Ornstein–Uhlenbeck process [36] on R param-
eterised by

µ(x) = −(x− θ), σ(x) ≡ 1,

where θ ∈ R is a parameter. This process is assumed to be initialised accord-
ing to the standard normal distribution. Furthermore, conditionally to (Xt)t>0,
observations (Yn)n∈N are generated as

Yn = (1− ε)ϕ(Xn) + ηn, n ∈ N>0,

where tn = δn for some given observation interval δ > 0, Xn = Xtn , (ηn)n∈N>0

are mutually independent and standard normally distributed noise variables,
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ε ∈ E := [0, 1] is a parameter, and ϕ is a bounded measurable function on R.
We let Qδ denote the (Gaussian) Markov transition kernel of the time-discrete
chain (Xn)n∈N.

In this toy example, our aim is to illustrate Theorem 4.10 by viewing models
with ε > 0 as ‘skew’ versions of a ‘true’ model with ε = 0. Given simulated data
(yn)n∈N>0 from the true model, smoothed additive expectations under skew
models with different ε > 0 will be compared to the same expectations under
the true model. Note that the model specified above satisfies condition (H4)
; indeed, denote by gε(xn, yn) the emission density of Yn given Xn, which is
Gaussian with mean (1− ε)ϕ(xn) and unit variance, and by g(xn, yn) the same
density for the true model. Then by the mean-value theorem, for all ε ∈ E and
(xn, yn) ∈ R

2,

|gε(xn, yn)− g(xn, yn)| ≤ ε sup
ε∈E

∣

∣

∣

∣

∂

∂ε
gε(xn, yn)

∣

∣

∣

∣

≤ ε
(

|ϕ(xn)yn − ϕ2(xn)|+ ϕ2(xn)
)

,

implying immediately that for all bounded measurable real-valued functions h,

|Lε
nh(xn)− Lnh(xn)| ≤ εc(yn+1)‖h‖∞,

where Lε
n(xn, dxn+1) := Qδ(xn, dxn+1)g

ε(xn+1, yn+1) and c(yn+1) := ‖ϕ‖∞|yn+1|+
2‖ϕ‖2∞. Thus, (H4) holds true under the mild assumption that supn∈N>0

|yn| <
∞.

In this context, we conducted numerical experiments with θ = 5 and ϕ(x) =
min(max(x,−105), 105). With this parametrisation, the model is, in practice,
linear and Gaussian; thus, for linear additive state functionals in the form
hn(x0:n) =

∑n
k=0 xk, a very good approximation of the exact solution (φε0:nhn)n∈N

to the optimal smoothing problem can, for the skewed models (ε > 0) as
well as the true model (ε = 0), be obtained using Kalman recursions [33].
Figure 1a displays the discrepancy between φε0:nhn and φ0:nhn for varying
ε ∈ {0, 0.05, 0.1, . . . , 0.5} and a fixed n = 50 (the red line). Clearly, the bias
increases—in perfect agreement with Theorem 4.10—at a rate that is at most
linear in ε. In addition, Figure 1a shows similar biases (turquoise markers) ob-
tained using the ideal PaRIS in Algorithm 3 with N = 200 particles and M = 2
backward samples. In this algorithm, the particles were propagated using the
optimal importance function [15], which can be computed explicitly in the linear
Gaussian case. Here the PaRIS was re-run 60 times for each value of ε. Note
that the variance of the PaRIS estimates increases somewhat with ε, reflecting
the fact that the proposal becomes less and less compatible with the data as
the model gets increasingly skew.

In order to illustrate further the O(nε) bound provided by Theorem 4.10
as well as the stochastic stability of Algorithm 3 established in Corollary 4.8,
Kalman smoothing was conducted for n ∈ J1, 50K on the basis of a skew model
with fixed ε = 0.1. Figure 1b shows, as expected, a linear increase of the bias
with n (red line). In addition, displaying also the errors (green lines) of 60
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(a) (b)

Fig 1: (a) The red line is the deviation of φε0:nhn from φ0:nhn for varying
ε ∈ {0, 0.05, 0.1, . . . , 0.5} and fixed n = 50, computed by means of Kalman
smoothing. Turquoise markers are similar errors obtained on the basis of 60 repli-
cates of the ideal PaRIS in Algorithm 3 with N = 200 particles andM = 2 back-
ward samples. (b) The red line is the same deviation for increasing n ∈ J1, 50K
and fixed ε = 0.1. Then green and blue lines correspond to errors of 60 in-
dependent ideal PaRIS replicates obtained under the skew and true models,
respectively, for N = 200 and M = 2.

independent ideal PaRIS replicates (obtained under the skew model with the
same algorithmic parametrisation as previously), the same plot confirms the
stochastic stability of the ideal PaRIS algorithm, as the variance does not grow
faster than linearly with n. Finally, for completeness Figure 1b reports similar
errors (blue lines) when the ideal PaRIS evolves under the dynamics of the true
model, and in this case the bias is negligible as expected (whereas the variance
is still increasing linearly).
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Appendix A: Proof of Lemma 2.2

To show (i), write, using the definition (2.10), the right-hand side as

∫∫

φnLn(dxn+1)Bn(xn+1, dxn)h(xn, xn+1)

=

∫∫

φn[ℓn(·, xn+1)]µn+1(dxn+1)
φn(dxn)[ℓn(·, xn+1)]

φn[ℓn(·, xn+1)]
h(xn, xn+1)

=

∫∫

φn(dxn)Ln(xn, dxn+1)h(xn, xn+1),

which was to be established.
The statement (ii) is shown by induction. Thus, assume that the claim holds

true for n, pick arbitrarily h ∈ F(Xn+1), and write, using the induction hypoth-
esis,

φ0:nL0,nh =

∫∫

φn(dxn)Tn(xn, dx0:n−1)Ln(xn, dxn+1)h(x0:n+1)

=

∫∫

φn(dxn)Ln(xn, dxn+1) h̄(xn, xn+1),

where

h̄(xn, xn+1) :=

∫

Tn(xn, dx0:n−1)h(x0:n+1).

Now, since Bnh̄(xn+1) = Tn+1h(xn+1), (i) yields

φ0:nL0,nh =

∫∫

φnLn(dxn+1)Bn(xn+1, dxn) h̄(xn, xn+1)

=

∫

φnLn(dxn+1)Tn+1h(xn+1).

Thus, we obtain, by applying (2.3) and (2.4),

φ0:n+1h =
φ0:nL0,nh

φ0:nL0,n1Xn

=

∫

φnLn(dxn+1)

φnLn1Xn+1

Tn+1h(xn+1) = φn+1Tn+1h.

Finally, we note that the base case n = 1 follows straightforwardly by combining
(i) and (2.4).

Appendix B: Proof of Theorem 4.1

As explained in Section 4.1.1, Theorem 4.1 follows as an immediate corollary of
the following more general result, to whose proof we devote this section.



/A pseudo-marginal SMC online smoothing algorithm 35

Proposition B.1. Assume (H1–2). Then for all n ∈ N, hn ∈ A(Xn), (fn, f̃n) ∈
F(Xn)

2, and M ∈ N>0 there exist (cn, dn) ∈ R
2
>0 such that for all N ∈ N>0 and

ǫ > 0,

(i) P

(∣

∣

∣

∣

∣

1

N

N
∑

i=1

ωi
n{τ infn(ξin) + f̃n(ξ

i
n)} −

φεn−1L
ε
n−1(T

ε
nhnfn + f̃n)

φεn−1ϑn−1

∣

∣

∣

∣

∣

≥ ǫ
)

≤ cn exp
(

−dnNǫ2
)

,

(ii) P

(∣

∣

∣

∣

∣

N
∑

i=1

ωi
n

Ωn
{τ infn(ξin) + f̃n(ξ

i
n)} − φεn(Tε

nhnfn + f̃n)

∣

∣

∣

∣

∣

≥ ǫ
)

≤ cn exp
(

−dnNǫ2
)

.

Note that letting fn ≡ 1 and f̃n ≡ 0 in (ii) yields immediately Theorem 4.1.
We preface the proof of Proposition B.1 by a technical lemma, generalising

[28, Lemma 12] and [19, Lemma 2], which will be instrumental in the following.
For all n ∈ N, define the following σ-fields:

FN
n := σ{(ξim, ωi

m, τ
i
m) : i ∈ J1, NK,m ∈ J0, nK},

GNn+1 := σ{(ξin+1, I
i
n+1) : i ∈ J1, NK} ∨ FN

n .

Lemma B.2. Assume (H1–2) . For all n ∈ N, (fn+1, f̃n+1) ∈ F(Xn+1)
2,

and (N,M) ∈ N
2
>0, the random variables ωi

n+1{τ in+1fn+1(ξ
i
n+1) + f̃n+1(ξ

i
n+1)},

i ∈ J1, NK, are independent and identically distributed (i.i.d.) conditionally to
FN

n . In addition, for all i,

E

[

ωi
n+1{τ in+1fn+1(ξ

i
n+1) + f̃n+1(ξ

i
n+1)} | FN

n

]

= (φNn ϑn)
−1

N
∑

j=1

ωj
n

Ωn
{τ jnLε

nfn+1(ξ
j
n) + Lε

n(h̃nfn+1 + f̃n+1)(ξ
j
n)}.

