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Abstract

This paper focuses on the estimation of smoothing distributions in general state space mod-
els where the transition density of the hidden Markov chain or the conditional likelihood of the
observations given the latent state cannot be evaluated pointwise. The consistency and asymp-
totic normality of a pseudo marginal online algorithm to estimate smoothed expectations of
additive functionals when these quantities are replaced by unbiased estimators are established.
A recursive maximum likelihood estimation procedure is also introduced by combining this
online algorithm with an estimation of the gradient of the filtering distributions, also known
as the tangent filters, when the model is driven by unknown parameters. The performance of
this estimator is assessed in the case of a partially observed stochastic differential equation.

1 Introduction

The data considered in this paper originate from general state space models, usually defined as bi-
variate stochastic processes { (X, Yi) }1<i<n where {Ys }1<r<n are the observations and { Xy b1<k<n
are the latent states comonly assumed to be a Markov chain. When both processes take values in
general spaces, the estimation of the conditional distribution of a sequence of hidden states given a
fixed observation record is a challenging task required for instance to perform maximum likelihood
inference. Markov chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC) methods (also
known as particle filters or smoothers) are widespread solutions to propose consistent estimators of
such distributions. This paper sets the focus on the special case where the conditional likelihood
of an observation given the corresponding latent state (also known as the emission distribution) or
the transition density of the hidden Markov chain cannot be evaluated pointwise, while they are
pivotal tools of both MCMC and SMC approaches. The first objective of this paper is to prove that
conditional expectations of additive functionals of the hidden states may still be estimated online
with a consistent and asymptotically normal SMC algorithm. A recursive maximum likelihood
estimation procedure based on this algorithm and using an approximation of the gradient of the
filtering distributions, referred to as the tangent filters, is then introduced.
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The use of latent data models is ubiquitous in time series analysis across a wide range of
applied science and engineering domains such as signal processing [6], genomics [36, 35|, target
tracking [33], enhancement and segmentation of speech and audio signals [31], see also [32, 14, 37]
and the numerous references therein. Statistical inference for such models is likely to require
the computation of conditional expectations of sequences of hidden states given observations. In
this Bayesian setting, one of the most challenging problems is the approximation of expectations
under the joint smoothing distribution, i.e. the posterior distribution of the sequence of states
(X1,...,Xn) given the observations (Y7, ...,Y,,) for some n > 1. This computation is not tractable
in the framework of this paper where it is assumed that the transtion density of the hidden process
or the conditional likelihood of observations given states cannot be computed. This circumstance
is somehow common for instance in the case of partially observed stochastic diferential equations
(SDE), or in models where the emission distributions relies on a computationally prohibitive black-
box routine.

Following [18, 21], this paper concentrates on SMC methods to approximate smoothing distri-
butions with a random set of states, the particles, associated with importance weights by combining
importance sampling and resampling steps. This allows to solve the filtering problem by combining
an auxiliary particle filter with an unbiased estimate of the unknown densities. Then, the online
smoother of [21] extends the particle-based rapid incremental smoother (PaRIS) of [28], to ap-
proximate, processing the data stream online, smoothed expectations of additive functionals when
the unknown densities are replaced by unbiased estimates. This approach is an online version of
the Forward Filtering Backward Simulation algorithm algorithm [11] specifically designed to ap-
proximate smoothed additive functionals. The crucial feature which makes the PaRIS algorithm
appealing is the acceptance-rejection step which benefits from the unbiased estimation. The exten-
sion of the usual alternative, named the Forward Filtering Backward Smoothing algorithm [15], is
more sensitive as it involves ratios of these unknown quantities. Other smoothing algorithms such
as two-filter based approaches [2, 19, 25] could be extended similarly but they are intrisically not
online procedures as they require the time horizon and all observations to be available to initialize
a backward information filter.

In [21], the only theoretical guarantee is that the accept reject mechanism of the PaRIS algorithm
is still correct when the transition densities are replaced by unbiased estimates. In this paper,
the consistency of the algorithm as long as a central limit theorem (CLT) are established (see
Proposition 4.2 and Proposition 4.3 in Section 4.2). This makes this pseudo marginal smoother the
first algorithm to approximate such expectations in the general setting of this paper with theoretical
guarantees and an explicit expression of the asymptotic variance. As a byproduct, the proofs of these
results require to establish exponential deviation inequalities and a CLT for the PaRIS algorithm
based on the auxiliary particle filter, see Section 4.1. This extends the result of [28], written only
in the case of the bootstrap filter of [22]. This also extends the theoretical guarantees obtained for
online sequential Monte Carlo smoothers given in [11, 9, 17, 20].

The second part of the paper is devoted to recursive maximum likelihood estimation when the
emission distributions or the transition densities depend on an unknown parameter, see Section 5.
Following the filter sensitivity approach of [5, Section 10.2.4], the pseudo marginal smoother is used
to estimate online the gradient of the one-step predictive likelihood of an observation given past
observations. This procedure allows to perform online estimation in complex frameworks and is
applied in Section 6 to partially observed SDE.
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2 Online Sequential Monte Carlo smoother

Let n be a positive integer and X and Y two general state spaces. Consider a distribution x on B(X)
and the Markov transition kernels (Qx)ock<n—1 on X x B(X) and (Gg)ogk<n—1 on X x X x B(Y).
Throughout this paper, for all 0 < k < n—1, Gy, has a density g with respect to a reference measure
v on B(Y). In the following, F(Z) denotes the set of real valued measurable functions defined on the
set Z. Let (Yi)1<k<n be asequence of observations in Y and define the joint smoothing distributions,
for any 0 < k1 < ko2 < n and any function h € F(X"”'Q_kl“‘l), by:

n—1

By ko lnlh] = »C;l(ylzn)/X(de) 11 Q@ dzisr)ge (e, Thsr, Y1) @y chy) (1)
k=0
where a,., is a short-hand notation for (a,...,a,) and
n—1
Ln(Yiip) = /X(dfﬂo) [T Quler, dzisa)gr(an, wrsr, Yira) (2)
k=0

is the observed data likelihood. For all 0 < k£ < n — 1, Qi has a density ¢; with respect to a
reference measure p on B(X). The initial measure x is also assumed to have a density with respect
to p which is also referred to as x. For all 0 < k < n, ¢ = ¢y x are the filtering distributions,
Tk+1 = Qrt1:k+1|k are the one-step predictive distributions, while ¢y, = @p.xn are the marginal
smoothing distributions.

Consider a latent Markov chain (X )ogr<n with initial distribution x and Markov transition
kernels (Qx)ogkgn—1- The states (Xi)o<kgn are not available so that any statistical inference
procedure is performed using the sequence of observations (Y%)i<k<n only. The observations are
assumed to be independent conditional on (X )ogk<n and such that for all 1 < ¢ < n the distribution
of Yy given (Xx)ogkgn has distribution Gg(Xg, ). In this case, (1) may be interpreted as:

¢k1:k2‘7l[h:| =E [h(Xk1:k2)|Y1:n] .

ar—1(Xk-1,")
B AR B

Figure 1: Graphical model of the general state space hidden Markov model

Figure 1 displays the graphical model associated with (2). Note that, when for all 0 < k <n-—1
gx only depends on its last two arguments, (2) is the likelihood of a standard hidden Markov model.
In such models, computing (1) allows to solve classical problems such as:
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i) path reconstruction, i.e. the reconstruction of the hidden states given the observations;

ii) parameter inference, i.e., when g, and gx depend on some unknown parameter ¢, the design
of a consistent estimator of 6 from the observations.

As (1) is, in general, not available explicitly, this paper focuses on a sequential Monte Carlo based
approximation specifically designed for cases where ¢, and/or g cannot be evaluated pointwise.
Partially observed diffusion processes (POD) [27], where the latent process is the solution to a
stochastic differential equation are widespread examples where ¢ is not tractable.

