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Abstract

This paper focuses on the estimation of smoothing distributions in general state space mod-
els where the transition density of the hidden Markov chain or the conditional likelihood of the
observations given the latent state cannot be evaluated pointwise. The consistency and asymp-
totic normality of a pseudo marginal online algorithm to estimate smoothed expectations of
additive functionals when these quantities are replaced by unbiased estimators are established.
A recursive maximum likelihood estimation procedure is also introduced by combining this
online algorithm with an estimation of the gradient of the filtering distributions, also known
as the tangent filters, when the model is driven by unknown parameters. The performance of
this estimator is assessed in the case of a partially observed stochastic differential equation.

1 Introduction

The data considered in this paper originate from general state space models, usually defined as bi-
variate stochastic processes {(Xk, Yk)}16k6n where {Yk}16k6n are the observations and {Xk}16k6n
are the latent states comonly assumed to be a Markov chain. When both processes take values in
general spaces, the estimation of the conditional distribution of a sequence of hidden states given a
fixed observation record is a challenging task required for instance to perform maximum likelihood
inference. Markov chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC) methods (also
known as particle filters or smoothers) are widespread solutions to propose consistent estimators of
such distributions. This paper sets the focus on the special case where the conditional likelihood
of an observation given the corresponding latent state (also known as the emission distribution) or
the transition density of the hidden Markov chain cannot be evaluated pointwise, while they are
pivotal tools of both MCMC and SMC approaches. The first objective of this paper is to prove that
conditional expectations of additive functionals of the hidden states may still be estimated online
with a consistent and asymptotically normal SMC algorithm. A recursive maximum likelihood
estimation procedure based on this algorithm and using an approximation of the gradient of the
filtering distributions, referred to as the tangent filters, is then introduced.
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The use of latent data models is ubiquitous in time series analysis across a wide range of
applied science and engineering domains such as signal processing [6], genomics [36, 35], target
tracking [33], enhancement and segmentation of speech and audio signals [31], see also [32, 14, 37]
and the numerous references therein. Statistical inference for such models is likely to require
the computation of conditional expectations of sequences of hidden states given observations. In
this Bayesian setting, one of the most challenging problems is the approximation of expectations
under the joint smoothing distribution, i.e. the posterior distribution of the sequence of states
(X1, . . . , Xn) given the observations (Y1, . . . , Yn) for some n > 1. This computation is not tractable
in the framework of this paper where it is assumed that the transtion density of the hidden process
or the conditional likelihood of observations given states cannot be computed. This circumstance
is somehow common for instance in the case of partially observed stochastic diferential equations
(SDE), or in models where the emission distributions relies on a computationally prohibitive black-
box routine.

Following [18, 21], this paper concentrates on SMC methods to approximate smoothing distri-
butions with a random set of states, the particles, associated with importance weights by combining
importance sampling and resampling steps. This allows to solve the filtering problem by combining
an auxiliary particle filter with an unbiased estimate of the unknown densities. Then, the online
smoother of [21] extends the particle-based rapid incremental smoother (PaRIS) of [28], to ap-
proximate, processing the data stream online, smoothed expectations of additive functionals when
the unknown densities are replaced by unbiased estimates. This approach is an online version of
the Forward Filtering Backward Simulation algorithm algorithm [11] specifically designed to ap-
proximate smoothed additive functionals. The crucial feature which makes the PaRIS algorithm
appealing is the acceptance-rejection step which benefits from the unbiased estimation. The exten-
sion of the usual alternative, named the Forward Filtering Backward Smoothing algorithm [15], is
more sensitive as it involves ratios of these unknown quantities. Other smoothing algorithms such
as two-filter based approaches [2, 19, 25] could be extended similarly but they are intrisically not
online procedures as they require the time horizon and all observations to be available to initialize
a backward information filter.

In [21], the only theoretical guarantee is that the accept reject mechanism of the PaRIS algorithm
is still correct when the transition densities are replaced by unbiased estimates. In this paper,
the consistency of the algorithm as long as a central limit theorem (CLT) are established (see
Proposition 4.2 and Proposition 4.3 in Section 4.2). This makes this pseudo marginal smoother the
first algorithm to approximate such expectations in the general setting of this paper with theoretical
guarantees and an explicit expression of the asymptotic variance. As a byproduct, the proofs of these
results require to establish exponential deviation inequalities and a CLT for the PaRIS algorithm
based on the auxiliary particle filter, see Section 4.1. This extends the result of [28], written only
in the case of the bootstrap filter of [22]. This also extends the theoretical guarantees obtained for
online sequential Monte Carlo smoothers given in [11, 9, 17, 20].

The second part of the paper is devoted to recursive maximum likelihood estimation when the
emission distributions or the transition densities depend on an unknown parameter, see Section 5.
Following the filter sensitivity approach of [5, Section 10.2.4], the pseudo marginal smoother is used
to estimate online the gradient of the one-step predictive likelihood of an observation given past
observations. This procedure allows to perform online estimation in complex frameworks and is
applied in Section 6 to partially observed SDE.
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2 Online Sequential Monte Carlo smoother

Let n be a positive integer and X and Y two general state spaces. Consider a distribution χ on B(X)
and the Markov transition kernels (Qk)06k6n−1 on X× B(X) and (Gk)06k6n−1 on X× X× B(Y).
Throughout this paper, for all 0 6 k 6 n−1, Gk has a density gk with respect to a reference measure
ν on B(Y). In the following, F(Z) denotes the set of real valued measurable functions defined on the
set Z. Let (Yk)16k6n be a sequence of observations in Y and define the joint smoothing distributions,
for any 0 6 k1 6 k2 6 n and any function h ∈ F(Xk2−k1+1), by:

φk1:k2|n[h] := L−1
n (Y1:n)

∫
χ(dx0)

n−1∏
k=0

Qk(xk,dxk+1)gk(xk, xk+1, Yk+1)h(xk1:k2
) , (1)

where au:v is a short-hand notation for (au, . . . , av) and

Ln(Y1:n) =

∫
χ(dx0)

n−1∏
k=0

Qk(xk,dxk+1)gk(xk, xk+1, Yk+1) (2)

is the observed data likelihood. For all 0 6 k 6 n − 1, Qk has a density qk with respect to a
reference measure µ on B(X). The initial measure χ is also assumed to have a density with respect
to µ which is also referred to as χ. For all 0 6 k 6 n, φk = φk:k|k are the filtering distributions,
πk+1 = φk+1:k+1|k are the one-step predictive distributions, while φk|n = φk:k|n are the marginal
smoothing distributions.