Proof. Independence and equal distribution is immediate by construction of
Algorithm 6. Moreover, note that

E
[

ω1
n+1 | GNn+1

]

=

∫

wn(ξ
I1
n+1

n , ξ1n+1, z)Rn(ξ
I1
n+1

n , ξ1n+1, dz) = wε
n(ξ

I1
n+1

n , ξ1n+1),

(B.1)
where wn and wε

n are defined in (H2)(ii), and

E
[

τ1n+1 | GNn+1

]

=

N
∑

i=1

ωi
nℓ

ε
n(ξ

i
n, ξ

1
n+1)

∑N
i′=1 ω

i′
n ℓ

ε
n(ξ

i′
n , ξ

1
n+1)

(

τ in + h̃n(ξ
i
n, ξ

1
n+1)

)

.
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Then, since τ1n+1 and ω1
n+1 are conditionally independent given GNn+1,

E

[

ω1
n+1{τ1n+1fn+1(ξ

1
n+1) + f̃n+1(ξ

1
n+1)} | FN

n

]

= E
[

E
[

ω1
n+1 | GNn+1

]

E
[

τ1n+1 | GNn+1

]

fn+1(ξ
1
n+1) | FN

n

]

+ E

[

E
[

ω1
n+1 | GNn+1

]

f̃n+1(ξ
1
n+1) | FN

n

]

= E

[

wε
n(ξ

I1
n+1

n , ξ1n+1)

N
∑

i=1

ωi
nℓ

ε
n(ξ

i
n, ξ

1
n+1)

∑N
i′=1 ω

i′
n ℓ

ε
n(ξ

i′
n , ξ

1
n+1)

(

τ in + h̃n(ξ
i
n, ξ

1
n+1)

)

fn+1(ξ
1
n+1) | FN

n

]

+ E

[

wε
n(ξ

I1
n+1

n , ξ1n+1)f̃n+1(ξ
1
n+1) | FN

n

]

.

Now, we may complete the proof by noting that, by (2.8),

E

[

wε
n(ξ

I1
n+1

n , ξ1n+1)
N
∑

i=1

ωi
nℓ

ε
n(ξ

i
n, ξ

1
n+1)

∑N
i′=1 ω

i′
n ℓ

ε
n(ξ

i′
n , ξ

1
n+1)

(

τ in + h̃n(ξ
i
n, ξ

1
n+1)

)

fn+1(ξ
1
n+1) | FN

n

]

= (φNn ϑn)
−1

N
∑

j=1

ωj
n

Ωn

∫

ℓεn(ξ
j
n, x)µ(dx)

N
∑

i=1

ωi
nℓ

ε
n(ξ

i
n, x)

∑N
i′=1 ω

i′
n ℓ

ε
n(ξ

i′
n , x)

(

τ in + h̃n(ξ
i
n, x)

)

fn+1(x)

= (φNn ϑn)
−1

N
∑

i=1

ωi
n

Ωn
{τ inLε

nfn+1(ξ
i
n) + Lε

n(h̃nfn+1)(ξ
i
n)}

and, similarly,

E

[

wε
n(ξ

I1
n+1

n , ξ1n+1)f̃n+1(ξ
1
n+1) | FN

n

]

= (φNn ϑn)
−1

N
∑

i=1

ωi
n

Ωn
Lε
nf̃n+1(ξ

i
n).

Proof of Proposition B.1. We establish (i) by induction over n. Write, using
Lemma B.2,

1

N

N
∑

i=1

ωi
n+1{τ in+1fn+1(ξ

i
n+1) + f̃n+1(ξ

i
n+1)} −

φεnL
ε
n{Tε

n+1hn+1fn+1 + f̃n+1}
φεnϑn

=
1

N

N
∑

i=1

ωi
n+1{τ in+1fn+1(ξ

i
n+1) + f̃n+1(ξ

i
n+1)}

− E

[

ω1
n+1{τ1n+1fn+1(ξ

1
n+1) + f̃n+1(ξ

1
n+1)} | FN

n

]

+

N
∑

j=1

ωj
nϑn(ξ

j
n)

∑N
j′=1 ω

j′
n ϑn(ξ

j′
n )
{τ jnPn(w

ε
nfn+1)(ξ

j
n) +Pn(w

ε
nh̃nfn+1 + wε

nf̃n+1)(ξ
j
n)}

− φεn−1L
ε
n−1{Tε

nL
ε
nfn+1 + Lε

n(h̃nfn+1 + f̃n+1)}
φεn−1L

ε
n−1ϑn

. (B.2)
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Since for all i,

|ωi
n+1{τ in+1fn+1(ξ

i
n+1)+ f̃n+1(ξ

i
n+1)}| ≤ ‖wn‖∞(‖hn+1‖∞‖fn+1‖∞+‖f̃n+1‖∞),

the Hoeffding inequality for conditional expectations provides constants (d, d̃) ∈
R

2
>0 such that for all ǫ > 0,

P

(∣

∣

∣

∣

∣

1

N

N
∑

i=1

ωi
n+1{τ in+1fn+1(ξ

i
n+1) + f̃n+1(ξ

i
n+1)}

−E
[

ω1
n+1{τ1n+1fn+1(ξ

1
n+1) + f̃n+1(ξ

1
n+1)} | FN

n

]

∣

∣

∣

∣

∣

≥ ǫ
)

≤ d exp
(

−d̃Nǫ2
)

.

In addition, since ϑn, ϑnPn(w
ε
nfn+1), and ϑnPn(w

ε
nh̃nfn+1+w

ε
nf̃n+1) all belong

to F(Xn), there exist, by the induction hypothesis and [13, Lemma 4], (d′, d̃′) ∈
R

2
>0 such that for all ǫ > 0,

P





∣

∣

∣

∣

∣

∣

N
∑

j=1

ωj
nϑn(ξ

j
n)

∑N
j′=1 ω

j′
n ϑn(ξ

j′
n )
{τ jnPn(w

ε
nfn+1)(ξ

j
n) +Pn(w

ε
nh̃nfn+1 + wε

nf̃n+1)(ξ
j
n)}

−φ
ε
n−1L

ε
n−1{Tε

nL
ε
nfn+1 + Lε

n(h̃nfn+1 + f̃n+1)}
φεn−1L

ε
n−1ϑn

∣

∣

∣

∣

∣

≥ ǫ
)

≤ d′ exp
(

−d̃′Nǫ2
)

.

Combining the previous two inequalities completes the proof of (i) at time step
n+ 1. The base case n = 1 is established using again the decomposition (B.2),
the standard Hoeffding inequality for independent and identically distributed
variables, [13, Lemma 4], and the fact that h0 ≡ 0.

Final, (ii) follows immediately from (i) and [13, Lemma 4].

Appendix C: Proof of Theorem 4.2

We now turn our focus to the proof of Theorem 4.2, which, just like Theorem 4.1,
will be established via the following more general result.

Theorem C.1. Assume (H1–2). Then for all n ∈ N, M ∈ N>0, and (fn, f̃n) ∈
F(Xn)

2,

√
N

(

N
∑

i=1

ωi
n

Ωn
{τ infn(ξin) + f̃n(ξ

i
n)} − φεn(Tε

nhnfn + f̃n)

)

D−→ σn(hn, fn, f̃n)Z,

where Z is standard normally distributed and

σ2
n(hn, fn, f̃n) :=

χ{w−1R̄
ε
0,n(hnfn + f̃n)}2

(χLε
0,n−11Xn)2

+ σ2
n〈(wε

ℓ )
n−1
ℓ=0 〉(hn, fn, f̃n) + σ2

n〈(ς2ℓ )n−1
ℓ=0 〉(hn, fn, f̃n) (C.1)
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and

σ2
n〈(ϕℓ)

n−1
ℓ=0 〉(hn, fn, f̃n) :=

n−1
∑

m=0

φεmϑmφ
ε
mLε

m{ϕm[R̄
ε
m+1,n(hnfn + f̃n)]

2}
(φεmLε

m,n−11Xn
)2

+

n−1
∑

m=0

m
∑

ℓ=0

φεmϑmφ
ε
ℓL

ε
ℓ{Bε

ℓ(T
ε
ℓhℓ + h̃ℓ −Tε

ℓ+1hℓ+1)
2Lε

ℓ+1,m(Bε
mϕm[Lε

m+1,n−1fn]
2)}

Mm−ℓ+1(φεℓL
ε
ℓ,m−11Xm

)(φεmLε
m,n−11Xn

)2

(C.2)

for any sequence (ϕℓ)ℓ∈N of measurable functions ϕn : Xn × Xn+1 → R≥0.

As previously, applying Theorem C.1 with fn ≡ 1 and f̃n ≡ 0 yields immedi-
ately Theorem 4.1. Before proving Theorem C.1 we establish some preparatory
lemmas, where the first is easily obtained by combining Lemma 2.2(i) (applied
to the skew modeled formed by χ and (Lε

n)n∈N) and (2.13).

Lemma C.2. Assume (H1). Then for all n ∈ N and (fn+1, f̃n+1) ∈ F(Xn+1)
2,

φεnL
ε
n(T

ε
n+1hn+1fn+1 + f̃n+1) = φεn{Tε

nL
ε
nfn+1 + Lε

n(h̃nfn+1 + f̃n+1)}.

Lemma C.3. Assume (H1–2). Then for all n ∈ N, f ∈ F(Xn), and M ∈ N>0,

N
∑

i=1

ωi
n

Ωn
(τ in)

2f(ξin)
P−→ φεn([T

ε
nhn]

2f) + ηnf,

where the measures (ηm)m∈N>0 are defined recursively as

ηm+1f =M−1 ηmLε
mf + φεmLε

m{Bε
m(Tε

mhm + h̃m −Tε
m+1hm+1)

2f}
φεmLε

m1Xm+1

, m ∈ N,

with η0 ≡ 0.

Following [29, Lemma 13], the measures (ηm)m∈N>0 may be expressed non-
recursively as

ηnf =
n−1
∑

m=0

Mm−n
φεmLε

m{Bε
m(Tε

mhm + h̃m −Tε
m+1hm+1)

2Lε
m+1,n−1f}

φεmLε
m,n−11Xn

.