Recursive formulation of (1) for additive functionals. For all 0 < k < n — 1, define
Me(@k, Tht1) = G (Tk, Trr1) 9o (T, Tht1, Yirr) - (3)

For all 0 < k < n — 1, define also the kernel Ly, on X x B(X), for all z € X and all f € F(X) by

Ly f(z) = / () £ (y)dy

In the following, 1 denotes the constant function which equals 1 for all € X so that

Lyl (x) = / (2, y)dy |

Following for instance [4], the joint smoothing distributions ¢y.,,, may be decomposed using the
backward Markov kernels defined, for all 0 < k <n — 1, all 41 € X and all f € F(X), by:

J far)re(@r, zrs1) or(day)
J v (@), xgr) dr(da),)

Consequently, the joint-smoothing distribution ¢y.,|, may be expressed, for all h € F(X" 1), as

QJ)O:n\n[h] = qj)n[Tnh] ’ (5)

Qo f(ri1) =

(4)

where

T, =
" forn =0,

%
{6%_1 ®6¢n_2 ®--® Qg forn>0,
id

where, for all Markov kernels Ky, Kz on X x B(X), all f € F(X?) and all x € X,

(K @ Ka) f( / £y, 2K (2, dy)Ka(y, dz)

In this paper, the focus is set on additive functionals of the form

hoin(z0:n) Z (T, Tht1) (7)
k=0
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with, for all 0 < k < n —1, Bk : X X X — RP? for some p > 1. The additive form of the function
hy, defined in (7) allows to update the backward statistics (Thy)r>0 recursively, see [3, 9]. For all
k>0,

Tii1het1(Try1) = /{Tkhk(!rk) + hi(Trai1)} 6@ (Xg41,dxg) (8)

By (5) and (8), the smoothed additive functional (5) can be updated recursively each time a new
observation is available. However, its exact computation is not possible in general state spaces. In
this paper, we propose to approximate ¢o.n,[hn] using SMC methods: ¢, in (5) and Qg, in (8)
are replaced by a set of random samples associated with nonnegative importance weights. These
particle filters and smoothers approximations combine sequential importance sampling steps to
update recursively ¢,, and importance resampling steps to duplicate or discard particles according
to their importance weights.

Sequential Monte Carlo for additive functionals. Let (£5) é\le be independent and identically
distributed according to the instrumental proposal density pg on X and define the importance
weights:

0. X(fg)
T (el
For any f € F(X),
N N
& [f] =" > whf(&h), where Qo= wf
=1 =1

is a consistent estimator of ¢g[f], see for instance [8]. Then, for all ¥ > 1, once the observation
Y}, is available, the weighted particle sample {(wf_,&f |)}2, is transformed into a new weighted
particle sample approximating ¢y. This update step is carried through in two steps, selection and
mutation, using the auxiliary sampler introduced in [29]. New indices and particles {(If, &)}V,
are simulated independently from the instrumental distribution with density on {1,..., N} x X:

Vel @) oc wi_ k-1 (& 1)pr—1(&_1, @) 9)

where ¥;_1 is an adjustment multiplier weight function and py_; a Markovian transition density.
For any ¢ € {1,...,N}, {ﬁ is associated with the importance weight defined by:

Y4
0. rk—1(§£k_l,f£)
Yk I TR
Dr—1(§" 1 )pr—1(&" 15 &1)

to produce the following approximation of ¢ [f]:

(10)

N

N
(biv[f] = Q,;l Zwﬁf(fﬁ) ,  where Qj := Zwi )

=1 {=1

For all k > 0 and all (z, f) € X x F(X), replacing ¢y, by ¢5 in (4), 6¢kf(x) is approximated by:

S win(En)
Quyf(a) =3 ) pey (11)

N
pr i) SN wi"k(fia@
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The forward-filtering backward-smoothing (FFBS) algorithm proposed in [9] consists in replacing, in
(8), 6 by the approximation Q¢N Proceeding recursively, this produces a sequence of estimates

(FON, of (Thg(€1))N, for 0 < k < n. Starting with 7j = 0 for all 1 < i < N, this yields for all
0<k<n—-1

7:;2“ _ i N”@k(fiaf}iﬂ? (i’é +Bk(€i>€i+1)) ) (12)
i 2 Wik (€ Ehg1)

Then, at each iteration 0 <k <n — 1, ¢o.py1|6[Prr1] and @o.p41)p+1[hr+1] are approximated by

NFFBS L Z N,FFBS . Z wk+1 ~i
¢O k41K hk+1 = Tk}+1 and ¢0 k+1|k+1 hk+1 : Qk+1 Tk‘+1 .

The computational complexity of the update (12) grows quadratically with the number of particles
N. This computational cost can be reduced following [28] by first replacing (12) by the Monte
Carlo estimate

7(id) g(@9) .
Thyl = = Z ( M Ry, (& ,&lﬁl)) ) (13)

where the sample size N>1is typically small compared to N and (J,gzjrjl)) *, are i.i.d. samples in
{1,..., N} with probabilities proportional to (wirk(ff;,f};“))f;l. In the resulting Particle Rapid
Incremental smoother (PaRIS) algorithm, the updated (T,iﬂ)ﬁil, estimates of ¢o.py1|x[hrs1] =

Tht1[Trr1hes1] and Gopr1jps1[Prs1] = Thg1[Trr1heg1] are obtained as:
N PaRIS) 1 1 Z i d @VPaRISE, Z wk+1 i
o:kr1fk ] 7= N 2Tkt Al 01 k] Thit -

Acceptance-rejection procedure. The computational complexity of the described approach~ is
still of order N2 s'ince it requires the normalising constant 3", wiry (€L, & 1) to sample (J,gl’]l));v:l
for all particle &, ;, 1 < i < N. A faster algorithm is obtained by applying the accept-reject
sampling approach proposed in [11] and illustrated in [16] which presupposes that there exists a
constant M > 0 such that ri(z,2') < M for all (z,2’) € X x X. Then, in order to sample from

(whre(&hy € ir))iny a candidate J* ~ (W)X, is accepted with probability:

Tﬁd(‘]*vl) = rk(fl{*vglic—i-l)/ﬁ' (14)

This procedure is repeated until acceptance. Under strong mixing assumptions it can be shown,
see for instance [11, Proposition 2] and [28, Theorem 10], that the expected number of trials needed
for this approach to update (1), to (7}, ;)X is O(NN).

3 Pseudo marginal Sequential Monte Carlo smoother

In many applications, Sequential Monte Carlo methods cannot be used as the transition densities
gk or gk, 0 < k < n—1, are unknown. The following crucial steps which rely on rj are not tractable:
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(a) computation of the importance weights wf, in (10) ;
(b) computation of the acceptance ratio (14).

To overcome these issues, following [21], consider the following algorithm.

Initialization. At time k =0, set forall 1 </ < N,
wf;:wg, _/T\g:() and 7 =70=0.

Propagation. Starting with weighted samples {(&5, 7)Y, define

FN =0 {(e, a4, 7)) 1<(<N,0<u<k} and égza{(fﬁ,g,ﬁ)ﬂgegN}.

New indices and particles {(fﬁ +1:&641) L, are simulated independently from the instrumental
distribution with density on {1,..., N} x X:

Uk-i-l(év x) X aﬁﬁk(fﬁ)pk(§]€753) ) (15)

Following [18, 27], weights update can be approximated by replacing ry (&5, £ +1) by an unbiased
estimator.

H1 There exist a Markov kernel Ry, on (X x X, B(Z)) where (Z,B(Z)) is a general state space and
a positive mapping Tx on X x X x Z such that, for all (x,2") € X2,

/Rk(x,x’;dz)?k(x,x’;z) =ri(z,2') .

Then, under H1, if conditionally on }'k V g,m, ¢} has distribution Ry (¢ Hl,ﬁiﬂ; -), then

E [rk( Ik+17€k+1a<k) ‘Fk \ gk+1:| = rp( Ik+17§k+1) .

The filtering weights then become:

Ik+1
—~ rk( 76 7C )
Gbyq = Bl k. (16)

Un (& ’““) (Sk ' Eg1)

For all f € F(X) and all 0 < k < n, ¢g[f] is approximated by

N i N
E k O § :Ai

= gk Qk — Wk, .
=1 =1

To solve issue (b), [21] ensured that, under several assumptions, the acceptance-rejection mechanism
introduced to implement PaRIS algorithm is still valid for stochastic differential equations. Consider
the following assumption,
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H2 For all 0 < k < n, there exists a random variable M}, measurable with respect to ’g}gﬁl such
that

Supx,y,( /r\k (.I‘, Y; C) S Mk .
If this assumption holds, the accept-reject mechanism of PaRIS algorithm is replaced by the fol-
lowing steps. Forall 1 <i< N and all 1 < j < N, a candidate J* is sampled in {1,..., N} with
probabilities proportional to (&)Y | and is accepted with probability Ty (§k L& 150 /M M &, where (
has distribution Rk(f];’*,§]i+1; -). Then, set

=

and
’\(LJ) ’\(IJ)
Tk+1 == Z ( St by (QHI afk+1)> . (17)

Lemma 3.1. Assume that H1 and H2 hold. Then, for all0 < k <n—1and all1 < i < N,

(jlgijl))1<j<ﬁ are i.i.d. and independent of &} | given FNv gﬁl and such that for all1 < < N,

@prk (&t Ehr)

N — X )
> =1 O (& 5124—1)

P (Al(cijl) = 4}-}9 ng+1) =

where &f, is defined by (16).
Proof. The proof follows the same lines as [21, Lemma 1]. O

The proposed algorithm therefore leads to an estimator of the expectation (1) in the general
setting of this paper. The following section provides constistency and asymptotic normality results
for this estimator.