Consider a latent Markov chain (Xk)06k6n with initial distribution χ and Markov transition
kernels (Qk)06k6n−1. The states (Xk)06k6n are not available so that any statistical inference
procedure is performed using the sequence of observations (Yk)16k6n only. The observations are
assumed to be independent conditional on (Xk)06k6n and such that for all 1 6 ` 6 n the distribution
of Y` given (Xk)06k6n has distribution Gk(Xk, ·). In this case, (1) may be interpreted as:

φk1:k2|n[h] = E [h(Xk1:k2)|Y1:n] .

Xk−1 Xk

Yk

Xk+1

Yk+1

qk−1(Xk−1,·) qk(Xk,·)

g
k−

1 (X
k−

1 ,X
k ,·)

g
k (X

k ,X
k
+
1 ,·)

Figure 1: Graphical model of the general state space hidden Markov model

Figure 1 displays the graphical model associated with (2). Note that, when for all 0 6 k 6 n−1
gk only depends on its last two arguments, (2) is the likelihood of a standard hidden Markov model.
In such models, computing (1) allows to solve classical problems such as:
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i) path reconstruction, i.e. the reconstruction of the hidden states given the observations;

ii) parameter inference, i.e., when qk and gk depend on some unknown parameter θ, the design
of a consistent estimator of θ from the observations.

As (1) is, in general, not available explicitly, this paper focuses on a sequential Monte Carlo based
approximation specifically designed for cases where qk and/or gk cannot be evaluated pointwise.
Partially observed diffusion processes (POD) [27], where the latent process is the solution to a
stochastic differential equation are widespread examples where qk is not tractable.

Recursive formulation of (1) for additive functionals. For all 0 6 k 6 n− 1, define

rk(xk, xk+1) = qk(xk, xk+1)gk(xk, xk+1, Yk+1) . (3)

For all 0 6 k 6 n− 1, define also the kernel Lk on X× B(X), for all x ∈ X and all f ∈ F(X) by

Lkf(x) =

∫
rk(x, y)f(y)dy .

In the following, 1 denotes the constant function which equals 1 for all x ∈ X so that

Lk1(x) =

∫
rk(x, y)dy .

Following for instance [4], the joint smoothing distributions φ0:n|n may be decomposed using the
backward Markov kernels defined, for all 0 6 k 6 n− 1, all xk+1 ∈ X and all f ∈ F(X), by:

←−
Qφkf(xk+1) :=

∫
f(xk)rk(xk, xk+1)φk(dxk)∫

rk(x′k, xk+1)φk(dx′k)
. (4)

Consequently, the joint-smoothing distribution φ0:n|n may be expressed, for all h ∈ F(Xn+1), as

φ0:n|n[h] = φn[Tnh] , (5)

where

Tn :=

{←−
Qφn−1

⊗
←−
Qφn−2

⊗ · · · ⊗
←−
Qφ0

for n > 0 ,

id for n = 0 ,
(6)

where, for all Markov kernels K1,K2 on X× B(X), all f ∈ F(X2) and all x ∈ X,

(K1 ⊗K2)f(x) =

∫
f(y, z)K1(x, dy)K2(y,dz) .

In this paper, the focus is set on additive functionals of the form

h0:n(x0:n) =

n−1∑
k=0

h̃k(xk, xk+1) , (7)
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with, for all 0 6 k 6 n − 1, h̃k : X × X → Rp for some p > 1. The additive form of the function
hn defined in (7) allows to update the backward statistics (Tkhk)k>0 recursively, see [3, 9]. For all
k > 0,

Tk+1hk+1(xk+1) =

∫
{Tkhk(xk) + h̃k(xk:k+1)}

←−
Qφk(xk+1,dxk) . (8)

By (5) and (8), the smoothed additive functional (5) can be updated recursively each time a new
observation is available. However, its exact computation is not possible in general state spaces. In

this paper, we propose to approximate φ0:n|n[hn] using SMC methods: φn in (5) and
←−
Qφk in (8)

are replaced by a set of random samples associated with nonnegative importance weights. These
particle filters and smoothers approximations combine sequential importance sampling steps to
update recursively φn and importance resampling steps to duplicate or discard particles according
to their importance weights.

Sequential Monte Carlo for additive functionals. Let (ξ`0)N`=1 be independent and identically
distributed according to the instrumental proposal density ρ0 on X and define the importance
weights:

ω`0 :=
χ(ξ`0)

ρ0(ξ`0)
.

For any f ∈ F(X),

φN0 [f ] := Ω−1
0

N∑
`=1

ω`0f(ξ`0) , where Ω0 :=

N∑
`=1

ω`0

is a consistent estimator of φ0[f ], see for instance [8]. Then, for all k > 1, once the observation
Yk is available, the weighted particle sample {(ω`k−1, ξ

`
k−1)}N`=1 is transformed into a new weighted

particle sample approximating φk. This update step is carried through in two steps, selection and
mutation, using the auxiliary sampler introduced in [29]. New indices and particles {(I`k, ξ`k)}N`=1

are simulated independently from the instrumental distribution with density on {1, . . . , N} × X:

υk(`, x) ∝ ω`k−1ϑk−1(ξ`k−1)pk−1(ξ`k−1, x) , (9)

where ϑk−1 is an adjustment multiplier weight function and pk−1 a Markovian transition density.
For any ` ∈ {1, . . . , N}, ξ`k is associated with the importance weight defined by:

ω`k :=
rk−1(ξ

I`k
k−1, ξ

`
k)

ϑk−1(ξ
I`k
k−1)pk−1(ξ

I`k
k−1, ξ

`
k)

(10)

to produce the following approximation of φk[f ]:

φNk [f ] := Ω−1
k

N∑
`=1

ω`kf(ξ`k) , where Ωk :=

N∑
`=1

ω`k .