(C.3)

Proof of Lemma C.3. We proceed by induction over n. The base case n = 0 is
a trivial consequence of the fact that T0h0 = 0 and τ i0 = 0 for all i ∈ J1, NK.
Thus, we assume that the result holds true for some n ∈ N and write

N
∑

i=1

ωi
n+1

Ωn+1
(τ in+1)

2f(ξin+1) =
aN
bN

,

where

aN :=
1

N

N
∑

i=1

ωi
n+1(τ

i
n+1)

2f(ξin+1), bN :=
1

N

N
∑

i=1

ωi
n+1
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We first establish the convergence in probability of (aN )N∈N>0 . Using again
Hoeffding’s inequality for conditional expectations and the fact that the vari-
ables ωi

n+1(τ
i
n+1)

2fn+1(ξ
i
n+1), i ∈ J1, NK, are bounded by ‖wn‖∞‖hn+1‖2∞‖fn+1‖∞

and conditionally i.i.d. given FN
n for all i, we obtain for all ǫ > 0,

P
(∣

∣aN − E[aN | FN
n ]
∣

∣ ≥ ǫ
)

≤ exp

(

− 2Nǫ2

‖wn‖∞‖hn+1‖2∞‖fn+1‖∞

)

.

It is hence enough to consider the limit in probability of E[aN | FN
n ] as N tends

to infinity. For this purpose, write, using (B.1),

E[aN | FN
n ] = E

[

ω1
n+1(τ

1
n+1)

2fn+1(ξ
1
n+1) | FN

n

]

= E

[

wε
n(ξ

I1
n+1

n , ξ1n+1)E
[

(τ1n+1)
2 | GNn+1

]

fn+1(ξ
1
n+1) | FN

n

]

= a′N + a′′N ,

where

a′N :=M−1

× E

[

wε
n(ξ

I1
n+1

n , ξ1n+1)fn+1(ξ
1
n+1)E

[

(

τ
J

(1,1)
n+1

n + h̃n(ξ
J

(1,1)
n+1

n , ξ1n+1)

)2

| GNn+1

]

| FN
n

]

,

a′′N := (M − 1)M−1

× E

[

wε
n(ξ

I1
n+1

n , ξ1n+1)fn+1(ξ
1
n+1)E

[

τ
J

(1,1)
n+1

n + h̃n(ξ
J

(1,1)
n+1

n , ξ1n+1) | GNn+1

]2

| FN
n

]

.

Here the first term is given by

a′N =M−1
N
∑

i=1

ωi
nϑn(ξ

i
n)

∑N
i′=1 ω

i′
nϑn(ξ

i′
n )

∫

wε
n(ξ

i
n, x)fn+1(x)

×
N
∑

j=1

ωj
nℓ

ε
n(ξ

j
n, x)

∑N
j′=1 ω

j′
n ℓεn(ξ

j′
n , x)

(

τ jn + h̃n(ξ
j
n, x)

)2

pn(ξ
i
n, x)µ(dx),

= (MφNn ϑn)
−1

N
∑

j=1

ωj
n

Ωn

∫

fn+1(x)
(

τ jn + h̃n(ξ
j
n, x)

)2

Lε
n(ξ

j
n, dx). (C.4)

Thus, by the induction hypothesis and Proposition B.1, a′N tends in probability
to

(Mφεnϑn)
−1
(

ηnL
ε
nfn+1 + φεn{(Tε

nhn)
2Lε

nfn+1}

+φεnL
ε
n(fn+1h̃

2
n) + 2φεn{Tε

nhnL
ε
n(fn+1h̃n)}

)

= (Mφεnϑn)
−1
(

ηnL
ε
nfn+1 + φεnL

ε
n{(Tε

nhn + h̃n)
2fn+1}

)

.
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We turn to the second term. Along the lines of (C.4) we may write

a′′N = (M − 1)M−1φ
N
n (Lε

nϕN )

φNn ϑn

with

ϕN (x) := fn+1(x)

{

N
∑

i=1

ωi
nℓ

ε
n(ξ

i
n, x)

∑N
i′=1 ω

i′
n ℓ

ε
n(ξ

i′
n , x)

(

τ in + h̃n(ξ
i
n, x)

)

}2

, x ∈ Xn+1.

Now, Proposition B.1 implies pointwise convergence of ϕN in the sense that for
all x ∈ Xn+1, P-a.s.,

lim
N→∞

ϕN (x) = fn+1(x)

(

φεn[T
ε
nhnℓ

ε
n(·, x) + h̃n(·, x)ℓεn(·, x)]
φεn[ℓ

ε
n(·, x)]

)2

= fn+1(x)(B
ε
n)

2(Tε
nhn + h̃n)(x)

= fn+1(x)(T
ε
n+1)

2hn+1(x).

Therefore, since ‖ϕN‖∞ ≤ ‖fn+1‖∞‖hn+1‖2∞ for allN , we may apply Lemma F.1
in order to obtain the limit

a′′N
P−→ (M − 1)M−1φ

ε
nL

ε
n{fn+1(T

ε
n+1)

2hn+1}
φεnϑn

.

Finally, by Proposition B.1(i), P-a.s.,

lim
N→∞

bN =
φεnL

ε
n1Xn+1

φεnϑn
, (C.5)

and using (2.4) yields the limit

aN
bN

P−→ φεn+1{fn+1(T
ε
n+1)

2hn+1}

+M−1 ηnL
ε
nfn+1 + φεnL

ε
n{(Tε

nhn + h̃n)
2fn+1} − φεnLε

n{fn+1(T
ε
n+1)

2hn+1}
φεnL

ε
n1Xn+1

.

(C.6)

Thus, we may complete the proof by noting, using Lemma 2.2(i), that

φεnL
ε
n{(Tε

nhn + h̃n)
2fn+1} − φεnLε

n{fn+1(T
ε
n+1)

2hn+1}
= φεnL

ε
n{Bε

n(T
ε
nhn + h̃n −Tn+1hn+1)

2fn+1}.

Proof of Theorem C.1. We proceed by induction over n and assume that the re-
sult holds for some n ∈ N. In addition, we first assume that φεn+1(T

ε
n+1hn+1fn+1+
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f̃n+1) = 0 (this assumption will be removed in the end of the proof). Write

√
N

N
∑

i=1

ωi
n+1

Ωn+1
{τ in+1fn+1(ξ

i
n+1) + f̃n+1(ξ

i
n+1)} = (Ωn+1/N)−1(∆′

N +∆′′
N )/N,

(C.7)
where

∆′
N :=

√
N

N
∑

i=1

E

[

ωi
n+1{τ in+1fn+1(ξ

i
n+1) + f̃n+1(ξ

i
n+1)} | FN

n

]

,

∆′′
N :=

√
N

N
∑

i=1

(

ωi
n+1{τ in+1fn+1(ξ

i
n+1) + f̃n+1(ξ

i
n+1)}

−E
[

ωi
n+1{τ in+1fn+1(ξ

i
n+1) + f̃n+1(ξ

i
n+1)} | FN

n

])

.

In the following we establish the weak limit of (∆′
N +∆′′

N )/N , from which the
weak limit of (C.7) follows by Slutsky’s lemma. In order to treat the first term
∆′

N/N of the decomposition (C.7), write, using Lemma B.2,

∆′
N/N =

√
N(φNn ϑn)

−1
N
∑

i=1

ωi
n

Ωn
{τ inLε

nfn+1(ξ
i
n) + Lε

n(h̃nfn+1 + f̃n+1)(ξ
i
n)}.

In the previous expression, limN→∞ φNn ϑn = φεnϑn > 0, P-a.s., by proposi-
tion B.1. In addition, by Lemma 2.2(i),

φεn{Tε
nhnL

ε
nfn+1 + Lε

n(h̃nfn+1 + f̃n+1)}

=

∫∫

φεnL
ε
n(dxn+1)B

ε
n(xn+1, dxn)

× {Tε
nhn(xn)fn+1(xn+1) + h̃n(xn, xn+1)fn+1(xn+1) + f̃n+1(xn+1)}

= φεnL
ε
n1Xn+1 × φεn+1(T

ε
n+1hn+1fn+1 + f̃n+1) = 0,

where the last equality holds by assumption. Thus, applying the induction hy-
pothesis and Slutsky’s lemma yields

lim
N→∞

E [exp (iu∆′
N/N)] = exp

(

−u2σ
2
n〈Lε

nfn+1;L
ε
n(h̃nfn+1 + f̃n+1)〉

2(φεnϑn)
2

)

.

(C.8)

We turn to the second term of (C.7). By Lemma B.2, ∆′′
N/N =

∑N
i=1 υ

i
N ,

where

υiN :=
1

M
√
N

M
∑

j=1

υ̃N (Iin+1, J
(i,j)
n+1 , ξ

i
n+1, ζ

i
n+1),
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with

υ̃N (i, j, x, z) := wn(ξ
i
n, x, z)

(

{τ jn + h̃n(ξ
j
n, x)}fn+1(x) + f̃n+1(x)

)

− (φNn ϑn)
−1

N
∑

ℓ=1

ωℓ
n

Ωn
{τ ℓnLε

nfn+1(ξ
ℓ
n) + Lε

n(h̃nfn+1 + f̃n+1)(ξ
ℓ
n)},

(i, j, x, z) ∈ J1, NK2 × Xn+1 × Zn+1.

Remark C.4. In the framework of a fully dominated HMM and a PaRIS driven
by the standard bootstrap particle filter, which was the setting considered in
[28], the function υ̃N does not, on the contrary to the general case considered
here, depend on i. As we will see in the next derivations, this dependence calls
for a non-trivial refinement of the proof of [28, Theorem 3].