4 Asymptotic results

4.1 Auxiliary Particle filter based PaRIS algorithms

In [26], the authors established the consistency and asymmptotic normality of PaRIS algorithm for
the bootstrap filter, i.e. in the simple case where for all 0 < k < n — 1, ¥ is the constant function
which equals 1 and pr = qx. This section extends these convergence results to the general auxiliary
particle filter based PaRIS algorithm as such filters are required for the pseudo marginal smoother.
Consider the following assumptions.

H3 For all 0 < k < n—1, g is a positive function such that ||gx|lcc < 0o. For all 0 < k <n—1,
llgxlloo < o0, H19;C||OC < 00 and ||@g+1lleo < 00 where for all (z,y) € X x X,

rk(m?y)

@y (18)

Grp1(w,y) =
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Lemma 4.1. Assume that H3 holds. Then, for all 0 < k < n, (fx, fx) € F(X)2 and N > 0, there
exist (cx,¢x) € (R%)? such that for all N € R% and all € € RY,

N

Wi L - )
P ( > ahtetfiléh) + €} — on[Tuhefi+ 7| > €> oo N
i=1 "
Proof. The proof follows the same lines as the proof of [26, Theorem 1]. -

Lemma 4.2. Assume that H3 holds. Then, for all0 <k <n, f € F(X) and N >0

ZsTk 60 o, melAl + on[TRhefi]

where no[fo] =0 and for all0 < k < n—1,

M| Lk fra1] + ¢k[Lk{Q¢k (Trhi + hr, — Try1his)? fk+1}]
Nqﬁk[Lk]l]

Mer1[fes1] =

Proof. The proof is postponed to Section B.1. O

Following [26, Lemma 13], for all 0 < k¥ < n and fj; € F(X), the recursion given in Lemma 4.2
may also be expressed as

| = ki:l ‘MM{&W (Tehe + he = Tesihen)*Lesn - L1 fi )] :
NF=Lg[Lg ... Ly_11]

(19)

Establishing a central limit theorem for PaRIS algorithms requires to introduce the retro-prospective
kernels, defined, for all 0 < k < m < n, o3, € X and h € F(X™*+1), by

Dk,mh(xk) = ‘/h(xO:m)Tk(xkvdekal)Lk s mel(xk,dxlﬁ»l:m) ’
ﬁk’mh(fﬂk) = Dk,m{h - ¢O:m\m[h]}(mk) :

Proposition 4.1. Assume that H3 holds. Then, for all 0 < k < n, (f%, fk) € F(X)?,

N o
Wk i i T i 7 D ra
VN (Z WZ{kak(gk) + fu(&)t — Sr[Trhw fe + fk)]) o okl [ 2
i=1
where Z is a standard Gaussian random variable and for all0 <k <n —1,

k—1 ¢s [198}¢8[L5{QS]5§+1,k(hkfk + ﬁ)}]
s=0 ¢S[Ls--~Lk,1]1]2

k=1 k = ~ —
N Z Gs[9s]be[Le{ Qo (Tehy + hy — Toprhoy1)? L .. Lo(Qg @ {Ligq1 ... Lp_1 i }?)] .
5—0 (=0 Ns+1_é¢g[Lg...LS_1H]¢S[LS...Lk_l]l]Q
Proof. The proof is postponed to Section B.2. O
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Corollary 4.1. Assume that H3 holds. Then, for all 0 < k < n, (fr, fr) € F(X)2,

(ZQ — Pk Tkhk]> N%o or(hi)Z ,

where Z is a standard Gaussian random variable and

i (h) = kz_:l PsVolos [Ls{wsﬁiﬂ,khk}]

£ GuL, . Ly 12

k=1 k
. Z Z bs[Vs] e Le{Qm (Tehe + he — Toirhey1) Loy - ..
s=0 ¢=0 No+1- %f[Lf

Ls(amws{Lsﬂ o Li_113}?)] _
L._11]¢s[L, ... Ly 1]2

4.2 Pseudo marginal PaRIS algorithms

Consider the following assumption.

H4 For all 0 < k < n—1, ||@k+1]lo < oo where for all (z,y,2) € X x X x Z

. R (G /)
O 2) = G (e y) (20)

Proposition 4.2. Assume that H1, H2 and H/j hold. Then, for all 0
and N > 0, there exist (ck, Ck)

|

Proof. The proof follows the same lines as the proof of [26, Theorem 1]

n, (fkafk) € F(X)2
€ (R%)? such that for all N € R%. and all ¢ € RY,

NAZ

Z { L IR (Eh) + Fr(60)} — on[Trhufi + fil| >

i=1

O
Lemma 4.3. Assume that H1, H2 and H4 hold. Then, for all0 < k < n, fi € F(X) and N > 0,
N i .
> ZEED (&) o el f] + ok Thhefr] |
=1 Qk N—roo
where for all 0 < k < n, ng[fx] is defined in (19).
Proof. The proof is postponed to Section C.1. O

Proposition 4.3. Assume that H1, H2 and Hj hold. Then, for all 0 < k < n, (fk, ﬁc) € F(X)?,

i=1

N A
VN (Z {kfk@f;)+ﬁ(£2>}—¢k[Tkhkfk+ﬁ)}> o onlfii i)

where Z is a standard Gaussian random variable and for all 0 < k < n —1, 6,%+1<f;€+1; ka) can
be computed using an explicit recursive formula given in Appendix C.2

10
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Proof. The proof is potsponed to Section C.2. O
Corollary 4.2. Assume that H1, H2 and H4 hold. Then, for all 0 < k < n,

N
Wy, D _
VN (E QZTi—%[Tkhk]) e or(hi)Z
=1

where Z is a standard Gaussian random variable and 6,%(/%) can be computed using an explicit
recursive formula given in Appendiz C.2.

5 Tangent filters and online recursive maximum likelihood

Let © be a parameter space. This section considers a family of transition kernels (Qx.9)pco:0<k<n—1
on X x B(X) and (Gg.0)sco:1<k<n o0 X X B(Y) associated with densities gx;p and g.¢ with respect
to u and v. The joint smoothing distributions are then defined, for any § € ©, 0 < k1 < ko < n
and any function h € F(Xk2=ki+1) hy:

n—1
Py ik [P] = E;;}g(yl:n)/X(dmo) H Qr:0(k, A1) gkt 1:0 (Trt 15 Y1) A (Thyiky)
k=0
where .
Lno(Y1m) = /X(diﬂo) H Qr:0(Tr, AZrt1)gkt1;0 (Tht1, Yir1)
k=0

As noted for instance in [10, Section 2] and [26], for all § € © and all f;., € F(X" 1),
v9¢0:n;9\n71[f0:n] = ¢0:n;9|n71[hnf0:n] - ¢O:n;9\n71[f0:n] X ¢O:n;9\n71[hn] 5
where .
hi(zo:n) = Z Pao (Th, Thy)
k=0
with, for all 0 < k < n —1,
P (ks Thr1) = Vo log grr1.0(Trt1, Yer1) + Vo 108 qreo (Thy Thyr) -

Considering an objective function f,, € F(X) which depends on the last state z,, only, the tangent
filter n,, is defined as the following signed measure:

nn;e[fn] = veﬂnﬁ[fn] = ¢O:n;9|n71[hn;9fn] - 7Tn;@[fn] X ¢O:n;0|n71[hn] 3

where 7, = ¢.njn—1 is the predictive measure. The particle based estimator of m, [f] is given by:

1 N
1= 5 2 fE) -
=1

Using the tower property, (4) and the backward decomposition (6):

7771,;9[]071] = Wn;Q[(Tnhn - Wn,Q[Tnhn])fn] . (21)

11
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Therefore, the tangent filter (21) can be approximated on-the-fly using the statistics (7).
the weighted particles {(&,w? )} ;:

N.FFBS| ) 1 ~i 1 - n
77n9 fn = Z fn 5 NZT” Nan(fz) . (22)

=1

; and

In cases where ri, 0 < k < n— 1, is unknown and replaced by an unbiased estimate, the associated
pseudo marginal particle-based approximation of the tangent filter is given by:

1) (1 &
Molf Z €0 - ( NZ?@) (Nan(f?)> : (23)
i=1

i=1

Given a set of observations Y7.,, maximum likelihood estimation amounts at obtaining a parameter
0, € © such that 6,, = arg maxgeo lo.n (Y1), where £g.,(Y1.,) = log Lo, (Y1.y,) is the logarithm of
the likelihood given in (2). There are many different approaches to compute an estimator of én,
see for instance [4, Chapter 10]. Following [12], under strong mixing assumptions, for all § € 6, the
extended process {(Xpn, Ya, Tn, Mn) }n>0 is an ergodic Markov chain and for all 6 € 6, the normalized
score Vly(Y1.n)/n of the observations may be shown to converge where:

1 1
—Vols(Yin) = Zveﬁe Yie | Y1) = —

zn: 0[Vogr:e] + Mr:0gr;:0)
=0 T30 [Ghs0] '

Assuming that the observations Y7., are generated by a model driven by a true parameter 6, for
all 6 € 0 this normalized score converges almost surely to a limiting quantity A(6,6,) such that,
under identifiability constraints, A(6,,6,) = 0. A gradient ascent algorithm cannot be designed as
the limiting function 6 — A(, 0,) is not available explicitly. Solving the equation A(6y, 6,) = 0 may
be cast into the framework of stochastic approximation to produce parameter estimates using the
Robbins-Monro algorithm

0n+1 = en + '7n+1<n+1 , n=0, (24)

where (,41 is a noisy observation of A(6,,6,). Obtaining such an observation is not possible in
practice and following [26] this noisy observation is approximated by

1 2
C7L+1 + Cn+1

Cng1:= ——3——, (25)
n+1
where
Crlwrl = Tn+1;0, [(V09n+1;9)\0:9n] ) C’r21+1 = Mnt10, [Int10,] and <g+1 = Tt 130, [Gn+1,0,] -
(26)

In (26), the measures m,41;9, and 7,41.9, depend on all the past parameter values. In the case
of a finite state space X the algorithm was studied in [24], which also provides assumptions under
which the sequence {6, },>0 converges towards the parameter 6, (see also [34] for refinements). In
more general cases, these measures may be estimated online using the pseudo marginal smoother
presented in this paper.

12



Pseudo marginal SMC

6 Application to partially observed SDE

Let (X;):>0 be defined as a weak solution to the following Stochastic Differential Equation (SDE)
in R%:
XO =X and dXt = Oég(Xt)dt + th y (27)

where (W})>0 is a standard Brownian motion, oy : X — X is the drift function . The inference
procedure presented in this paper is applied in the case where the solution to (27) is supposed to
be partially observed at times tyo = 0,...,t,, for a given n > 1, through an observation process
(Yi)o<k<n taking values in R™. For all 0 < k < n, the distribution of Y, given (X;)¢>0 depends on
X = Xy, only and has density gi.p with respect to v. The distribution of Xy has density x with
respect to p and for all 0 < k < n — 1, the conditional distribution of X1 given (X;)o<i<k has
density qx+1.0(Xk, ) with respect to u. This unknown density can be expressed as an expectation
of a Brownian Bridge functional [7].

Let w = (ws)o<s<¢ be the realization of a Brownian Bridge starting at x at time 0 and ending in
y at time A. The distribution of w is denoted by W4+¥. Moreover, suppose that for all § € O, ay
is of a gradient form ay = V Ay where Ay : X — R is a twice continuously differentiable function.
Denoting, 1 : =+ g(z) = (|lag(x)||? + AAdg(x))/2, by Girsanov theorem, for all z,y € R? x R?

Ay
G+1:0(7,y) = P, (x — y)exp (Ag(y) — Ap(x)) Eyar. lexp (- ; Py (ws)d )] ;o (28)

where Ay = tg11 — tg, for all a > 0, ¢, is the probability density function of a centered Gaussian
random variable with variance a.

The transition density then cannot be computed as it involves an integration over the whole
path between z and y. To perform the algorithm proposed in this paper, we therefore have to
design a positive an unbiased estimator of gxy1.9(z,y). Moreover, maximum likelihood estimation
of # requires an unbiased estimator of Vgloggry1.9(x,y). Such two estimators can be obtained
using the General Poisson Estimator (GPE, [18]).

Unbiased GPE estimator for gxi1.9(z,y;(). Assume that there exist random variables my
and Ty such that for all 0 < s < Ak, my < Yg(ws) < Ty. Let k be a random variable taking values
in N with distribution g, w = (ws)o<s<a, be the realization of a Brownian Brldge and (Uj)1<j<x
be independent uniform random variables on (0, Ax) and ¢ = (k,w, Us,...,Us). As shown in [18],
equation (28) leads to a positive unbiased estimator given by

Gl 56) = 6, (o = y)ewp (Any) — Aala) — g [] T 200D
j=1 o

Unbiased GPE estimator of Vgloggi+1.0(x,y). Let’s denote pp : z — ¢p(z) —my. By (28),
Vo log qii1;0(2,y) = VoAg(y) — Vode(z) — Vomy Ak
A
Egyan [(fo Voo (ws)ds ) exp (— It <Pe(ws)d3)]
_ ~ _
Egyan [exp (— 5" wg(ws)ds)}

13
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On the other hand, the diffusion bridge Sﬁ;’y associated with the SDE (27) is absolutely continuous
with respect to W2#¥ with Radon-Nikodym derivative given by
sy

AW

Ap
(@) = [ar+10(2,9)] " dap(z - yexp (Ae(y) — Ag(x) — mAy — /0 we(ws)d8> ;
Ap Ag
=Eyarw lexp (—/0 wg(ws)ds> exp (—/0 gpg(ws)ds> .

Ay

This yields

Vologari:0(z,y) = (VoAs(y) — Vode(z) — VomyAy) — Egar

VG ©o (Ws)d3‘|
0

and an unbiased estimator of Vglog gr+1.9(x,y) is given by
0,2,y,Ak\ _ 0,z,y, Ak
lk+10(2, Y, sp7 ) = (VoAg(y) — VoAs(x) — VomyAr) — ArVowe(sy )

where U is uniform on (0,1) and independent of s?»*¥:5% ~ SoAg’y. In the context of GPE, s?:%:¥:4%
can be simulated exactly using exact algorithms for diffusion processes proposed in [1].

Experiments. Online recursive maximum likelihood using pseudo marginal SMC is illustrated
when (27) has the specific form:

Xo=x¢ and dX;=sin(X; —0)dt+ dW;, (29)

where 0 is an unknown parameter ranging between 0 and 27. For this numerical experiments, we
suppose that a realization of (29) is only observed at times t; = k for 0 < k& < n with n = 5000
through a noisy observation process (Y% )ogk<n such for all 0 < k < n,

Vi =Xy, +er,

where (ex)ogkgn are i.i.d. standard Gaussian random variables, independent of (W;):>o. In this
case ayp : x — sin(z — 0) and

infer (a3(z) + Adg(x))/2 = —1/2

and for all z € R,
0 < @o(x) = (aj(x) + Adg(x))/2+1/2 < 9/8

and a GPE estimator of both the transition density and the gradient of its logarithm associated
with the SINE model is straightforward to compute.

A simulated data set is displayed in Figure 2, where 6, = /4. The solution to (29) is sampled at
times (tx)o<k<n using the Exact algorithm of [1]. For all 0 < £ < n—1, gx ¢ and the GPE unbiased
estimator of Vg ¢(z,y) are estimated using M = 30 independent Monte Carlo replications of
the general Poisson estimator. The estimations of 0, are given for 50 independent runs started at
random locations 6y with N = 100 particles and N = 2 backward samples. Following [21], the

14
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proposal distribution of the particle filter is obtained using an approximation of the fully adapted
particle filter where gy, ¢ is replaced by the its Euler scheme approximation.

Sensitivity to the starting point fy. The inference procedure was performed on the same data set
from 50 different starting points uniformly chosen in (0, 27). The gradient step size 7, of equation
(24) was chosen constant (and equal to 0.5) for the first 300 time steps, and then decreasing with
a rate proportional to k=6, Results are given Figure 3. There is no sensitivity to the starting
point of the algorithm, and after a couple of hundred observations, the estimates all concentrate
around the true value. As the gradient step size decreases, the estimates stay around the true value
following autocorrelated patterns that are common to all trajectories.