For all k > 0 and all (x, f) ∈ X× F(X), replacing φk by φNk in (4),
←−
Qφkf(x) is approximated by:

←−
QφNk

f(x) =

N∑
i=1

ωikrk(ξik, x)∑N
`=1 ω

`
krk(ξ`k, x)

f(ξik) . (11)
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The forward-filtering backward-smoothing (FFBS) algorithm proposed in [9] consists in replacing, in

(8),
←−
Qφk by the approximation

←−
QφNk

. Proceeding recursively, this produces a sequence of estimates

(τ̃ ik)Ni=1 of (Tkhk(ξik))Ni=1 for 0 6 k 6 n. Starting with τ̃ i0 = 0 for all 1 6 i 6 N , this yields for all
0 6 k 6 n− 1:

τ̃ ik+1 =

N∑
j=1

ωjkrk(ξjk, ξ
i
k+1)∑N

`=1 ω
`
krk(ξ`k, ξ

i
k+1)

(
τ̃ jk + h̃k(ξjk, ξ

i
k+1)

)
. (12)

Then, at each iteration 0 6 k 6 n− 1, φ0:k+1|k[hk+1] and φ0:k+1|k+1[hk+1] are approximated by

φN,FFBS
0:k+1|k [hk+1] :=

1

N

N∑
i=1

τ̃ ik+1 and φN,FFBS
0:k+1|k+1[hk+1] :=

N∑
i=1

ωik+1

Ωk+1
τ̃ ik+1 .

The computational complexity of the update (12) grows quadratically with the number of particles
N . This computational cost can be reduced following [28] by first replacing (12) by the Monte
Carlo estimate

τ ik+1 =
1

Ñ

Ñ∑
j=1

(
τ
J

(i,j)
k+1

k + h̃k(ξ
J

(i,j)
k+1

k , ξik+1)

)
, (13)

where the sample size Ñ > 1 is typically small compared to N and (J
(i,j)
k+1 )Ñj=1 are i.i.d. samples in

{1, . . . , N} with probabilities proportional to (ω`krk(ξ`k, ξ
i
k+1))N`=1. In the resulting Particle Rapid

Incremental smoother (PaRIS) algorithm, the updated (τ ik+1)Ni=1, estimates of φ0:k+1|k[hk+1] =
πk+1[Tk+1hk+1] and φ0:k+1|k+1[hk+1] = πk+1[Tk+1hk+1] are obtained as:

φN,PaRIS
0:k+1|k [hk] :=

1

N

N∑
i=1

τ ik+1 and φN,PaRIS
0:k+1|k [hk+1] :=

N∑
i=1

ωik+1

Ωk+1
τ ik+1 .

Acceptance-rejection procedure. The computational complexity of the described approach is

still of order N2 since it requires the normalising constant
∑N
`=1 ω

`
krk(ξ`k, ξ

i
k+1) to sample (J

(i,j)
k+1 )Ñj=1

for all particle ξik+1, 1 6 i 6 N . A faster algorithm is obtained by applying the accept-reject
sampling approach proposed in [11] and illustrated in [16] which presupposes that there exists a
constant M > 0 such that rk(x, x′) 6 M for all (x, x′) ∈ X × X. Then, in order to sample from
(ω`krk(ξ`k, ξ

i
k+1))N`=1 a candidate J∗ ∼ (ωik)Ni=1 is accepted with probability:

ΥM
k (J∗, i) := rk(ξJ

∗

k , ξik+1)/M . (14)

This procedure is repeated until acceptance. Under strong mixing assumptions it can be shown,
see for instance [11, Proposition 2] and [28, Theorem 10], that the expected number of trials needed

for this approach to update (τ ik)Ni=1 to (τ ik+1)Ni=1 is O(ÑN).

3 Pseudo marginal Sequential Monte Carlo smoother

In many applications, Sequential Monte Carlo methods cannot be used as the transition densities
qk or gk, 0 6 k 6 n−1, are unknown. The following crucial steps which rely on rk are not tractable:
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(a) computation of the importance weights ω`k in (10) ;

(b) computation of the acceptance ratio (14).

To overcome these issues, following [21], consider the following algorithm.

Initialization. At time k = 0, set for all 1 6 ` 6 N ,

ω̂`0 = ω`0 , Î`0 = 0 and τ̂0
` = τ0

` = 0 .

Propagation. Starting with weighted samples {(ξ`k, ω̂`k)}N`=1, define

F̃Nk = σ
{

(ξ`u, ω̂
`
u, τ̂

`
u) ; 1 6 ` 6 N , 0 6 u 6 k

}
and G̃Nk = σ

{
(Î`k, ξ

`
k) ; 1 6 ` 6 N

}
.

New indices and particles {(Î`k+1, ξ
`
k+1)}N`=1 are simulated independently from the instrumental

distribution with density on {1, . . . , N} × X:

υk+1(`, x) ∝ ω̂`kϑk(ξ`k)pk(ξ`k, x) , (15)

Following [18, 27], weights update can be approximated by replacing rk(ξ`k, ξ
i
k+1) by an unbiased

estimator.

H1 There exist a Markov kernel Rk on (X×X,B(Z)) where (Z,B(Z)) is a general state space and
a positive mapping r̂k on X× X× Z such that, for all (x, x′) ∈ X2,∫

Rk(x, x′; dz)̂rk(x, x′; z) = rk(x, x′) .

Then, under H1, if conditionally on F̃Nk ∨ G̃Nk+1, ζ`k has distribution Rk(ξ
Î`k+1

k , ξ`k+1; ·), then

E
[̂
rk(ξ

Î`k+1

k , ξ`k+1; ζ`k)

∣∣∣∣F̃Nk ∨ G̃Nk+1

]
= rk(ξ

Î`k+1

k , ξ`k+1) .

The filtering weights then become:

ω̂`k+1 :=
r̂k(ξ

Î`k+1

k , ξ`k+1; ζ`k)

ϑk(ξ
Î`k+1

k )pk(ξ
Î`k+1

k , ξ`k+1)
. (16)

For all f ∈ F(X) and all 0 6 k 6 n, φk[f ] is approximated by

φ̂Nk [f ] :=

N∑
i=1

ω̂ik

Ω̂k
f(ξik) , Ω̂k =

N∑
i=1

ω̂ik .

To solve issue (b), [21] ensured that, under several assumptions, the acceptance-rejection mechanism
introduced to implement PaRIS algorithm is still valid for stochastic differential equations. Consider
the following assumption,
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H2 For all 0 6 k 6 n, there exists a random variable Mk measurable with respect to G̃Nk+1 such
that

supx,y,ζ r̂k(x, y; ζ) ≤Mk .