In the following we establish the weak limit of
∑N

i=1 υ
i
N using [14, Theo-

rem A.3]. By construction, E[υiN | FN
n ] = 0; thus, the condition (31) in the

mentioned theorem can be checked by establishing that

N
∑

i=1

E[(υiN )2 | FN
n ] =M−1

E

[

E

[

υ̃2N (I1n+1, J
(1,1)
n+1 , ξ

1
n+1, ζ

1
n+1) | GNn+1

]

| FN
n

]

+ (M − 1)M−1
E

[

E
2
[

υ̃N(I1n+1, J
(1,1)
n+1 , ξ

1
n+1, ζ

1
n+1) | GNn+1

]

| FN
n

]

(C.9)

converges in probability as N →∞. The first term of (C.9) is given by

E

[

E

[

υ̃2N(I1n+1, J
(1,1)
n+1 , ξ

1
n+1, ζ

1
n+1) | GNn+1

]

| FN
n

]

= E





N
∑

j=1

ωj
nℓ

ε
n(ξ

j
n, ξ

1
n+1)

∑N
j′=1 ω

j′
n ℓεn(ξ

j′
n , ξ1n+1)

∫

υ̃2N (I1n+1, j, ξ
1
n+1, z)Rn(ξ

I1
n+1

n , ξ1n+1, dz) | FN
n



 ,

=
N
∑

i=1

ωi
nϑn(ξ

i
n)

∑N
i′=1 ω

i′
nϑn(ξ

i′
n )

×
∫

pn(ξ
i
n, x)

N
∑

j=1

ωj
nℓ

ε
n(ξ

j
n, x)

∑N
j′=1 ω

j′
n ℓεn(ξ

j′
n , x)

∫

υ̃2N (i, j, x, z)Rn(ξ
i
n, x, dz)µ(dx)

= (φNn ϑn)
−1(aN + bN + cN)

− (φNn ϑn)
−2

(

N
∑

ℓ=1

ωℓ
n

Ωn
{τ ℓnLε

nfn+1(ξ
ℓ
n) + Lε

n(h̃nfn+1 + f̃n+1)(ξ
ℓ
n)}
)2

,

(C.10)
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where

aN :=

N
∑

j=1

ωj
n

Ωn
(τ jn)

2

∫

ℓεn(ξ
j
n, x)ϕN (x)f2

n+1(x)µ(dx),

bN :=
N
∑

i=1

ωi
n

Ωn

∫

ln(ξ
i
n, x)

N
∑

j=1

ωj
nℓ

ε
n(ξ

j
n, x)

∑N
j′=1 ω

j′
n ℓεn(ξ

j′
n , x)

(

h̃n(ξ
j
n, x)fn+1(x) + f̃n+1(x)

)2

µ(dx),

cN := 2

N
∑

j=1

ωj
n

Ωn
τ jn

∫

ℓεn(ξ
j
n, x)ϕN (x)fn+1(x)

(

h̃n(ξ
j
n, x)fn+1(x) + f̃n+1(x)

)

µ(dx),

with

ϕN (x) :=

∑N
i=1 ω

i
nln(ξ

i
n, x)

∑N
j′=1 ω

j′
n ℓεn(ξ

j′
n , x)

, x ∈ Xn+1,

being a random function and

ln(xn, xn+1) :=

∫

ℓn〈z〉(xn, xn+1)wn(xn, xn+1, z)Rn(xn, xn+1, dz),

(xn, xn+1) ∈ Xn × Xn+1,

an unnormalised transition density. Define the deterministic function ϕ(x) :=
φn[ln(·, x)]/φn[ℓεn(·, x)], x ∈ Xn+1; then by Proposition B.1, P-a.s., limN→∞ ϕN (x) =
ϕ(x) for all x. Thus, since

∣

∣

∣

∣

∣

∣

aN −
N
∑

j=1

ωj
n

Ωn
(τ jn)

2

∫

ℓεn(ξ
j
n, x)f

2
n+1(x)ϕ(x)µ(dx)

∣

∣

∣

∣

∣

∣

≤ ‖hn‖2∞
N
∑

j=1

ωj
n

Ωn

∫

ℓεn(ξ
j
n, x)f

2
n+1(x)|ϕN (x) − ϕ(x)|µ(dx) (C.11)

and f2
n+1(x)|ϕN (x)−ϕ(x)| ≤ 2‖wn‖∞‖fn+1‖2∞ for all x, Lemma F.1 implies that

the right-hand side of (C.11) tends to zero as N →∞. Thus, by Lemma C.3,

aN
P−→ ηnL

ε
n(f

2
n+1ϕ) + φεn{(Tε

n)
2hnL

ε
n(f

2
n+1ϕ)}.

We compute the limit of bN . For this purpose, define the mapping

ψN (x) :=

N
∑

j=1

ωj
nℓ

ε
n(ξ

j
n, x)

∑N
j′=1 ω

j′
n ℓεn(ξ

j′
n , x)

(

h̃n(ξ
j
n, x)fn+1(x) + f̃n+1(x)

)2

, x ∈ Xn+1.

which tends, for all x, by Proposition B.1, P-a.s. to

ψ(x) := Bε
n(h̃nfn+1 + f̃n+1)

2(x).
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Moreover, since ψN (x) ≤ (‖h̃n‖∞‖fn+1‖∞ + ‖f̃n+1‖∞)2 for all x, Lemma F.1
implies that

bN
P−→
∫

φn[ln(·, x)]ψ(x)µ(dx)

=

∫∫

ln(xn, xn+1)B
ε
n(h̃nfn+1 + f̃n+1)

2(xn+1)φ
ε
n(dxn)µ(dxn+1)

= φεnL
ε
n{ϕ(h̃nfn+1 + f̃n+1)

2},

where the last equality is obtained using Lemma 2.2(i).
We turn to the last term, cN . Since

∣

∣

∣

∣

∣

∣

cN − 2
N
∑

j=1

ωj
n

Ωn
τ jn

∫

ℓεn(ξ
j
n, x)fn+1(x)ϕ(x)

(

h̃n(ξ
j
n, x)fn+1(x) + f̃n+1(x)

)

µ(dx)

∣

∣

∣

∣

∣

∣

≤ ‖hn‖∞(‖h̃n‖∞‖fn+1‖∞ + ‖f̃n+1‖∞)

×
N
∑

j=1

ωj
n

Ωn

∫

ℓεn(ξ
j
n, x)fn+1(x)|ϕN (x)− ϕ(x)|µ(dx),

where the right-hand side tends, by Lemma F.1, to zero in probability as N →
∞, using again Proposition B.1 yields

cN
P−→ 2φεn{Tε

nhnL
ε
n[ϕfn+1(h̃nfn+1 + f̃n+1)]}.

Finally, by Proposition B.1, P-a.s.,

lim
N→∞

N
∑

ℓ=1

ωℓ
n

Ωn
{τ ℓnLε

nfn+1(ξ
ℓ
n) + Lε

n(h̃nfn+1 + f̃n+1)(ξ
ℓ
n)}

= φεn{Tε
nhnL

ε
nfn+1 + Lε

n(h̃nfn+1 + f̃n+1)} = 0, (C.12)

where the last equality follows by Lemma C.2 and assumption, and since also
limN→∞ φNn ϑn = φεnϑn, P-a.s., the second term of (C.10) tends P-a.s. to zero.

To sum up, as N →∞, the first term of (C.9) satisfies the limit

M−1
E

[

E

[

υ̃2N (I1n+1, J
(1,1)
n+1 , ξ

1
n+1, ζ

1
n+1) | GNn+1

]

| FN
n

]

P−→ (Mφεnϑn)
−1
(

ηnL
ε
n(f

2
n+1ϕ) + φεnL

ε
n{ϕ[(Tε

nhn + h̃n)fn+1 + f̃n+1]
2}
)

.

(C.13)
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We turn to the second term of (C.9) and write

E

[

E
2
[

υ̃N (I1n+1, J
(1,1)
n+1 , ξ

1
n+1, ζ

1
n+1) | GNn+1

]

| FN
n

]

= E









N
∑

j=1

ωj
nℓ

ε
n(ξ

j
n, ξ

1
n+1)

∑N
j′=1 ω

j′
n ℓεn(ξ

j′
n , ξ1n+1)

×
∫

υ̃N(I1n+1, j, ξ
1
n+1, z)Rn(ξ

I1
n+1

n , ξ1n+1, dz)

)2

| FN
n

]

=

N
∑

i=1

ωi
nϑn(ξ

i
n)

∑N
i′=1 ω

i′
nϑn(ξ

i′
n )

×
∫





N
∑

j=1

ωj
nℓ

ε
n(ξ

j
n, x)

∑N
j′=1 ω

j′
n ℓεn(ξ

j′
n , x)

∫

υ̃N(i, j, x, z)Rn(ξ
i
n, x, dz)





2

Pn(ξ
i
n, dx)

= (φNn ϑn)
−1

N
∑

i=1

ωi
n

Ωn

∫

wε
n(ξ

i
n, x)γ

2
N (x)Lε

n(ξ
i
n, dx)

− 2(φNn ϑn)
−1(φNn Lε

nγN )

N
∑

ℓ=1

ωℓ
n

Ωn
{τ ℓnLε

nfn+1(ξ
ℓ
n) + Lε

n(h̃nfn+1 + f̃n+1)(ξ
ℓ
n)}

+ (φNn ϑn)
−1

(

N
∑

ℓ=1

ωℓ
n

Ωn
{τ ℓnLε

nfn+1(ξ
ℓ
n) + Lε

n(h̃nfn+1 + f̃n+1)(ξ
ℓ
n)}
)2

,

where

γN (x) := fn+1(x)
N
∑

j=1

ωj
nℓ

ε
n(ξ

j
n, x)

∑N
j′=1 ω

j′
n ℓεn(ξ

j′
n , x)

(

τ jn + h̃n(ξ
j
n, x)

)

+f̃n+1(x), x ∈ Xn+1.