Asymptotic normality. The inference procedure was performed on 50 different data sets sim-
ulated with the same 6,. The 50 estimates were obtained starting from the same starting point
(fixed to 6., as Figure 3 shows no sensitivity to the starting point). Figure 4 shows the results for
the raw and the averaged estimates. The averaged estimates (gk)k>o consist in averaging the values
produced by the estimation procedure after a burning phase of ny time steps (here ng = 300 time
steps). This procedure allows to obtain an estimator whose convergence rate does not depend on
the step sizes chosen by the user, see [30, 23]. For all 0 < k& < ny, 5k = §k and for all k& > ny,

~ 1 koo
ek:k—no,z 0 .

Jj=no+1

As expected, the estimated distribution of the final estimates tends to be Gaussian, centered around
the true value.

Step size influence. To illustrate the influence of the gradient step sizes, different settings are
considered. In each scenario, the sequence (yx)x>o0 is given by

o
Ve = Yolfr<noy + mﬂ{k>no} ;

where 79 = 0.5. In this experiment x € {0.5,0.6,0.7,0.8,0.9,1}. The results are shown in Figure 5.
As expected, the raw estimator shows different rates of convergence depending on k, whereas the
averaged estimator has the same behavior in all cases.
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Figure 3: (Left) online estimation of 6 for the data set presented in Figure 2. The algorithm is
performed from 50 starting points. (Right) The gradient step sizes (defined in equation (24)).
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Figure 4: (Left) online estimation of 6 for 50 different simulated data sets as presented in Figure
2. The algorithm is performed from 1 starting point with the gradient step size shown in Figure 3.
(Center) Averaged estimator, where 6 is averaged after a burning phase of 300 time steps. (Right)
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A Additional technical results

The proof of Lemma A.1 is given in [11].

Lemma A.1. Assume that an, by, and b are random variables defined on the same probability
space such that there exist positive constants 5, B, C, and M satisfying

(i) lan/bn| < M, P-a.s. and b > B, P-a.s.,
(i) For alle >0 and all N > 1, P(|by — b| > ) < Be=ON¢*,

(iii) For alle >0 and all N > 1, P(Jan| > ) < Be ON(E/M)*,

2
]P’(Zj\\; >E><Bexp<—CN<2€]€[> )

The proof of Theorem A.1 is given in [13, Theorem A.3].

Then,

Theorem A.1. Let N be a positive integer, (Un;)i1<i<n be random variables on a probability space
(2, F,P) and (Fy ;)o<isn be a filtration on (Q, F,P). Assume that for all 1 <i < N the random
variable Uy ;i is such that BE[UR ;| Fy ;1] < 00. Assume also that the two following conditions hold.

(i) There exists 0® > 0 such that

N
Z (E[UJZV,J]:N,FJ - E[UN,iLFN,Fl]Q) 5 o2

. N—o00
i=1

(ii) For all e > 0,
al P
ZE[UJQV,@‘IHUNJI%LFN,FJ N—> 0.

‘ —00
i=1

Then, for all u > 0,

N
E lexp (zu Z {Un; —E[Un,
i=1

The proof of Lemma A.2 follows the same lines as [26, Lemma 14].

N—

fN,i—l]})

]P 722
IN,O] e v

Lemma A.2. Assume that H3 holds. Let K be a transition kernel on (X,B(X) with transition
density k € F(X x X) with respect to the reference measure p. Assume that (on)n>1 15 a sequence
of functions in F(X) such that

i) there exists ¢ € F(X) such that for all z € X, pn(z) iif' o(x);
— 00

i1) there exists 0 < cop < 00 such that for all N 2 1, ||on|loo < Coo-

Then, for all 0 < k < n,

o [Kon] = on[Ke] and o [Kon] — ¢i[Ke].
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B Convergence results for PaRIS algorithms
For all 0 < k£ < n, define the following o-fields:
F =0 {( CWhTh s 1<I< N, 0<u<k} and Gy :za{(fﬁ,wﬁ); 1<L< N} .

ur 'u

Lemma B.1. For all 0 < k< n-—1, (fk+1,ﬁ+1) € F(X)? and N,J\~/' > 0, the random variables
{wh 1 (T fr1 (Ehyy) + Frr1 (Ehy1)) 1y are icid. conditionally on FJY with

E [W£+1(Tli+1fk+1(fli+1) + karl(flichl))’fliV}

N Y] " "
= (@)Y ok { LS (€D) + Luhefios + Fran) (€D} -

x>

Proof. The proof follows the same lines as [26, Lemma 12]. O

B.1 Proof of Lemma 4.2

Proof. The proof proceeds by induction. The case k = 0 is a direct consequence of the fact that
Toho = 0 and 7 = 0 for all 1 < i < N. Assume that the result holds for some 0 < k < n — 1 and
write

N
wk 1 . . an
0 + (Tli+1)2fk+1(€llc+l) = b

7 k1 N

where
1L , 1L
aN = N szk+l(7_lz+1)2fk+l(€lz+l) and by = N Zw12<7+1 :
i=1 i=1

Then, using that (w}_;)1<i<n are i.i.d. conditionally on F}¥ and

NIL,1
E [why | 7] = %[[ o,

by Hoeffding inequality, since for all 1 <i < N, 0 < W;;-H < |l@k+1 00

# (b= |> o) - lp (b - 0 >

Therefore, by Lemma 4.1,

].‘]iV>:| < 2e_2N52/HLDk+1H§o .

P—a.s. (bk [Lk]l]
Nobo dn[Uh]

N

Since @x[Lkl] > 0 it remains to establish the convergence in probability of (an)n>1. On the
ot_her hand, by 2Hoeffding inequality, using that for all 1 < i < N, |wj i (7h41)% frer1(Ehiq)] <
1@kt [loo [ Akt 156 | Frt 1l oo

P (|aN _ ]E[CLN|]:,£V]| > 5) < 29*N€2/(2H@k+1||oo|\hk+1|\io\|fk+1|\oc) ;
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and it is enough to obtain the limit of Elay|F}Y] as N grows to infinity. Then, write

]E[UJN|}-I£V] =E [Wli+1(7'li+1)2fk+l(§1%+1)|]'—/£V] = a}v +5?v )

where

ajlv - N'E

1 1 I Y ?
Wi1 fr41 (1) E <Tk o (8T ,§k+1)>

FN v g}fH]

fﬁ] :
fév] :

(1,1) (1,1)

2
" ~ ~ Jh b
a?\f =(N-1)N 'E [wé+1fk+1(§i+1)E [TkH + h (5 . ,§;1+1) -Fliv \ ggﬂ}

The first term is given by

1 wkﬁk fk pr(&p, ) rk(ﬁi, )
iy =N Z/ SN m) T (fi,x)fkﬂ(ﬁ?)

N

) (. ) (o () nld)

N
=1 Zm 1w17cnrk(5217x

~ 2
= N"Y(op [9k])~ /fk+1 Z ka w(Eh, (T,f + hy (€L, x)) wu(dz) .
=
By the induction hypothesis and Lemma 4.1,

al o (Vo)™
X {7719 (L fri1] + Ox[T2hiLig frra] + O[Tk (frr1hd)] + 2¢k[TkhkLk(fk+17Lk)}}

which yields
a % (Now[0]) ! {nk[kak+ﬂ + ¢k [Li{ (Trhx +Ek)2fk+1}]} ~

The second term is given by

. Wit (E)pe(EL, ) (€], x)
a3 = —1 - - 1(®
N Z/ N Wi 5k> (el ) )

Yl o o)

: T h , L CL’E s
x (; Z,Iyl_lw;”rk(f}f@){ o+ he (& )}) p(de)
= (N = )N~ (o [04]) b [Lion]

with, for all z € X,

N

B wirg (&8, x) ~ ’
o) = o) (32 s FE (ot )]
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For all z € X, by Lemma 4.1,

P—a.s. O [Trhir (@) + 1 (-, @)y (-, )] ’
pn(z) — fk+1($)< Sulre ()] ) :

In addition, for all € X, by (8),

[ Trherk (-, @) + re (-, 2) (-, )]

= am (Tkhk + Ek) () = Tryrhpyr(z)