If this assumption holds, the accept-reject mechanism of PaRIS algorithm is replaced by the fol-
lowing steps. For all 1 6 i 6 N and all 1 6 j 6 Ñ , a candidate J∗ is sampled in {1, . . . , N} with
probabilities proportional to (ω̂ik)Ni=1 and is accepted with probability r̂k(ξJ

∗

k , ξik+1; ζ)/Mk, where ζ

has distribution Rk(ξJ
∗

k , ξik+1; ·). Then, set

Ĵ
(i,j)
k+1 = J∗

and

τ̂ ik+1 =
1

Ñ

Ñ∑
j=1

(
τ̂
Ĵ

(i,j)
k+1

k + h̃k

(
ξ
Ĵ

(i,j)
k+1

k , ξik+1

))
. (17)

Lemma 3.1. Assume that H1 and H2 hold. Then, for all 0 6 k 6 n − 1 and all 1 6 i 6 N ,

(Ĵ
(i,j)
k+1 )16j6Ñ are i.i.d. and independent of ω̂ik+1 given F̃Nk ∨ G̃Nk+1 and such that for all 1 6 ` 6 N ,

P
(
Ĵ

(i,j)
k+1 = `

∣∣∣F̃Nk ∨ G̃Nk+1

)
=

ω̂`krk(ξ`k, ξ
i
k+1)∑N

m=1 ω̂
m
k rk(ξmk , ξ

i
k+1)

,

where ω̂`k is defined by (16).

Proof. The proof follows the same lines as [21, Lemma 1].

The proposed algorithm therefore leads to an estimator of the expectation (1) in the general
setting of this paper. The following section provides constistency and asymptotic normality results
for this estimator.

4 Asymptotic results

4.1 Auxiliary Particle filter based PaRIS algorithms

In [26], the authors established the consistency and asymmptotic normality of PaRIS algorithm for
the bootstrap filter, i.e. in the simple case where for all 0 6 k 6 n− 1, ϑk is the constant function
which equals 1 and pk = qk. This section extends these convergence results to the general auxiliary
particle filter based PaRIS algorithm as such filters are required for the pseudo marginal smoother.
Consider the following assumptions.

H3 For all 0 6 k 6 n− 1, gk is a positive function such that ‖gk‖∞ <∞. For all 0 6 k 6 n− 1,
‖qk‖∞ <∞, ‖ϑk‖∞ <∞ and ‖ω̄k+1‖∞ <∞ where for all (x, y) ∈ X× X,

ω̄k+1(x, y) :=
rk(x, y)

ϑk(x)pk(x, y)
. (18)
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Lemma 4.1. Assume that H3 holds. Then, for all 0 6 k 6 n, (fk, f̃k) ∈ F(X)2 and Ñ > 0, there
exist (ck, c̃k) ∈ (R?+)2 such that for all N ∈ R?+ and all ε ∈ R?+,

P

(∣∣∣∣∣
N∑
i=1

ωik
Ωk
{τ ikfk(ξik) + f̃k(ξik)} − φk[Tkhkfk + f̃k]

∣∣∣∣∣ > ε

)
6 cke−c̃kNε

2

.

Proof. The proof follows the same lines as the proof of [26, Theorem 1].

Lemma 4.2. Assume that H3 holds. Then, for all 0 6 k 6 n, fk ∈ F(X) and Ñ > 0,

N∑
i=1

ωik
Ωk

(τ ik)2fk(ξik)
P−→

N→∞
ηk[fk] + φk[T2

khkfk] ,

where η0[f0] = 0 and for all 0 6 k 6 n− 1,

ηk+1[fk+1] =
ηk[Lkfk+1] + φk[Lk{

←−
Qφk(Tkhk + h̃k −Tk+1hk+1)2fk+1}]

Ñφk[Lk1]
.

Proof. The proof is postponed to Section B.1.

Following [26, Lemma 13], for all 0 6 k 6 n and fk ∈ F(X), the recursion given in Lemma 4.2
may also be expressed as

ηk[fk] =

k−1∑
`=0

φ`[L`{
←−
Qφ`(T`h` + h̃` −T`+1h`+1)2L`+1 . . .Lk−1fk}]

Ñk−`φ`[L` . . .Lk−11]
. (19)

Establishing a central limit theorem for PaRIS algorithms requires to introduce the retro-prospective
kernels, defined, for all 0 6 k 6 m 6 n, xk ∈ X and h ∈ F(Xm+1), by

Dk,mh(xk) :=

∫
h(x0:m)Tk(xk,dx0:k−1)Lk . . .Lm−1(xk,dxk+1:m) ,

D̃k,mh(xk) := Dk,m{h− φ0:m|m[h]}(xk) .

Proposition 4.1. Assume that H3 holds. Then, for all 0 6 k 6 n, (fk, f̃k) ∈ F(X)2,

√
N

(
N∑
i=1

ωik
Ωk
{τ ikfk(ξik) + f̃k(ξik)} − φk[Tkhkfk + f̃k)]

)
D−→

N→∞
σk〈fk; f̃k〉Z ,

where Z is a standard Gaussian random variable and for all 0 6 k 6 n− 1,

σ2
k〈fk; f̃k〉 =

k−1∑
s=0

φs[ϑs]φs[Ls{ω̄sD̃2
s+1,k(hkfk + f̃k)}]

φs[Ls . . .Lk−11]2

+

k−1∑
s=0

k∑
`=0

φs[ϑs]φ`[L`{
←−
Qφ`(T`h` + h̃` −T`+1h`+1)2L`+1 . . .Ls(

←−
Qφs ω̄s{Ls+1 . . .Lk−1fk}2)]

Ñs+1−`φ`[L` . . .Ls−11]φs[Ls . . .Lk−11]2
.

Proof. The proof is postponed to Section B.2.
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Corollary 4.1. Assume that H3 holds. Then, for all 0 6 k 6 n, (fk, f̃k) ∈ F(X)2,

√
N

(
N∑
i=1

ωik
Ωk

τ ik − φk[Tkhk]

)
D−→

N→∞
σk(hk)Z ,

where Z is a standard Gaussian random variable and

σ2
k(hk) =

k−1∑
s=0

φs[ϑs]φs[Ls{ω̄sD̃2
s+1,khk}]

φs[Ls . . .Lk−11]2

+

k−1∑
s=0

k∑
`=0

φs[ϑs]φ`[L`{
←−
Qφ`(T`h` + h̃` −T`+1h`+1)2L`+1 . . .Ls(

←−
Qφs ω̄s{Ls+1 . . .Lk−11}2)]

Ñs+1−`φ`[L` . . .Ls−11]φs[Ls . . .Lk−11]2
.