Since, by Proposition B.1, for all x ∈ Xn+1, limN→∞ γN (x) = γ(x) P-a.s., where

γ(x) := fn+1(x)B
ε
n(T

ε
nhn+ h̃n)(x)+ f̃n+1(x) = fn+1(x)T

ε
n+1hn+1(x)+ f̃n+1(x),

Lemma F.1 implies that

N
∑

i=1

ωi
n

Ωn

∫

wε
n(ξ

i
n, x)γ

2
N (x)Lε

n(ξ
i
n, dx)

P−→
∫∫

wε
n(xn, xn+1)γ

2(xn+1)φ
ε
n(dxn)L

ε
n(xn, dxn+1) (C.14)
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and φNn Lε
nγN

P−→ φεnL
ε
nγ. Thus, by (C.12–C.14),

N
∑

i=1

E[(υiN )2 | FN
n ]

P−→ δ2n〈fn+1, f̃n+1〉(hn)

:= (Mφεnϑn)
−1
(

ηnL
ε
n(f

2
n+1ϕ) + φεnL

ε
n{ϕ[(Tε

nhn + h̃n)fn+1 + f̃n+1]
2}

+ (M − 1)φεnL
ε
n{wε

n(fn+1T
ε
n+1hn+1 + f̃n+1)

2}
)

,

which verifies condition (i) in [14, Theorem A.3]. Now, with the conditional
relative weight variance ς2n defined as in (4.2) it holds that

ϕ(x) −Bε
nw

ε
n(x) =

φεn[ℓ
ε
n(·, x)ς2n(·, x)]
φεn[ℓ

ε
n(·, x)]

= Bε
nς

2
n(x).

Then, since, applying Lemma 2.2(i) (twice),

φεnL
ε
n{ϕ[(Tε

nhn + h̃n)fn+1 + f̃n+1]
2} − φεnLε

n{wε
n(fn+1T

ε
n+1hn+1 + f̃n+1)

2}
= φεnL

ε
n{wε

nf
2
n+1B

ε
n(T

ε
nhn + h̃n −Tε

n+1hn+1)
2}

+ φεnL
ε
n{Bε

nς
2
n[(T

ε
nhn + h̃n)fn+1 + f̃n+1]

2},

we may express the previous limit as

δ2n〈fn+1, f̃n+1〉 = (Mφεnϑn)
−1
(

ηnL
ε
n(f

2
n+1B

ε
nw

ε
n)

+ φεnL
ε
n{wε

nf
2
n+1B

ε
n(T

ε
nhn + h̃n −Tε

n+1hn+1)
2}

+MφεnL
ε
n{wε

n(fn+1T
ε
n+1hn+1 + f̃n+1)

2}

+ ηnL
ε
n(f

2
n+1B

ε
nς

2
n) + φεnL

ε
n{Bε

nς
2
n[(T

ε
nhn + h̃n)fn+1 + f̃n+1]

2}
)

.

Condition (ii) in [14, Theorem A.3] is satisfied as an immediate consequence
of (H2); indeed, letting dn := 2‖wn‖∞(‖hn+1‖∞‖fn+1‖∞ + ‖f̃n+1‖∞) it holds
that |υiN | ≤ dn/

√
N for all i ∈ J1, NK, and consequently, for all ǫ > 0, P-a.s.,

N
∑

i=1

E

[

(υiN )21{|υi
N
|≥ǫ} | FN

n

]

≤ d2n1{dn≥ǫ
√
N},

where the right-hand side tends to zero as N → ∞. Thus, [14, Theorem A.3]
provides the limit

E
[

exp (iu∆′′
N/N) | FN

n

] P−→ exp
(

−u2δ2n〈fn+1, f̃n+1〉/2
)

.

Now, since limN→∞ Ωn+1/N = φεnL
ε
n1Xn+1/φ

ε
nϑn P-a.s. by Proposition B.1, we

may combine the previous limit with (C.8), [12, Lemma A.5], and Slutsky’s
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lemma in order to obtain the weak convergence

(∆′
N +∆′′

N )/Ωn+1

D−→ N

(

0,
σ2
n(hn,L

ε
nfn+1,L

ε
n(h̃nfn+1 + f̃n+1)) + (φεnϑn)

2δ2n〈fn+1, f̃n+1〉
(φεnL

ε
n1Xn+1)

2

)

.

(C.15)

In order to treat the general case where φεn+1(T
ε
n+1hn+1fn+1+f̃n+1) is non-zero,

define
f̄n+1 := f̃n+1 − φεn+1(T

ε
n+1hn+1fn+1 + f̃n+1).

Since the functions fn+1 and f̄n+1 satisfy φεn+1(T
ε
n+1hn+1fn+1 + f̄n+1) = 0,

(C.15) provides

√
N

(

N
∑

i=1

ωi
n+1

Ωn+1
{τ in+1fn+1(ξ

i
n+1) + f̃n+1(ξ

i
n+1)} − φεn+1(T

ε
n+1hn+1fn+1 + f̃n+1)

)

=
√
N

(

N
∑

i=1

ωi
n+1

Ωn+1
{τ in+1fn+1(ξ

i
n+1) + f̄n+1(ξ

i
n+1)}

)

D−→ N
(

0, σ2
n+1(hn+1, fn+1, f̃n+1)

)

,

where

σ2
n+1(hn+1, fn+1, f̃n+1)

:=
σ2
n(hn,L

ε
nfn+1,L

ε
n(h̃nfn+1 + f̄n+1)) + (φεnϑn)

2δ2n〈fn+1, f̄n+1〉
(φεnL

ε
n1Xn+1)

2

=
σ2
n(hn,L

ε
nfn+1,L

ε
n(h̃nfn+1 + f̄n+1))

(φεnL
ε
n1Xn+1)

2
+
φεnϑnηnL

ε
n(f

2
n+1B

ε
nw

ε
n)

M(φεnL
ε
n1Xn+1)

2

+
φεnϑnφ

ε
nL

ε
n{wε

n(fn+1T
ε
n+1hn+1 + f̄n+1)

2}
(φεnL

ε
n1Xn+1)

2

+
φεnϑnφ

ε
nL

ε
n{wε

nf
2
n+1B

ε
n(T

ε
nhn + h̃n −Tε

n+1hn+1)
2}

M(φεnL
ε
n1Xn+1)

2

+
φεnϑnηnL

ε
n(f

2
n+1B

ε
nς

2
n)

M(φεnL
ε
n1Xn+1)

2
+
φεnϑnφ

ε
nL

ε
n{Bε

nς
2
n[(T

ε
nhn + h̃n)fn+1 + f̄n+1]

2}
M(φεnL

ε
n1Xn+1)

2
.

(C.16)

Since by Lemma 2.2(i),

φεnL
ε
n{wε

nf
2
n+1B

ε
n(T

ε
nhn + h̃n −Tε

n+1hn+1)
2}

= φεnL
ε
n{Bε

n(T
ε
nhn + h̃n −Tε

n+1hn+1)
2f2

n+1B
ε
nw

ε
n},
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and

φεnL
ε
n{Bε

nς
2
n[(T

ε
nhn + h̃n)fn+1 + f̄n+1]

2}
= φεnL

ε
n{ς2n(fn+1T

ε
n+1hn+1 + f̄n+1)

2}
+ φεnL

ε
n{Bε

n(T
ε
nhn + h̃n −Tε

n+1hn+1)
2f2

n+1B
ε
nς

2
n},

inserting the expression of ηn given in (C.3) into (C.16) yields,

σ2
n+1(hn+1, fn+1, f̃n+1)

=
σ2
n(hn,L

ε
nfn+1,L

ε
n(h̃nfn+1 + f̄n+1))

(φεnL
ε
n1Xn+1)

2
+
φεnϑnφ

ε
nL

ε
n{wε

n(fn+1T
ε
n+1hn+1 + f̄n+1)

2}
(φεnL

ε
n1Xn+1)

2

+
φεnϑn

(φεnL
ε
n1Xn+1)

2

n
∑

m=0

φεmLε
m{Bε

m(Tε
mhm + h̃m −Tε

m+1hm+1)
2Lε

m+1,n(f
2
n+1B

ε
nw

ε
n)}

Mn−m+1φεmLε
m,n−11Xn

+
φεnϑnφ

ε
nL

ε
n{ς2n(fn+1T

ε
n+1hn+1 + f̄n+1)

2}
(φεnL

ε
n1Xn+1)

2

+
φεnϑn

(φεnL
ε
n1Xn+1)

2

n
∑

m=0

φεmLε
m{Bε

m(Tε
mhm + h̃m −Tε

m+1hm+1)
2Lε

m+1,n(f
2
n+1B

ε
nς

2
n)}

Mn−m+1φεmLε
m,n−11Xn

.

(C.17)

It remains to establish the non-recursive expression (C.1) of the asymptotic
variance. We proceed by induction and assume that (C.1) holds true at time
n. Recall the definitions of the kernels R

ε
m,n and R̄

ε
m,n in (4.3) and (4.4),

respectively. First, note that since by Lemma C.2,

φε0:n{hnLε
nfn+1 + Lε

n(h̃nfn+1 + f̄n+1)} = 0,

it holds for all m ∈ J0, n− 1K,

R̄
ε
m,n{hnLε

nfn+1 + Lε
n(h̃nfn+1 + f̄n+1)}

= R
ε
m,n{hnLε

nfn+1 + Lε
n(h̃nfn+1 + f̄n+1)}

= R
ε
m,n+1{hn+1fn+1 + f̃n+1 − φεn+1(T

ε
n+1hn+1fn+1 + f̃n+1)}

= R̄
ε
m,n+1(hn+1fn+1 + f̃n+1). (C.18)

Further, by definition,

fn+1T
ε
n+1hn+1 + f̄n+1 = R̄

ε
n+1,n+1(hn+1fn+1 + f̃n+1). (C.19)

Since by (C.18),

χ(w−1R̄
ε
0,n{hnLε

nfn+1 + Lε
n(h̃nfn+1 + f̄n+1)})2

(χLε
0,n−11Xn)2(φεnL

ε
n1Xn+1)

2

=
χ{w−1R̄

ε
0,n+1(hn+1fn+1 + f̃n+1)}2
(χLε

0,n1Xn+1)2
,
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using the induction hypothesis yields

σ2
n(hn,L

ε
nfn+1,L

ε
n(h̃nfn+1 + f̄n+1))

(φεnL
ε
n1Xn+1)

2
=
χ{w−1R̄

ε
0,n+1(hn+1fn+1 + f̃n+1)}2
(χLε

0,n1Xn+1)2

+
σ2
n〈(wε

ℓ )
n−1
ℓ=0 〉(hn,Lε

nfn+1,L
ε
n(h̃nfn+1 + f̄n+1))

(φεnL
ε
n1Xn+1)

2

+
σ2
n〈(ς2ℓ )n−1

ℓ=0 〉(hn,Lε
nfn+1,L

ε
n(h̃nfn+1 + f̄n+1))

(φεnL
ε
n1Xn+1)

2
.