(bk[rk('»x)]
so that ’
en(x) N%i Srop1 (@) T by () -

Therefore, as ||¢n|loo < || frs1lloollPrs1l/%, by the generalized Lebesgue dominated convergence
theorem, see Lemma A.2,

@ 5 (N = )N (o [0x]) " dr[Li{ s T2y b} -

N—oo
Using that
Ok (L foa1T7  hegr] 9
= 1T hi.
oLl Gr41[fr1 Ty hiya]
yields
an Lo fier] | OklDe{(Tihi + hi)fii1}] — on[Lfe 1 T3y o]

P 2
— Ty 1h +-—= =
by Noio Orr1[fror1 i1 hara] Now[Led] Ny [Ly1]

The proof is concluded upon noting that

O [Li{(Tuhr + hi)? frs1 }] — O lL fer1 Th g hies]
= ¢k[Lk{6¢k (Twhy, + b — Trorhisr) foea }] -

O

B.2 Proof of Proposition 4.1

Proof. The result is proved by induction on k. It holds for k = 0 as for all 1 < i < N, 74 = 0.
Assume now that the result holds for some 0 < k < n—1 and that ¢g11[Trt1hk+1 o1+ fer1] = 0.
Write

N

w . , ~ . _

VN QZ; {Th o1 () + frra (€)= Qe AN
=1

where A}, | = \/]VZf\Ll wi {7 frerr(Eq) + ﬁc+1(§,i+1)} is decomposed as follows

N _ AN N
Apyr = A1 A0,
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where
Aﬁy—m = \/NZE [w/i+1(7é+1fk+1(€2+1) + fk+1(fllc+1))’]:/iv} )
i=1
k+1 9 = \ﬁz {wk+1 (Tk+1fk+1(fk+1) + fk+1(§k+1))
i=1
~E W (The frr1 () + T (60)[ Y]} -
By Lemma B.1,
N Al W/l; ’ Y 7 7 ¢
Qk+1Ak+1 o (o [95]) \/NZ o {TkkakH(fk) + Ly (hg frg1 + fk+1)(§k)}
=1

As Oyt [Thsrhisr fosr + frra] =0,

STl fisr + Li(hy frgr + fop1)] = 0.
Therefore, using the induction hypothesis, Slutsky’s lemma and

N
[oTY

1

(6F[0x]) " = (ulLyn)) !

yields B _
D k(L fot1; Lk (Pe frr + frer))

QLAY Z
k+1 k+1,1 N:io o [Lil] )
where Z is a standard Gaussian random variable. By Lemma B.1,
N
N .
—1 7
AN Z v
Q1B = N>
Qg1 P
where for all 1 < 4,57 < N and all z € X,
' N
l Z Ik-‘rl? ‘]]S;l.l:_jl)vgk:—i-l) )
(i) = M (7 + 76l ) fior @ + Fon@)
Uy, (fk)Pk (fkv )
el W ~ ~
— (6 10e]) 3 G T fen (6D + e + Fern) (€D}
=1

First, by Lemma 4.1,
N o p, o[

Qpy1 Nooo ¢p[Lgl]
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The proof is then concluded by applying Slutsky’s Lemma and Theorem A.l1 to the sequence
(v%)1<i<n- By construction E[vi|F&] = 0 so that the proof of (i) is based on

> El(wi)*1 7] =

~ 1,1
1]E[E[(UN(II%+17 J]g+1)v§i+1))2|‘/—_vliv \ gl]c\fk1|‘FI£V]
i=1

+ (N = DN TEEDN (T, 47 €L) 7YV GLAPIFY] - (30)
The first term of (30) is given by

" ,1
E [E |:U]2V(I/i+1’ Jlgi,l%gli-‘rl)‘]:/iv v gi?\{'!‘1:| ‘]:Iivj|

N ’ £ ¢l

Z wi k(&g Sy ~2

—E v (Ik+1,€ §k+1) o,
[e N WP, Eh)

—Z/ m@m%>i wir(h, @)

5N(.7’ 67 $)2/,L(d$> )
Yoot W O(E) (S oy W k(€ @)

m=1 wk Ik

4 0
¢k 19k Z/ kﬁk gk Pk fky )Z Wkrk(gk’ )

(= 1Zm qwitre (€ )

N(]? gv 'T)2lu‘(dx) 9
= (6N ) / Ay (@) By (2)u(de)

N Z _ " 2
— (o [9x]) <Z Q*]; {T/kaka(ﬁf;) + L (he fro1 + fk+1)(fﬁ)}> ,

where
Ax@) = o (eDmel. o) ((5’f> fji (& 2)a(el )
2 PSR G (e e) ) g TR
N _ - 2
=, () s et
By Lemma 4.1,
> Wi [ o ¢ 7 7 ¢ :
(on [94]) Zﬁk{Tkkak+1(£k)+Lk(hkfk+1+fk+1)(§k)}
=1

N%zo (¢k[19k])_2 (¢k[Tkhkkak+l + Lk(zkkarl + ﬁc+1)])2 =0,

since by assumption and [26, Lemma 11|, ¢ [TrhiLk frr1 + Lk(ﬁkfk_H + ﬁ+1)] = 0. Then, write

[ An(@)Bx@n(de) =@+ + @
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where

b‘a-u.

N -1
ON X {Z X)Wk fk, } <Z erk ) = 6¢g@k(l‘) )
4

N
i =Y bl [ ek o)t @on(an(do).
=1

N

W) 1 ge’ - ~ 2
e L Y i (ot )

N = 22 wk K/rk g]w ) (I)fk-‘rl(«r) (Ek(&ﬁ,l’)fk_;'_l(x) —+ ﬁ+1(x)> u(dz) .

b a.s.
By Lemma 4.1, for all x € X, |on () — Qg &k ()| P—) 0, and note that
Al —
b= D0 o w? [ nlehn) (0 Quenuda)
=1

< el Z [ et ) o) — Bzt e

Since || 7, 1len — Qo @kllloo < 2/@klloollfiy1llo < 00, by the generalized Lebesgue dominated
convergence theorem, see also Lemma A.2

N o
7 Yk

(rly? / k(6L 2) 12,41 (2) Qo on () u(lz)

)
S

N—oc0

and by Lemma 4.2,

ay %}oﬂk[Lk{ﬁHam@k}] +¢k[TihkLk{ff+16¢kwk}]~

On the other hand, by Lemma A.2 applied to

~ ~ 2
" MZ e (W) )

which is such that [|¥n e < 2(lkfrs1 1 + [ frs1]loo)

ay —> /¢k k(5 2)@ ()] Gl (@) (i (5 ) froyn (2) + Froyr (2))] ([
which yields

7I)])71/J’(dx) ’
B Lo L (@o @0 (i fis + Fun ).
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Finally,

—2Zﬂk [ 6 D (0 Quuon(a) (nleh ) i @) + o (@) (o)

= z Y wﬁ Y 9. -
< el (filloe el + Ui llc) Y- G [ 10068 )i (@) [orv(@) — Qunion(o)] (o)
(=1

so that using again Lemma A.2 and Lemma 4.1,
as %o 20y [TkhkLk {(6¢k@k)fk+1 (Ekfk+1 + ﬁc+1) H ~
Therefore, the first term of (30) satisfies
NTEE[@N T By ) IV Gl ALY
o el B | @080 [T+ B i+ Fon] )

Nwoo  Ngw[di] N i [9]
which concludes the proof for the first term of (30). The second term of (30) is given by

EE[ON(Th41 Jlgii)afli+1)|}—liv VG PFY]

N I4 £ 1 2
_E [(Z wkrk(fkvkarl)l 5N(Ili+1?€a€li+l)>

(=1 22:1 szrk(§£”>§k+1)
2
_ wkﬂk é-k Pk fky ) < al wﬁrk(é_ﬁ?x) ~ i ) d
Z/Zm AT ;ZLWWW)UNU, ,2) | pldz)

= (¢k [ﬁk]) o [Orer]
where, for all x € X,

)

7

)

N

N _ v 2 re(z, 2) . wéfk(fﬁaz) L T el 5
@ = [n >(0k(x)pk(w)fk+l< IS e (7 + (et )

N

2
+Mﬁ+l< (X)) D G {rkkam fk>+Lk(hkfk+1+fk+1)(£k)}> p(dz)

=1

By assumption and [26, Lemma 11], ¢x [T xhgLg fr+1+ Lk (hkka +fk+1)] = 0 so that by Lemma A.2,