4.2 Pseudo marginal PaRIS algorithms

Consider the following assumption.

H4 For all 0 6 k 6 n− 1, ‖ω̂k+1‖∞ <∞ where for all (x, y, z) ∈ X× X× Z,

ω̂k+1(x, y; z) :=
r̂k(x, y; z)

ϑk(x)pk(x, y)
. (20)

Proposition 4.2. Assume that H1, H2 and H4 hold. Then, for all 0 6 k 6 n, (fk, f̃k) ∈ F(X)2

and Ñ > 0, there exist (ck, c̃k) ∈ (R?+)2 such that for all N ∈ R?+ and all ε ∈ R?+,

P

(∣∣∣∣∣
N∑
i=1

ω̂ik

Ω̂k
{τ̂ ikfk(ξik) + f̃k(ξik)} − φk[Tkhkfk + f̃k]

∣∣∣∣∣ > ε

)
6 cke−c̃kNε

2

.

Proof. The proof follows the same lines as the proof of [26, Theorem 1].

Lemma 4.3. Assume that H1, H2 and H4 hold. Then, for all 0 6 k 6 n, fk ∈ F(X) and Ñ > 0,

N∑
i=1

ω̂ik

Ω̂k
(τ̂ ik)2fk(ξik)

P−→
N→∞

ηk[fk] + φk[T2
khkfk] ,

where for all 0 6 k 6 n, ηk[fk] is defined in (19).

Proof. The proof is postponed to Section C.1.

Proposition 4.3. Assume that H1, H2 and H4 hold. Then, for all 0 6 k 6 n, (fk, f̃k) ∈ F(X)2,

√
N

(
N∑
i=1

ω̂ik

Ω̂k
{τ̂ ikfk(ξik) + f̃k(ξik)} − φk[Tkhkfk + f̃k)]

)
D−→

N→∞
σ̄k〈fk; f̃k〉Z ,

where Z is a standard Gaussian random variable and for all 0 6 k 6 n − 1, σ̄2
k+1〈fk+1; f̃k+1〉 can

be computed using an explicit recursive formula given in Appendix C.2.

10
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Proof. The proof is potsponed to Section C.2.

Corollary 4.2. Assume that H1, H2 and H4 hold. Then, for all 0 6 k 6 n,

√
N

(
N∑
i=1

ω̂ik

Ω̂k
τ̂ ik − φk[Tkhk]

)
D−→

N→∞
σ̄k(hk)Z ,

where Z is a standard Gaussian random variable and σ̄2
k(hk) can be computed using an explicit

recursive formula given in Appendix C.2.

5 Tangent filters and online recursive maximum likelihood

Let Θ be a parameter space. This section considers a family of transition kernels (Qk;θ)θ∈Θ;06k6n−1

on X×B(X) and (Gk;θ)θ∈Θ;16k6n on X×B(Y) associated with densities qk;θ and gk;θ with respect
to µ and ν. The joint smoothing distributions are then defined, for any θ ∈ Θ, 0 6 k1 6 k2 6 n
and any function h ∈ F(Xk2−k1+1), by:

φk1:k2;θ|n[h] := L−1
n;θ(Y1:n)

∫
χ(dx0)

n−1∏
k=0

Qk;θ(xk,dxk+1)gk+1;θ(xk+1, Yk+1)h(xk1:k2
) ,

where

Ln;θ(Y1:n) =

∫
χ(dx0)

n−1∏
k=0

Qk;θ(xk,dxk+1)gk+1;θ(xk+1, Yk+1)

As noted for instance in [10, Section 2] and [26], for all θ ∈ Θ and all f0:n ∈ F(Xn+1),

∇θφ0:n;θ|n−1[f0:n] = φ0:n;θ|n−1[hnf0:n]− φ0:n;θ|n−1[f0:n]× φ0:n;θ|n−1[hn] ,

where

hn(x0:n) =

n−1∑
k=0

h̃k;θ(xk, xk+1) ,

with, for all 0 6 k 6 n− 1,

h̃k;θ(xk, xk+1) = ∇θ log gk+1;θ(xk+1, Yk+1) +∇θ log qk;θ(xk, xk+1) .

Considering an objective function fn ∈ F(X) which depends on the last state xn only, the tangent
filter ηn is defined as the following signed measure:

ηn;θ[fn] := ∇θπn;θ[fn] = φ0:n;θ|n−1[hn;θfn]− πn;θ[fn]× φ0:n;θ|n−1[hn] ,

where πn = φn:n|n−1 is the predictive measure. The particle based estimator of πn[f ] is given by:

πNn [f ] =
1

N

N∑
`=1

f(ξ`n) .

Using the tower property, (4) and the backward decomposition (6):

ηn;θ[fn] = πn;θ[(Tnhn − πn;θ[Tnhn])fn] . (21)

11
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Therefore, the tangent filter (21) can be approximated on-the-fly using the statistics (τ̃ in)Ni=1 and
the weighted particles {(ξin, ωin)}Ni=1:

ηN,FFBS
n;θ [fn] =

1

N

N∑
i=1

τ̃ infn(ξni )−

(
1

N

N∑
i=1

τ̃ in

)(
1

N

N∑
i=1

fn(ξni )

)
. (22)

In cases where rk, 0 6 k 6 n− 1, is unknown and replaced by an unbiased estimate, the associated
pseudo marginal particle-based approximation of the tangent filter is given by:

η̂Nn;θ[fn] =
1

N

N∑
i=1

τ̂ infn(ξni )−

(
1

N

N∑
i=1

τ̂ in

)(
1

N

N∑
i=1

fn(ξni )

)
. (23)

Given a set of observations Y1:n, maximum likelihood estimation amounts at obtaining a parameter
θ̂n ∈ Θ such that θ̂n = arg maxθ∈Θ `θ;n(Y1:n), where `θ;n(Y1:n) = logLθ;n(Y1:n) is the logarithm of

the likelihood given in (2). There are many different approaches to compute an estimator of θ̂n,
see for instance [4, Chapter 10]. Following [12], under strong mixing assumptions, for all θ ∈ θ, the
extended process {(Xn, Yn, πn, ηn)}n>0 is an ergodic Markov chain and for all θ ∈ θ, the normalized
score ∇θ`θ(Y1:n)/n of the observations may be shown to converge where:

1

n
∇θ`θ(Y1:n) =

1

n

n∑
k=1

∇θ`θ(Yk | Y1:k−1) =
1

n

n∑
k=0

πk;θ[∇θgk;θ] + ηk;θ[gk;θ]

πk;θ[gk;θ]
.