Now, for every (ϕℓ)ℓ∈N, using (C.2), (C.18), and (C.19),

σ2
n〈(ϕℓ)

n−1
ℓ=0 〉(hn,Lε

nfn+1,L
ε
n(h̃nfn+1 + f̄n+1))

(φεnL
ε
n1Xn+1)

2

+
φεnϑnφ

ε
nL

ε
n{ϕn(fn+1T

ε
n+1hn+1 + f̄n+1)

2}
(φεnL

ε
n1Xn+1)

2

+
φεnϑn

(φεnL
ε
n1Xn+1)

2

n
∑

m=0

φεmLε
m{Bε

m(Tε
mhm + h̃m −Tε

m+1hm+1)
2Lε

m+1,n(f
2
n+1B

ε
nϕn)}

Mn−m+1φεmLε
m,n−11Xn

=

n−1
∑

m=0

φεmϑmφ
ε
mLε

m{ϕm[R̄
ε
m+1,n+1(hn+1fn+1 + f̃n+1)]

2}
(φεmLε

m,n1Xn+1)
2

+

n−1
∑

m=0

m
∑

ℓ=0

φεmϑmφ
ε
ℓL

ε
ℓ{Bε

ℓ(T
ε
ℓhℓ + h̃ℓ −Tε

ℓ+1hℓ+1)
2Lε

ℓ+1,m(Bε
mϕm[Lε

m+1,nfn+1]
2)}

Mm−ℓ+1(φεℓL
ε
ℓ,m−11Xm

)(φεmLε
m,n1Xn+1)

2

+
φεnϑnφ

ε
nL

ε
n{ϕn[R̄

ε
n+1,n+1(hn+1fn+1 + f̃n+1)]

2}
(φεnL

ε
n1Xn+1)

2

+ φεnϑn

n
∑

ℓ=0

φεℓL
ε
ℓ{Bε

ℓ(T
ε
ℓhℓ + h̃ℓ −Tε

ℓ+1hℓ+1)
2Lε

ℓ+1,n(f
2
n+1B

ε
nϕn)}

Mn−ℓ+1(φεℓL
ε
ℓ,n−11Xn

)(φεnL
ε
n1Xn+1)

2
,

which indeed equals σ2
n+1〈(ϕℓ)

n
ℓ=0〉(hn+1, fn+1, f̃n+1). Consequently, (C.17) can

be expressed as

σ2
n+1(hn+1, fn+1, f̃n+1) =

χ{w−1R̄
ε
0,n+1(hn+1fn+1 + f̃n+1)}2
(χLε

0,n1Xn+1)2

+ σ2
n+1〈(wε

ℓ )
n
ℓ=0〉(hn+1, fn+1, f̃n+1) + σ2

n+1〈(ς2ℓ )nℓ=0〉(hn+1, fn+1, f̃n+1),

which was to be established.
Finally, it remains to check the base case n = 1. Indeed, since the initial

particles are drawn independently from ν (and h0 ≡ 0, T0h0 ≡ 0, and η0 ≡ 0),
σ2
0(h0, f0, f̃0) = χ{w−1(f̃0 − χf̃0)}2/(χ1X0)

2 for all (f0, f̃0) ∈ F(X0)
2; thus,
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(C.17) provides, since χLε
0(h̃0f1+ f̄1) = 0 and Lε

0(h̃0f1+ f̄1) = R̄
ε
0,1(h1f1+ f̃1),

σ2
1(h1, f1, f̃1) :=

χ{w−1R̄
ε
0,1(h1f1 + f̃1)}2

(χLε
01X1)

2
+
φ0ϑ0φ0L

ε
0{wε

0(f1T
ε
1h1 + f̄1)

2}
(φ0Lε

01X1)
2

+M−1φ0ϑ0φ0L
ε
0{Bε

0(h̃0 −Tε
1h1)

2f2
1B

ε
0w

ε
0}

(φ0Lε
01X1)

2
+
φ0ϑ0φ0L

ε
0{ς20 (f1Tε

1h1 + f̄1)
2}

(φ0Lε
01X1)

2

+M−1φ0ϑ0φ0L
ε
0{Bε

0(h̃0 −Tε
1h1)

2f2
1B

ε
0ς

2
0}

(φ0Lε
01X1)

2
, (C.20)

and by noting that f1T
ε
1h1 + f̄1 = R̄

ε
1,1(h1f1 + f̃1) we may conclude that the

previous quantity coincides with (C.1) for n = 1. This completes the proof.

Appendix D: Proof of Theorem 4.10

We preface the proof of Theorem 4.10 by a few technical lemmas. For each n ∈ N

and m ∈ J0, nK, define the kernel

L
ε
m,n(x

′
m, dx0:n) := δx′

m
(dxm)Tε

m(xm, dx0:m−1)

n−1
∏

ℓ=m

Lℓ(xℓ, dxℓ+1), (D.1)

on Xm ×Xn (where Tε
m is defined in (4.1)).

Lemma D.1. For all m ∈ J0, nK and h ∈ F(Xn),

φε0:mLm,n−1h = φεmL
ε
m,nh. (D.2)

Proof. The result is obtained easily by applying Lemma 2.2(ii) to the skew
model and using definition (D.1).

The following probability measures play a key role in the following: for h ∈
F(Xm),

ϕε
m,nh :=

φεm(h×L
ε
m,n1Xn)

φεmL
ε
m,n1Xn

,

~ϕ ε
m,nh :=

φεm(h× Lε
mL

ε
m+1,n1Xn)

φεmLε
mL

ε
m+1,n1Xn

,

~ϕε
m,nh :=

φεm−1Lm−1(h×L
ε
m,n1Xn)

φεm−1L
ε
m−1,n1Xn

.

In addition, for each k ∈ J0, n− 1K, let

h̄k|n : Xn ∋ x0:n 7→ h̃k(xk, xk+1). (D.3)

denote the extension of h̃k to Xn.
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Lemma D.2. Let n ∈ N and m ∈ J1, nK. Then the following holds true for all
k ∈ J0, n− 1K.

(i) ϕε
m,n

(

L
ε
m,nh̄k|n

L
ε
m,n1Xn

)

=
φεmL

ε
m,nh̄k|n

φεmL
ε
m,n1Xn

for m ∈ J1, nK,

(ii) ~ϕ ε
m,n

(

L
ε
m,nh̄k|n

L
ε
m,n1Xn

)

=
φεm+1L

ε
m+1,nh̄k|n

φεm+1L
ε
m+1,n1Xn

for m ∈ Jk + 1, nK, and

(iii) ~ϕε
m,n

(

L
ε
m,nh̄k|n

L
ε
m,n1Xn

)

=
φεm−1L

ε
m−1,nh̄k|n

φεm−1L
ε
m−1,n1Xn

for all m ∈ J1, kK.

Proof. The identity (i) follows straightforwardly by the definition of ϕε
m,n.

We hence turn to (ii), which is established by first noting that for all m ∈
Jk + 1, nK,

L
ε
m,nh̄k|n

L
ε
m,n1Xn

= Bε
m−1 · · ·Bε

k+1(B
ε
kh̃k).

Now, since, by applying Lemma 2.2(i) to the skew model,

~ϕ ε
m,nh =

∫∫

φεm(dxm)Lε
m(xm, dxm+1)h(xm)Lε

m+1,n1Xn(xm+1)

φεmLε
mL

ε
m+1,n1Xn

=

∫∫

φεmLε
m(dxm+1)B

ε
m(xm+1, dxm)h(xm)Lε

m+1,n1Xn(xm+1)

φεmLε
mL

ε
m+1,n1Xn

=
φεm+1(B

ε
mh×L

ε
m+1,n1Xn)

φεm+1L
ε
m+1,n1Xn

,

we may establish the identity by proceeding like

~ϕ ε
m,n

(

L
ε
m,nh̄k|n

L
ε
m,n1Xn

)

=

∫∫

φεm+1(dxm+1)B
ε
m(xm+1, dxm)Bε

m−1 · · ·Bε
k+1(B

ε
kh̃k)(xm)Lε

m+1,n1Xn(xm+1)

φεm+1L
ε
m+1,n1Xn

=
φεm+1L

ε
m+1,nh̄k|n

φεm+1L
ε
m+1,n1Xn

.

Finally, to check (iii), note that for all m ∈ J1, kK,

Lm−1L
ε
m,nh̄k|n = L

ε
m−1,nh̄k|n.

Thus, in this case

~ϕε
m,n

(

L
ε
m,nh̄k|n

L
ε
m,n1Xn

)

=
φεm−1Lm−1L

ε
m,nh̄k|n

φεm−1L
ε
m−1,n1Xn

=
φεm−1L

ε
m−1,nh̄k|n

φεm−1L
ε
m−1,n1Xn

.
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Lemma D.3. Assume (H3) . Then for all n ∈ N, m ∈ J0, nK, k ∈ J0, n − 1K,
and (λ, λ′) ∈ M1(Xm)2,

∣

∣

∣

∣

∣

λLε
m,nh̄k|n

λLε
m,n1Xn

−
λ′Lε

m,nh̄k|n
λ′Lε

m,n1Xn

∣

∣

∣

∣

∣

≤ ‖h̃k‖∞ρ|k−m|−1.