P
o [Irer ] e r[rer]
—00

where
i) = [ (G0 (s 0B (T + B2+ o (1) ).
= [0 (B Y (o Tasahens () + Fen) ).
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Therefore,

~ 1,1
EE[ON (I}, T, €L DIFN v GNP Y
P

— (1 - ]17) (¢k[9x]) " on [Lk {@k (it Thrrhnis + ka)QH '

N—o0

The proof of (ii) is an immediate consequence of H3 since for all 1 <i < N,
vy < 20@rlloo (It lloel et + I Fiplloc) N2

Then, defining ¢t = 2/|@k+1 oo (11 oo | st oo + | fis1 o), for all € >0,

N
Z]E UN ]1|UN|>5“7:1€ ] Ck]lck>a\/7 N&c 0.
=1
Writing - _ B
fes1 = i1 — Grr[Trprhisr for + fiog)]s
yields
02 (fesn: fosn) = U]%<kak+1§Lk{Ekfk+1 + fet1}) + ¢k[19k]77k[Lk{f1§+16¢k@k}]
k1 k415 Set1) = or Lol 2 N(bk[Lk]l]Q
Dx [k D [Lk {@k (fer1Thprhrr + fkﬂ)zH
* ér[Lp1]?
— ~ 2
D[k dw [Lk{wkflg-&-l Qo (Tk:hk + hy — Tk+1hk+1) }]
+ _
N [Li1)?
and then, by (19),
~ 2(Ly fos1; L {h f
Oy (frt15 frg1) = 2kl i ¢:{i:]£k2+1 lad)
Dk [k D [Lk {@k (frr1Trprhrgr + fk+1)2H
- ¢k[Lk11]
G0k o= 0 Le{Qm (Tehe + he — Tesrheer)* Lot - Lk{flz+16¢kwk}}]
fbk Li1]? 4 Nk+1=Lg[Ly .. Ly 1] '

By definition of the kernel ﬁkﬂ,kﬂ,
_ s N2 = ~
Pk [Lkwk (frr1Thprhigr + frr1) ] = ¢k {LkaDﬁ+l,k+1 {hk+1fk+1 + fk+1H .

It remains to prove the explicit expression of o7 1 (frrns ﬁc+1> from this recursion formula. First,
following the proof of [26, Theorem 3], for all 0 < s < k,

1D JU (kakJrl + Ly { g fror + fk+1> =Dii1h1 (hk+1fk+1 + fkﬂ) .
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In addition, 0 < s < k,
¢s[Ls - .. Ly 1]

¢s[ E -Lkrfl]l] ’
which concludes the proof. O

or[Lpl] =

C Convergence results for Pseudo marginal PaRIS algorithms

Lemma C.1. Assume that H1 and H2 hold. The, for all 0 < k <n —1, (frs1, fes1) € F(X)? and
N,N >0, the random variables {@} , (7p 1 fri1(Ehr) + fk+1(§k+1))}£i1 are i.i.d. conditionally
on ]-"k with

E [0 (Fhiafera (i) + Fosa (§ha))| Y]
~ 1 XN ot - _
= (%V[ﬁk]) Zﬁfk {?/kaka(fﬁ) + L (he fiot1 +fk+1)(€ﬁ)} :
— k

Proof. The proof follows the same lines as [21, Lemma 2]. Note first that

E [@;H’}}c % gk+1i| = wk+1(€ﬁ )

N ~0 0 ¢l
Wy (€ Ekgr)
[Tk+1’}—k \ gk-i—l} = Z T, -
=1 m=1 wlTrk(flT7 £k+1

s (7 Tnleh6hi)
where @y, is defined by (18) in H3. Then, since conditionally on .7?,?/ v leivﬂ, Tpy1 is independent of
Okt
E [0k 2 (Bl fiorr (i) + Fora (640)) | 7]
=E| [wk+1‘fk ng+1} [Tk—&-l’}—k ng+1} Fer1(8ga) ’Fk }

+E [ {wkﬂ‘fk \/Qkﬂ} fr1(Ehi) ‘]:k ] ,

fg]

_ Thpy o1 al aﬁ"k@ﬁﬁfcﬂ) AT (el i 1
=E |wr+1(&, ;£k+1)z =~ : )(Tk+hk(£k7£k+1))fk+1(£k+1)

N
L =1 Zm:l w?rk(gzn?gllﬂ-l

_ L,
+E [warl( H a£k+1)fk+1(£k+1) Fi ] )
N @e " "
(¢k [s] ) > ﬁfk {/T\Ingkarl(gi) + L (hifes1 + fk:+1)(§ﬁ)} ;
=1
which concludes the proof. O
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C.1 Proof of Lemma 4.3

Proof. The proof proceeds by induction and follows the same lines as [26, Lemma 13]. The case
k =0 is a direct consequence of the fact that Tohg = 0 and 73 = 0 for all 1 <i < N. Assume that
the result holds for some 0 < &k < n — 1 and write

wk 1 an
Z * Tk+1 fk+1(fk+1) b
— Qk+1 N

where
1L . ‘ 1oL,
=N Zw1@+1(712+1)2fk+1(52+1) and by = ZWIZH :
=1 =1

The random variables (@}, 41)1<i<n are i.id. conditionally on ]t',ﬁv with

7).
where @y, is defined by (18) in H3. Noting that by H4 for all 1 <i < N |}, ;| < [|@k]lsc and
Zi:l wlchkﬂ(karl) . ¢£[[Lk]1]
N~ i Y ’
2ic1 WUk (fk+1) (252] (V]
by Hoeffding’s inequality, there exist positive constants ¢ and ¢ such that
SN L1
P < by — ij]\g 1]
P [ﬁk}
Therefore, by Proposition 4.2 and Lemma A.1,

L1 ~
P(‘bN— Ox[Li ]’ ><€> < c;ce_c’“N62

E [@iﬂ’ﬁzﬂ = { [wk+1‘]:k N gk+1} ’]:k } = [Wkﬂ(g v§k+1)

E |z EJA 1 ]A:'-N _
wk+1(§k 7£k+1) k| —

Or (U]
so that, oulLut]
P—as. Pr|Lil
N N:io ¢k[19k]
Since ¢x[Lkl] > 0 it remains to establish the convergence in probability of (an)ny>1. On the
other hand, by Hoeffding inequality, using that for all 1 < @ < N, |&} 1 (7} 1) fe1(&h11)] <
1@k 41 oo 1 em 2 136 1 Fr 1l oo

P (‘aN - E[aN|.7?,£V]’ > 6) < cpe N
Then, write
Elan| 7] = E 6k (i) fen (6|7
E {]E {@,ﬁﬂ‘]’},ﬁv v Qv,ﬁl} E [ Tt ‘fk \/gk+1:| frr1(Eigr) ‘]:k } )

7],

~ EJA
=E |@0p41(&5 Ehy1)E [ Thi1) ‘-7:1@ \ gk+1:| Srr1(Eigr)
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where
- IAlk+1 1 1 j\l(ciri) 7 A]E:F}) ? =N ~N =N
ay = NTE Orr1(& " Eepr) fror1 (Cps ) )E | | 7 + h(6 T hgn) ) TR VG | FY |
@ = (V- )F'E I B e e | EY Yy
ay = ( ) k1§ Ehy 1) o1 (€41 )E |7y + hie (&5 &) | FY v gk+1 k| -

By Lemma 3.1, the first term is given by

S s [ G0EDpeE ) (€] )
N Z/ N G sk ) ﬁk@f;)pk(fi,x)f b41(5)

N
X

airk(é-]{;vx)

N  ~
(=1 Zm 1w,7€"rk(521,x)
N !

= S0 [ fente) Y Zorateha) (FL+ uteh ) utan),

Z:l

(7t + Pletom) ()

By the induction hypothesis and Proposition 4.2,

ay N%o (Ni[x]) ! {77k Ly fo1] + Ok [T2hi L fri1] + oL (frr1hd)] + 204 [TkhkLk(kaﬁk)]} ,

which yields

a2, (Noue]) ™ {melLfia) + 0uLi{ (Tehe + ) s} | -

The second term is given by

—1 1916 gk pr (&L, ) (fk, x)
@i = —1 x
N Z/zm LBy sk> k(E])pr (€], )f’““()

. (i L) G el x)}>2u(dx)
(=1 Zg@ﬂ@l@nrk(f?v@ * g ’
= (N = )N~ (o [9x]) "' oR [Lugn] ,
with, for all x € X,

N

Olre(EL, 2 ~ ’
on(x) = frr1(x) (Z SN kf(gk’ ) ){?Ierhk(fll;vx)}) .