Assuming that the observations Y1:n are generated by a model driven by a true parameter θ? for
all θ ∈ θ this normalized score converges almost surely to a limiting quantity λ(θ, θ?) such that,
under identifiability constraints, λ(θ?, θ?) = 0. A gradient ascent algorithm cannot be designed as
the limiting function θ 7→ λ(θ, θ?) is not available explicitly. Solving the equation λ(θ?, θ?) = 0 may
be cast into the framework of stochastic approximation to produce parameter estimates using the
Robbins-Monro algorithm

θn+1 = θn + γn+1ζn+1 , n > 0 , (24)

where ζn+1 is a noisy observation of λ(θn, θ?). Obtaining such an observation is not possible in
practice and following [26] this noisy observation is approximated by

ζn+1 :=
ζ1
n+1 + ζ2

n+1

ζ3
n+1

, (25)

where

ζ1
n+1 := πn+1;θn

[
(∇θgn+1;θ)|θ=θn

]
, ζ2

n+1 := ηn+1;θn [gn+1;θn ] and ζ3
n+1 := πn+1;θn [gn+1;θn ] .

(26)
In (26), the measures πn+1;θn and ηn+1;θn depend on all the past parameter values. In the case
of a finite state space X the algorithm was studied in [24], which also provides assumptions under
which the sequence {θn}n>0 converges towards the parameter θ? (see also [34] for refinements). In
more general cases, these measures may be estimated online using the pseudo marginal smoother
presented in this paper.

12
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6 Application to partially observed SDE

Let (Xt)t≥0 be defined as a weak solution to the following Stochastic Differential Equation (SDE)
in Rd:

X0 = x0 and dXt = αθ(Xt)dt+ dWt , (27)

where (Wt)t≥0 is a standard Brownian motion, αθ : X → X is the drift function . The inference
procedure presented in this paper is applied in the case where the solution to (27) is supposed to
be partially observed at times t0 = 0, . . . , tn, for a given n > 1, through an observation process
(Yk)06k6n taking values in Rm. For all 0 6 k 6 n, the distribution of Yk given (Xt)t>0 depends on
Xk = Xtk only and has density gk;θ with respect to ν. The distribution of X0 has density χ with
respect to µ and for all 0 6 k 6 n − 1, the conditional distribution of Xk+1 given (Xt)06t6k has
density qk+1;θ(Xk, ·) with respect to µ. This unknown density can be expressed as an expectation
of a Brownian Bridge functional [7].

Let ω = (ωs)0≤s≤t be the realization of a Brownian Bridge starting at x at time 0 and ending in
y at time ∆. The distribution of ω is denoted by W∆,y

x . Moreover, suppose that for all θ ∈ Θ, αθ
is of a gradient form αθ = ∇xAθ where Aθ : X→ R is a twice continuously differentiable function.
Denoting, ψθ : x 7→ ψθ(x) = (‖αθ(x)‖2 + ∆Aθ(x))/2, by Girsanov theorem, for all x, y ∈ Rd ×Rd

qk+1;θ(x, y) = φ∆k
(x− y)exp (Aθ(y)−Aθ(x))EW∆k,y

x

[
exp

(
−
∫ ∆k

0

ψθ(ωs)ds

)]
, (28)

where ∆k = tk+1 − tk, for all a > 0, φa is the probability density function of a centered Gaussian
random variable with variance a.

The transition density then cannot be computed as it involves an integration over the whole
path between x and y. To perform the algorithm proposed in this paper, we therefore have to
design a positive an unbiased estimator of qk+1;θ(x, y). Moreover, maximum likelihood estimation
of θ requires an unbiased estimator of ∇θ log qk+1;θ(x, y). Such two estimators can be obtained
using the General Poisson Estimator (GPE, [18]).

Unbiased GPE estimator for qk+1;θ(x, y; ζ). Assume that there exist random variables mθ

and mθ such that for all 0 6 s 6 ∆k, mθ 6 ψθ(ωs) 6 mθ. Let κ be a random variable taking values
in N with distribution µ, ω = (ωs)0≤s≤∆k

be the realization of a Brownian Bridge, and (Uj)16j6κ

be independent uniform random variables on (0,∆k) and ζ = (κ, ω, U1, . . . , Uκ). As shown in [18],
equation (28) leads to a positive unbiased estimator given by

q̂k+1;θ(x, y; ζ) = φ∆k
(x− y)exp (Aθ(y)−Aθ(x)−mθ∆k)

κ∏
j=1

mθ − ψθ(ωUj )
mθ −mθ

.

Unbiased GPE estimator of ∇θ log qk+1;θ(x, y). Let’s denote ϕθ : x 7→ ψθ(x)−mθ. By (28),

∇θ log qk+1;θ(x, y) = ∇θAθ(y)−∇θAθ(x)−∇θmθ∆k

−
EW∆k,y

x

[(∫∆k

0
∇θϕθ(ωs)ds

)
exp

(
−
∫∆k

0
ϕθ(ωs)ds

)]
EW∆k,y

x

[
exp

(
−
∫∆k

0
ϕθ(ωs)ds

)] .

13
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On the other hand, the diffusion bridge S∆k,y
θ,x associated with the SDE (27) is absolutely continuous

with respect to W∆k,y
x with Radon-Nikodym derivative given by

dS∆k,y
θ,x

dW∆k,y
x

(ω) = [qk+1;θ(x, y)]
−1
φ∆k

(x− y)exp

(
Aθ(y)−Aθ(x)−mθ∆k −

∫ ∆k

0

ϕθ(ωs)ds

)
,

= EW∆k,y
x

[
exp

(
−
∫ ∆k

0

ϕθ(ωs)ds

)]−1

exp

(
−
∫ ∆k

0

ϕθ(ωs)ds

)
.