Proof. First, assume that m ≤ k; then note that for all xm ∈ Xm,

L
ε
m,nh̄k|n(xm)

L
ε
m,n1Xn(xm)

−
L

ε
m,nh̄k|n(xm)

L
ε
m,n1Xn(xm)

= Fm|n · · ·Fk−1|n(Fk|nh̃k)(xm)

− Fm|n · · ·Fk−1|n(Fk|nh̃k)(xm), (D.4)

where we have introduced the forward kernels

Fm|nh(xm) :=
Lm(h×L

ε
m+1,n1Xn)(xm)

L
ε
m,n1Xn(xm)

, xm ∈ Xm, h ∈ F(Xm+1).

Under (H3), each forward kernel satisfies a global Doeblin condition in the form
of the uniform lower bound

Fm|nh(xm) ≥ σ−
σ+

µm,nh,

where we have defined the probability measure

µm,nh :=
µm+1(h×L

ε
m+1,n1Xn)

µm+1L
ε
m+1,n1Xn

, h ∈ F(Xm+1)

(where µm+1 is the reference measure introduced in Section 2.1). Thus, by stan-
dard results for uniformly minorised Markov chains (see, e.g., [7, Lemma 4.3.13]),
the Dobrushin coefficient of each Fm|n is bounded by ρ = 1 − σ−/σ+. Thus,
(D.4) implies that

∣

∣

∣

∣

∣

λLε
m,nh̄k|n

λLε
m,n1Xn

−
λ′Lε

m,nh̄k|n
λ′Lε

m,n1Xn

∣

∣

∣

∣

∣

=
∣

∣

∣(λm,n − λ′m,n)Fm|n · · ·Fk−1|n(Fk|nh̃k)
∣

∣

∣

≤ ρk−m‖Fk|nh̃k‖∞ ≤ ρk−m‖h̃k‖∞,

where for h ∈ F(Xm),

λm,nh :=
λ(h×L

ε
m,n1Xn)

λLε
m,n1Xn

, λ′m,nh :=
λ′(h×L

ε
m,n1Xn)

λ′Lε
m,n1Xn

.

Now, assume that m > k; then note that for all xm ∈ Xm,

L
ε
m,nh̄k|n(xm)

L
ε
m,n1Xn(xm)

−
L

ε
m,nh̄k|n(xm)

L
ε
m,n1Xn(xm)

= Bε
m−1 · · ·Bε

k+1(B
ε
kh̃k)(xm)−Bε

m−1 · · ·Bε
k+1(B

ε
kh̃k)(xm). (D.5)
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Under (H3), also each backward kernel satisfies a Doeblin condition, namely

Bε
mh(xm+1) ≥

σ−
σ+

φεmh,

with the marginal φεm playing the role as minorising measure. Thus, the back-
ward kernel Dobrushin coefficients are bounded by the same constant ρ, imply-
ing, via (D.5), that

∣

∣

∣

∣

∣

λLε
m,nh̄k|n

λLε
m,n1Xn

−
λ′Lε

m,nh̄k|n
λ′Lε

m,n1Xn

∣

∣

∣

∣

∣

=
∣

∣

∣(λm,n − λ′m,n)B
ε
m−1 · · ·Bε

k+1(B
ε
kh̃k)

∣

∣

∣

≤ ρm−k−1‖h̃k‖∞.

This completes the proof.

Lemma D.4. Assume (H3) and (H4). Then the following holds.

(i) For all n ∈ N, m ∈ J0, nK, ε ∈ E, and h ∈ F(Xn),

∣

∣ϕε
m,nh− ~ϕε

m,nh
∣

∣ ∨
∣

∣~ϕ ε
m,nh− ϕε

m,nh
∣

∣ ≤ 2cε
σ+
σ2
−
‖h‖∞.

(ii) For all n ∈ N, m ∈ J0, n− 1K, and ε ∈ E,
∣

∣

∣

∣

∣

φεm+1L
ε
m+1,nh̄m|n

φεm+1L
ε
m+1,n1Xn

−
φεmL

ε
m,nh̄m|n

φεmL
ε
m,n1Xn

∣

∣

∣

∣

∣

≤ 2cε
σ+
σ2
−
‖hm‖∞.

In both cases, c is the constant in (H4).

Proof. We start with (i). Combining the decomposition

ϕε
m,nh− ~ϕε

m,nh = ϕε
m,nh

(

φεm−1Lm−1L
ε
m,n1Xn − φεm−1L

ε
m−1L

ε
m,n1Xn

φεm−1L
ε
m−1,n1Xn

)

+
φεm−1L

ε
m−1(h×L

ε
m,n1Xn)− φεm−1Lm−1(h×L

ε
m,n1Xn)

φεm−1L
ε
m−1,n1Xn

with (H4) provides the bound

∣

∣ϕε
m,nh− ~ϕε

m,nh
∣

∣ ≤ 2cε
‖Lε

m,n1Xn‖∞‖h‖∞
φεm−1L

ε
m−1,n1Xn

(where c is the constant in (H4)). Now, since for all xm ∈ Xm,

L
ε
m,n1Xn(xm) =

∫

ℓm(xm, xm+1)L
ε
m+1,n1Xn(xm+1)µm+1(dxm+1)

≤ σ+µm+1L
ε
m+1,n1Xn
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and

φεm−1L
ε
m−1,n1Xn =

∫∫

φεm−1(dxm−1) ℓm−1(xm−1, xm)ℓm(xm, xm+1)

×L
ε
m+1,n1Xn(xm+1)µm � µm+1(dxm:m+1)

≥ σ2
−µm+1L

ε
m+1,n1Xn ,

implying the bound
‖Lε

m,n1Xn‖∞
φεm−1Lm−1L

ε
m,n1Xn

≤ σ+
σ2
−
, (D.6)

we may conclude that |ϕε
m,nh − ~ϕε

m,nh| ≤ 2cεσ+‖h‖∞/σ2
−. Along similar lines,

the second difference can be bounded by the same quantity by writing

~ϕ ε
m,nh− ϕε

m,nh = ~ϕ ε
m,nh

(

φεmLmL
ε
m+1,n1Xn − φεmLε

mL
ε
m+1,n1Xn

φεmLmL
ε
m+1,n1Xn

)

+
φεm(h× Lε

mL
ε
m+1,n1Xn)− φεm(h× LmL

ε
m+1,n1Xn

)

φεmLmL
ε
m+1,n1Xn

and reapplying (H4) and (D.6).
We turn to (ii). By definition (D.1),

L
ε
m+1,nh̄m|n(xm+1) =

∫

h̃m(xm, xm+1)B
ε
m(xm+1, dxm)Lε

m+1,n1Xn(xm+1);

thus, by applying Lemma 2.2(i) to the skew model,

φεm+1L
ε
m+1,nh̄m|n

φεm+1L
ε
m+1,n1Xn

(D.7)

=

∫∫

φεmLε
m(dxm+1) h̃m(xm, xm+1)B

ε
m(xm+1, dxm)Lε

m+1,n1Xn(xm+1)

φεmLε
mL

ε
m+1,n1Xn

=

∫∫

φεm(dxm)Lε
m(xm, dxm+1) h̃m(xm, xm+1)L

ε
m+1,n1Xn(xm+1)

φεmLε
mL

ε
m+1,n1Xn

.

We may thus decompose the quantity under consideration as

φεm+1L
ε
m+1,nh̄m|n

φεm+1L
ε
m+1,n1Xn

−
φεmL

ε
m,nh̄m|n

φεmL
ε
m,n1Xn

=
φεm+1L

ε
m+1,nh̄m|n

φεm+1L
ε
m+1,n1Xn

(

φεmLmL
ε
m+1,n1Xn − φεmLε

mL
ε
m+1,n1Xn

φεmL
ε
m,n1Xn

)

+

∫

φεm(dxm){Lε
m(h̃mL

ε
m+1,n1Xn)(xm)− Lm(h̃mL

ε
m+1,n1Xn)(xm)}

φεmL
ε
m,n1Xn

,

from which (ii) follows, as before, by a combination of (H4) and (D.6).
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Proof of Theorem 4.10. Write

φε0:nhn − φ0:nhn =

n−1
∑

k=0

(

φε0:nh̄k|n − φ0:nh̄k|n
)

,

where each term can be decomposed according to

φε0:nh̄k|n − φ0:nh̄k|n =
n
∑

m=1

(

φε0:mLm,n−1h̄k|n
φε0:mLm,n−11Xn

− φε0:m−1Lm−1,n−1h̄k|n
φε0:m−1Lm−1,n−11Xn

)

(recall that φε0 ∝ χ). In order to bound each term of this decomposition, write,
using Lemma D.1,

φε0:mLm,n−1h̄k|n
φε0:mLm,n−11Xn

− φε0:m−1Lm−1,n−1h̄k|n
φε0:m−1Lm−1,n−11Xn

=
φεmL

ε
m,nh̄k|n

φεmL
ε
m,n1Xn

−
φεm−1L

ε
m−1,nh̄k|n

φεm−1L
ε
m−1,n1Xn

.

Now, for all m ∈ J1, nK, pick an arbitrary element x∗m ∈ Xm and define the
kernel

L̄
ε
m,nh(xm) :=

L
ε
m,nh(xm)

L
ε
m,n1Xn(xm)

−
L

ε
m,nh(x

∗
m)

L
ε
m,n1Xn(x∗m)

, xm ∈ Xm, h ∈ F(Xn).

(D.8)
Combining this definition with Lemma D.2, we may express the quantity of
interest as

φε0:nh̄k|n − φ0:nh̄k|n =

k
∑

m=1

(

ϕε
m,nL̄

ε
m,nh̄k|n − ~ϕε

m,nL̄
ε
m,nh̄k|n

)

+
φεk+1L

ε
k+1,nh̄k|n

φεk+1L
ε
k+1,n1Xn

−
φεkL

ε
k,nh̄k|n

φεkL
ε
k,n1Xn

+

n−1
∑

m=k+1

(

~ϕ ε
m,nL̄

ε
m,nh̄k|n − ϕε

m,nL̄
ε
m,nh̄k|n

)

.