=1 m=1 w;cnrk(él’rcn’ T

For all z € X, by Proposition 4.2,

_ 2
P—a.s. Ok Trhere (-, ) 4+ (- 2) i (-, )]
@) 3 e @) ( SxlreCo )] )
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Therefore, as ||¢n|lco < || frrillool|Prr1]/%, by the generalized Lebesgue dominated convergence
theorem, see Lemma A.2,

@ = (N = DN (@u[0k]) " or Ll forn TR by}

N—o00

This concludes the proof following the same steps as in the proof of Lemma 4.2. O

C.2 Proof of Proposition 4.3

Proof. The result is proved by induction on k. It holds for k = 0 as for all 1 < i < N, 73 = 0.

Assume now that the result holds for some 0 < k < n—1 and that ¢g11[Tkr1hk+1 fk+1 +fk+1] =0.
Write N

\/>Z kH {Tk+1fk+1(fk+1) + fk+1(§k+1)} = 1:+1 ;cv+1 )

k

where AN, | = VNN Gk AT 1 frs (E0) + fk+1(§,i+1)} is decomposed as follows

Alc+1 k+171 + AlIcV+1,2 ;
where
N . . . ~ . ~
AYira = VN Y E [0 Gl St () + Fia €))7
=1
N . . . ~ .
Az = VN Y {Gh (i fen ) + Fona (i)
i=1
~E (@ Pl S () + T (60) | FY ]} -
By Lemma B.1,
N (on D (o ¢ 7 7 ¢
Qk+1Ak+1 1= = (¢k (V] ) \/NZ = {Tkkak+1(§k) + Ly (hg frg1 + fk+1)(§k)}
Qo1 =

As Oyt [Thsrhisr fosr + frra] =0,

Ok [TrhiLi fre1 + L (g fopr + fre1)] = 0.

Therefore, using the induction hypothesis, Slutsky’s lemma and

N /- -1 p -1
= ¢N[19k] — (¢ [Li1])
k41 ( k ) N—oo
yields ~ ~
D 0L fot1; L (b fotrr + fot1))
Qk‘JrlAk?Jrl,l N oo (,bk[Lk]l] Z7
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N
N -
§ )
Qk«‘rlAk"rlQ_iA UN,
Qk‘-{—l i=1

where Z is a standard Gaussian random variable. By Lemma B.1

where for all 1 < 4,7 < N and all x € X,

(Tir IS0 6000)

NN
7 (& 73 Gi) p {(?;Z +Ek(£i7x)> Fer1(@) + fraa( )}

on (i ,2) = ﬁk(gk)pk‘(gka
- M 5 -
<¢k [?9k]) Z == {?szkka(ff;) + L (hge fr1 + fk+1)(5k)}
=1
First,
N p gr[Ui]
ﬁk-‘rl N— 00 (;Sk[Lk]l] ’

Then, by construction, E[vi|F)] = 0 and

~ 1,1 =
NTEE[ON Ty, T €021 FN v G | FY

N
> Bl FY] =
+ (N = YN TEE[DN (T, I, &) IFY v G 1PIFN] . (31)

The first term of (31) is given by
~ 71 711
E {]E |:U]2V(Ik+17 k+1)7§k+1 )]:k \ gk-q—l} ’]:k }

— (10]) " [ Ax@By@n(dn)
N ~yp _ _ 2
{FLkfirn(6) + Lu(hufios + fk+1><sk>}> ,

- (@w)” (23

=

{O

where, for all (z,y) € X x X,
(z,y) = /?k(x,y;z)@kﬂ(ﬂc,y;z)Rk(w,y,dZ)
N wk Ji( fk,x u)sz(ﬁk,:ﬂ du)

vt = Z (Ox OuEDmn(e )
{(F+ Pl ) frna(@) + @)}

Wﬁrk(géa :L')

N
By =2, N Grn(er, x)

(=1
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By Proposition 4.2,

N ~y

(@7[191@])_2 (Z % {?;kaka(ﬁf;) + L (A frosn + ﬁﬂ)(fﬁ)})

=1 "%k

Nl (6x[0x]) ™ (¢k[Tkhkkak+1 + Ly (B frogr + fkﬂ)])2 -0,

where by assumption ¢pi1[Tri1her1fes1 + fri1] = 0, so that ¢x[TrhpLi fer1 + Li(hyfryr +
fr+1)] = 0. Then, write

/AN(x)BN(x)M(dx) —al +a +ad,

where
N o _ N sm -1
@NZfH{Z/\kwk( iax)} <Z jfk(ﬁ?ﬁ)) ;
J=1 Qk m=1 Qk
N ~¢
i = 3 2 * [ ik S @en (@),
=1

o N Wl (&t - _
EEE L) L) (G e ) fia(o) + Frn (@)l

t=1 2um= lwk i k(€ )
~ ot ~ ~
ay = 22 =£ Tzf/rk & )N () fir () (hk(@iaff)fkﬂ(ﬂf) + fk+1($)) p(da) .
=
Following the same steps as in the proof of Proposition 4.1,

apy l> MLk {f21 Qo }] + 0k T2h L { f21 Qo on )]

N —oc0

a5 *> 20 {TkhkLk’ {(Q¢kwk)fk+1 (Ekfk+1 + ﬁc+1) }] ;

AL [ / wk<-,x>¢k[rk<-,x)(ﬁkc,a:)fm(x)+ﬁ+l<x>>21<¢k[rk<~,a:>1>m(dx)} ,

where Qm wi = Sk (., 2)]/dr[re (., x)]. Therefore, the first term of (31) satisfies

NTEE(@N T By )PV Gl A
e [ elfia @) 2)]k (@i (- 2)]
P, d
| S oo S
N / rlrk (D) {(Twhp + b, @) fio1 () + fir (2) 1] [ (-, )]
N[0k bk ri (-, )]
which concludes the proof for the first term of (31). The second term of (31) is given by

N—o0

p(dz)

Py -1 <
]E[E[T}N(Ili-s-la ki_i)vfk-u)‘}—]v \ gk+1] |~7:k ] (Q%Vwk]) ¢§cv[19k‘PkN] )
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where, for all x € X,

N

ri(x, z Srp (€L, 2 ~
Aw= [z (Mfkﬂ(@z e e )

(2)pr(z, 2 SN Grn(Er, 2)

N ~y

ot f) - o) 3 5 AL ) + Tulhufuon + ﬁm@,‘;)}) u(dz)

By assumption, ¢x[TxhiLy frr1 + Lk(ﬁkfk_i_l + J?k—s-l)] = 0 so that by Lemma A.2,
~ P
ok [k | ot OrlOen]
— 00

where

2

or(x) = /Pk(x,Z) (m>2 (fk+1(2)6¢k (Txhs +Ek)(z) i ﬁ+1(z)>2u(dz) |
/ )>2 (fk+1(2)Tk+1hk+1(Z) + fkﬂ(z)> n(dz) .

—
=
kS|
el
&
N

Therefore,

~ 1,1
EE[ON (I}, T, €L DIFN v GNP Y

P

5 (1= %) @l o | [t 2m0) (@ Tentin () + ) n@)|

N—o00
The proof of (ii) is an immediate consequence of H4 since for all 1 <i < N,

vy < 20Bhr1lloe (Iesilloc i lloo + 1 s lloo ) N2

Then, defining ¢t = 2/|@x+1 oo (11 oo | st oo + | fist o), for all € >0,

N

i P
D B[R Ly e FN < Gl sy 0
=1

Writing
Jrr1 = frr1r — Orr1[Trrrhrsr forr + fer)]s
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yields

5i<kak+1§Lk{%kfk+1 + fret1}) n Br[Ix] fWk[rk('ax)]fifﬂ(x)émwk(x)ﬂ(dx)
o [Ly1]2 Ny |Li1]?

O[Ok dr f t (- 2)0k (4, 2) (Frg1(2) Tharhes1(2) + fk+1(2’))2 u(dz)}

* ] ¢ [Li1]?

uilon | @1 2) a9 (Tua T = Tusalesn) (G

_ Ny [Li1]?

Ok [k D _f Cov{Ti(, 2 Ge)ok (2 Ge)} (it (2) Tt hasa (2) + frsa(2))° M(dz)}

Trp1 (fotts fog1) =

+

)

+ s
Ny [Lg1]2

which concludes the proof.
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