This yields

∇θ log qk+1;θ(x, y) = (∇θAθ(y)−∇θAθ(x)−∇θmθ∆k)− ES∆k,y

θ,x

[∫ ∆k

0

∇θϕθ(ωs)ds

]

and an unbiased estimator of ∇θ log qk+1;θ(x, y) is given by

lk+1;θ(x, y, s
θ,x,y,∆k

U ) = (∇θAθ(y)−∇θAθ(x)−∇θmθ∆k)−∆k∇θϕθ(sθ,x,y,∆k

U ) ,

where U is uniform on (0, 1) and independent of sθ,x,y,∆k ∼ S∆k,y
θ,x . In the context of GPE, sθ,x,y,∆k

can be simulated exactly using exact algorithms for diffusion processes proposed in [1].

Experiments. Online recursive maximum likelihood using pseudo marginal SMC is illustrated
when (27) has the specific form:

X0 = x0 and dXt = sin(Xt − θ)dt+ dWt , (29)

where θ is an unknown parameter ranging between 0 and 2π. For this numerical experiments, we
suppose that a realization of (29) is only observed at times tk = k for 0 6 k 6 n with n = 5000
through a noisy observation process (Yk)06k6n such for all 0 6 k 6 n,

Yk = Xtk + εk ,

where (εk)06k6n are i.i.d. standard Gaussian random variables, independent of (Wt)t>0. In this
case αθ : x 7→ sin(x− θ) and

infx∈R (α2
θ(x) + ∆Aθ(x))/2 > −1/2

and for all x ∈ R,
0 6 ϕθ(x) = (α2

θ(x) + ∆Aθ(x))/2 + 1/2 6 9/8

and a GPE estimator of both the transition density and the gradient of its logarithm associated
with the SINE model is straightforward to compute.

A simulated data set is displayed in Figure 2, where θ∗ = π/4. The solution to (29) is sampled at
times (tk)06k6n using the Exact algorithm of [1]. For all 0 6 k 6 n−1, q̂k,θ and the GPE unbiased
estimator of ∇θqk,θ(x, y) are estimated using M = 30 independent Monte Carlo replications of
the general Poisson estimator. The estimations of θ∗ are given for 50 independent runs started at
random locations θ0 with N = 100 particles and Ñ = 2 backward samples. Following [21], the
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proposal distribution of the particle filter is obtained using an approximation of the fully adapted
particle filter where qk,θ is replaced by the its Euler scheme approximation.

Sensitivity to the starting point θ̂0. The inference procedure was performed on the same data set
from 50 different starting points uniformly chosen in (0, 2π). The gradient step size γk of equation
(24) was chosen constant (and equal to 0.5) for the first 300 time steps, and then decreasing with
a rate proportional to k−0.6. Results are given Figure 3. There is no sensitivity to the starting
point of the algorithm, and after a couple of hundred observations, the estimates all concentrate
around the true value. As the gradient step size decreases, the estimates stay around the true value
following autocorrelated patterns that are common to all trajectories.

Asymptotic normality. The inference procedure was performed on 50 different data sets sim-
ulated with the same θ∗. The 50 estimates were obtained starting from the same starting point
(fixed to θ∗, as Figure 3 shows no sensitivity to the starting point). Figure 4 shows the results for

the raw and the averaged estimates. The averaged estimates (θ̃k)k>0 consist in averaging the values
produced by the estimation procedure after a burning phase of n0 time steps (here n0 = 300 time
steps). This procedure allows to obtain an estimator whose convergence rate does not depend on

the step sizes chosen by the user, see [30, 23]. For all 0 6 k 6 n0, θ̃k = θ̂k and for all k > n0,

θ̃k =
1

k − n0

k∑
j=n0+1

θ̂j .

As expected, the estimated distribution of the final estimates tends to be Gaussian, centered around
the true value.

Step size influence. To illustrate the influence of the gradient step sizes, different settings are
considered. In each scenario, the sequence (γk)k>0 is given by

γk = γ01{k≤n0} +
γ0

(k − n0)κ
1{k>n0} ,

where γ0 = 0.5. In this experiment κ ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1}. The results are shown in Figure 5.
As expected, the raw estimator shows different rates of convergence depending on κ, whereas the
averaged estimator has the same behavior in all cases.
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Figure 2: Data set simulated according to the SINE process, observed with noise at discrete time
steps.
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Figure 3: (Left) online estimation of θ for the data set presented in Figure 2. The algorithm is
performed from 50 starting points. (Right) The gradient step sizes (defined in equation (24)).
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Figure 4: (Left) online estimation of θ for 50 different simulated data sets as presented in Figure
2. The algorithm is performed from 1 starting point with the gradient step size shown in Figure 3.
(Center) Averaged estimator, where θ̂ is averaged after a burning phase of 300 time steps. (Right)

Empirical distribution of θ̂. The red line is the value of θ∗.
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Figure 5: (Left) online estimation of θ for the data set presented in Figure 2, with different decreasing

rates values κ. (Right) Averaged estimator, where θ̂ is averaged after a burning phase of 300 time
steps.
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A Additional technical results

The proof of Lemma A.1 is given in [11].

Lemma A.1. Assume that aN , bN , and b are random variables defined on the same probability
space such that there exist positive constants β, B, C, and M satisfying

(i) |aN/bN | 6M , P-a.s. and b > β, P-a.s.,

(ii) For all ε > 0 and all N > 1, P (|bN − b| > ε) 6 Be−CNε
2

,

(iii) For all ε > 0 and all N > 1, P (|aN | > ε) 6 Be−CN(ε/M)2

.

Then,

P
(∣∣∣∣aNbN

∣∣∣∣ > ε

)
6 B exp

(
−CN

(
εβ

2M

)2
)
.

The proof of Theorem A.1 is given in [13, Theorem A.3].

Theorem A.1. Let N be a positive integer, (UN,i)16i6N be random variables on a probability space
(Ω,F ,P) and (FN,i)06i6N be a filtration on (Ω,F ,P). Assume that for all 1 6 i 6 N the random

variable UN,i is such that E[U2
N,i|FN,i−1] <∞. Assume also that the two following conditions hold.