Now, applying Lemmas D.3 and D.4 to the previous decomposition yields

∣

∣φε0:nh̄k|n − φ0:nh̄k|n
∣

∣ ≤ 2cε
σ+
σ2
−

n−1
∑

k=0

‖h̃k‖∞
(

n−1
∑

m=1

ρ|k−m|−1 + 1

)

.

which was to be established.
The second inequality follows straightforwardly according to

n−1
∑

k=0

‖h̃k‖∞
(

n−1
∑

m=1

ρ|k−m|−1 + 1

)

≤
(

n+
1

ρ

(

n+ 2
n−1
∑

ℓ=1

(n− ℓ)ρℓ
))

sup
k∈J0,n−1K

‖h̃k‖∞

≤ n
(

1 +
1

ρ
+

2

1− ρ

)

sup
k∈J0,n−1K

‖h̃k‖∞.
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Appendix E: Proofs of Theorem 4.6, Corollary 4.7, and

Proposition 4.9

Proof of Theorem 4.6. The following is a refinement of the proof of [29, Propo-
sition 7].

We start bounding the first term of (4.6). For this purpose, we first prove
that for all m ∈ J0, n− 1K,

‖R̄ε
m,nhn‖∞ ≤ ‖Lε

m,n−11Xn‖∞
n−1
∑

k=0

‖h̃k‖∞ρ|k−m|−1. (E.1)

In order to establish (E.1), first note that

φε0:nhn =
φεmR

ε
m,nhn

φεmR
ε
m,n1Xn

. (E.2)

Thus, using the extensions (D.3) we may write, for xm ∈ Xm,

R̄
ε
m,nhn(xm)

Lε
m,n−11Xn(xm)

=

n−1
∑

k=0

(

R
ε
m,nh̄k|n(xm)

R
ε
m,n1Xn(xm)

−
φεmR

ε
m,nh̄k|n

φεmR
ε
m,n1Xn

)

.

Thus, the bound (E.1) is obtained by applying Lemma D.3 (twice: first, with
ε = 0, allowing L

ε
m,n in Lemma D.3 to be replaced by Lm,n; second, with the

skew model playing the role of the original model, allowing Lm,n to be replaced
by R

ε
m,n), with λ = δxm

and λ′ = φεm, to each term on the right-hand side of
the previous identity.

Now, using (E.1) and the bound (D.6),

n−1
∑

m=0

φεmϑmφ
ε
mLε

m(ϕm[R̄
ε
m+1,nhn]

2)

(φεmLε
m,n−11Xn)2

≤ sup
ℓ∈N

‖ϑℓ‖∞ sup
ℓ∈N

‖ϕℓ‖∞
σ3
+

σ4
−

n−1
∑

m=0

(

n−1
∑

k=0

‖h̃k‖∞ρ|k−m−1|−1

)2

. (E.3)

Then, since
n−1
∑

m=0

(

n−1
∑

k=0

ρ|k−m−1|−1

)2

≤ 4n

ρ2(1− ρ)2 ,

we obtain the linear (in n) bound

n−1
∑

m=0

φεmϑmφ
ε
mLε

m(ϕm[R̄
ε
m+1,nhn]

2)

(φεmLε
m,n−11Xn)2

≤ sup
ℓ∈N

‖h̃ℓ‖2∞ sup
ℓ∈N

‖ϑℓ‖∞ sup
ℓ∈N

‖ϕℓ‖∞
4n

ρ2(1− ρ)5σ−
. (E.4)
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We turn to the second term of (4.6) and reusing (D.6) yields

Lε
ℓ+1,m(Bε

mϕm[Lε
m+1,n−11Xn ]2)

(φεℓL
ε
ℓ,m−11Xm)(φεmLε

m,n−11Xn)2
≤
‖Lε

ℓ+1,m−11Xm‖∞‖Lε
m+1,n−11Xn‖2∞‖ϕm‖∞σ+

(φεℓL
ε
ℓ,m−11Xm)(φεmLε

m,n−11Xn)2

≤ 1

(1 − ρ)4σ2
−
‖ϕm‖∞. (E.5)

By (2.13) it holds that

Tε
ℓhℓ(xℓ) + h̃ℓ(xℓ, xℓ+1)−Tε

ℓ+1hℓ+1(xℓ+1)

= Tε
ℓhℓ(xℓ)−Bε

ℓT
ε
ℓhℓ(xℓ+1) + h̃ℓ(xℓ, xℓ+1)−Bε

ℓ h̃ℓ(xℓ+1)

=
ℓ−1
∑

k=0

(

R
ε
ℓ,ℓh̄k|ℓ(xℓ)−Bε

ℓR
ε
ℓ,ℓh̄k|ℓ(xℓ+1)

)

+ h̃ℓ(xℓ, xℓ+1)−Bε
ℓ h̃ℓ(xℓ+1),

and by applying Lemma D.3 (with λ = δxℓ
and λ′ = Bε

ℓ(xℓ+1, ·)) to each term
in the sum yields the bound

‖Tε
ℓhℓ + h̃ℓ −Tε

ℓ+1hℓ+1‖∞ ≤
(

1

1− ρ + 2

)

sup
ℓ∈N

‖h̃ℓ‖∞. (E.6)

By combining (E.5) and (E.6) we obtain

n−1
∑

m=0

m
∑

ℓ=0

φεmϑmφ
ε
ℓL

ε
ℓ{Bε

ℓ(T
ε
ℓhℓ + h̃ℓ −Tε

ℓ+1hℓ+1)
2Lε

ℓ+1,m(Bε
mϕm[Lε

m+1,n−11Xn ]2)}
Mm−ℓ+1(φεℓL

ε
ℓ,m−11Xm)(φεmLε

m,n−11Xn)2

≤ 1

(1 − ρ)4σ2
−

(

1

1− ρ + 2

)2

sup
ℓ∈N

‖h̃ℓ‖2∞ sup
ℓ∈N

‖ϑℓ‖∞ sup
ℓ∈N

‖ϕℓ‖∞
n−1
∑

m=0

m
∑

ℓ=0

M ℓ−(m+1).

(E.7)

Finally, since, for M ≥ 2,

lim
m→∞

m
∑

ℓ=0

M ℓ−(m+1) =
1

M − 1
,

taking the Cesáro mean provides

lim sup
n→∞

1

n

n−1
∑

m=0

m
∑

ℓ=0

φεmϑmφ
ε
ℓL

ε
ℓ{Bε

ℓ(T
ε
ℓhℓ + h̃ℓ −Tε

ℓ+1hℓ+1)
2Lε

ℓ+1,m(Bε
mϕm[Lε

m+1,n−11Xn ]2)}
Mm−ℓ+1(φεℓL

ε
ℓ,m−11Xm)(φεmLε

m,n−11Xn)2

≤ 1

(M − 1)(1− ρ)4σ2
−

(

1

1− ρ + 2

)2

sup
ℓ∈N

‖h̃ℓ‖2∞ sup
ℓ∈N

‖ϑℓ‖∞ sup
ℓ∈N

‖ϕℓ‖∞. (E.8)

Finally, we complete the proof by combining (E.4) and (E.8).
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Proof of Corollary 4.7. First, note that by (E.1),

‖R̄ε
0,nhn‖∞ ≤ ‖Lε

0,n−11Xn‖∞ sup
ℓ∈N

‖h̃ℓ‖∞
1

ρ(1 − ρ) .

Moreover, since for all x0 ∈ X0,

σ−µ1L
ε
1,n−11Xn ≤ Lε

0,n−11Xn(x0) ≤ σ+µ1L
ε
1,n−11Xn , (E.9)

it holds that

‖R̄ε
0,nhn‖2∞

(χLε
0,n−11Xn)2

≤ sup
ℓ∈N

‖h̃ℓ‖2∞
1

ρ2(1− ρ)4(χ1X0)
2
. (E.10)

The desired bound is now completed by applying Theorem 4.6 and (E.10) to
the two first and the last terms of σ2

n(hn), respectively.

Proof of Proposition 4.9. The result follows straightforwardly from the bound
(E.3); indeed, as the mapping Xn ∋ x0:n 7→ f(xn) belongs to A(Xn), (E.3)
implies that

n−1
∑

m=0

φεmϑmφ
ε
mLε

m(ϕm[Lε
m+1 · · ·Lε

n−1(f − φεnf)]2)
(φεmLε

m · · ·Lε
n−11Xn

)2

≤ sup
ℓ∈N

‖ϑℓ‖∞ sup
ℓ∈N

‖ϕℓ‖∞‖f‖2∞
σ3
+

σ4
−
ρ−2

n−1
∑

m=0

ρ2|n−m−2|,

where the sum on the right-hand side can be bounded by 1/(1 − ρ2) + ρ2. In
addition, by (E.1),

‖Lε
0 · · ·Lε

n−1(f − φεnf)‖∞ ≤ ‖Lε
0 · · ·Lε

n−11Xn‖∞‖f‖∞ρn−2,

and reusing (E.9) yields

‖Lε
0 · · ·Lε

n−1(f − φεnf)‖2∞
(χLε

0 · · ·Lε
n−11Xn

)2
≤ ‖f‖2∞

ρ2n

ρ4(1− ρ)2(χ1X0)
2
.

The proof is completed by combining these bounds.

Appendix F: A technical lemma

The following technical lemma is a straightforward adaption of [28, Lemma 14]
to the framework of Section 2.

Lemma F.1. Assume (H1–2) and let Ψ be some possibly unnormalised transi-
tion kernel on Xn×Xn+1 having transition density in F(Xn�Xn+1) with respect
to some reference measure on Xn+1. Moreover, let (ϕN )N∈N be a sequence of
functions in F(Xn+1) for which
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(i) there exists ϕ ∈ F(Xn+1) such that for all x ∈ Xn+1, limN→∞ ϕN (x) =
ϕ(x) P-a.s. and

(ii) there exists c ∈ R>0 such that ‖ϕ‖∞ ≤ c for all N ∈ N.

Then φNn ΨϕN
P−→ φnΨϕ as N →∞.
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