(i) There exists σ2 > 0 such that

N∑
i=1

(
E[U2

N,i|FN,i−1]− E[UN,i|FN,i−1]2
) P−→
N→∞

σ2 .

(ii) For all ε > 0,
N∑
i=1

E[U2
N,i1|UN,i|>ε|FN,i−1]

P−→
N→∞

0 .

Then, for all u > 0,

E

[
exp

(
iu

N∑
i=1

{
UN,i − E[UN,i|FN,i−1]

})∣∣∣∣∣FN,0
]

P−→
N→∞

e−u
2σ2/2 .

The proof of Lemma A.2 follows the same lines as [26, Lemma 14].

Lemma A.2. Assume that H3 holds. Let K be a transition kernel on (X,B(X) with transition
density k ∈ F(X× X) with respect to the reference measure µ. Assume that (ϕN )N>1 is a sequence
of functions in F(X) such that

i) there exists ϕ ∈ F(X) such that for all x ∈ X, ϕN (x)
P−a.s.−→
N→∞

ϕ(x);

ii) there exists 0 < c∞ <∞ such that for all N > 1, ‖ϕN‖∞ 6 c∞.

Then, for all 0 6 k 6 n,

φNk [KϕN ]
P−→

N→∞
φk[Kϕ] and φ̂Nk [KϕN ]

P−→
N→∞

φk[Kϕ] .
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B Convergence results for PaRIS algorithms

For all 0 6 k 6 n, define the following σ-fields:

FNk := σ
{

(ξ`u, ω
`
u, τ

`
u) ; 1 6 ` 6 N , 0 6 u 6 k

}
and GNk := σ

{
(ξ`k, ω

`
k) ; 1 6 ` 6 N

}
.

Lemma B.1. For all 0 6 k 6 n − 1, (fk+1, f̃k+1) ∈ F(X)2 and N, Ñ > 0, the random variables

{ωik+1(τ ik+1fk+1(ξik+1) + f̃k+1(ξik+1))}Ni=1 are i.i.d. conditionally on FNk with

E
[
ωik+1(τ ik+1fk+1(ξik+1) + f̃k+1(ξik+1))

∣∣∣FNk ]
=
(
φNk [ϑk]

)−1
N∑
`=1

ω`k
Ωk

{
τ `kLkfk+1(ξ`k) + Lk(h̃kfk+1 + f̃k+1)(ξ`k)

}
.

Proof. The proof follows the same lines as [26, Lemma 12].

B.1 Proof of Lemma 4.2

Proof. The proof proceeds by induction. The case k = 0 is a direct consequence of the fact that
T0h0 = 0 and τ i0 = 0 for all 1 6 i 6 N . Assume that the result holds for some 0 6 k 6 n− 1 and
write

N∑
i=1

ωik+1

Ωk+1
(τ ik+1)2fk+1(ξik+1) =

aN
bN

,

where

aN =
1

N

N∑
i=1

ωik+1(τ ik+1)2fk+1(ξik+1) and bN =
1

N

N∑
i=1

ωik+1 .

Then, using that (ωik+1)16i6N are i.i.d. conditionally on FNk and

E
[
ω1
k+1

∣∣FNk ] =
φNk [Lk1]

φNk [ϑk]
,

by Hoeffding inequality, since for all 1 6 i 6 N , 0 6 ωik+1 6 ‖ω̄k+1‖∞,

P
(∣∣∣∣bN − φNk [Lk1]

φNk [ϑk]

∣∣∣∣ > ε

)
= E

[
P
(∣∣∣∣bN − φNk [Lk1]

φNk [ϑk]

∣∣∣∣ > ε

∣∣∣∣FNk )] 6 2e−2Nε2/‖ω̄k+1‖2∞ .

Therefore, by Lemma 4.1,

bN
P−a.s.−→
N→∞

φk[Lk1]

φk[ϑk]
.

Since φk[Lk1] > 0 it remains to establish the convergence in probability of (aN )N>1. On the
other hand, by Hoeffding inequality, using that for all 1 6 i 6 N , |ωik+1(τ ik+1)2fk+1(ξik+1)| 6
‖ω̄k+1‖∞‖hk+1‖2∞‖fk+1‖∞,

P
(∣∣aN − E[aN |FNk ]

∣∣ > ε
)
6 2e−Nε

2/(2‖ω̄k+1‖∞‖hk+1‖2∞‖fk+1‖∞) ,
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and it is enough to obtain the limit of E[aN |FNk ] as N grows to infinity. Then, write

E[aN |FNk ] = E
[
ω1
k+1(τ1

k+1)2fk+1(ξ1
k+1)

∣∣FNk ] = ã1
N + ã2

N ,

where

ã1
N = Ñ−1E

[
ω1
k+1fk+1(ξ1

k+1)E

[(
τ
J

(1,1)
k+1

k + h̃k(ξ
J

(1,1)
k+1

k , ξ1
k+1)

)2
∣∣∣∣∣FNk ∨ GNk+1

]∣∣∣∣∣FNk
]
,

ã2
N = (Ñ − 1)Ñ−1E

[
ω1
k+1fk+1(ξ1

k+1)E
[
τ
J

(1,1)
k+1

k + h̃k(ξ
J

(1,1)
k+1

k , ξ1
k+1)

∣∣∣∣FNk ∨ GNk+1

]2
∣∣∣∣∣FNk

]
.

The first term is given by

ã1
N = Ñ−1

N∑
j=1

∫
ωjkϑk(ξjk)pk(ξjk, x)∑N

m=1 ω
m
k ϑk(ξmk )

rk(ξjk, x)

ϑk(ξjk)pk(ξjk, x)
fk+1(x)

×
N∑
`=1

ω`krk(ξ`k, x)∑N
m=1 ω

m
k rk(ξmk , x)

(
τ `k + h̃k(ξ`k, x)

)2

µ(dx) ,

= Ñ−1(φNk [ϑk])−1

∫
fk+1(x)

N∑
`=1

ω`k
Ωk

rk(ξ`k, x)
(
τ `k + h̃k(ξ`k, x)

)2

µ(dx) .

By the induction hypothesis and Lemma 4.1,

ã1
N

P−→
N→∞

(Ñφk[ϑk])−1

×
{
ηk[Lkfk+1] + φk[T2

khkLkfk+1] + φk[Lk(fk+1h̃
2
k)] + 2φk[TkhkLk(fk+1h̃k)]

}
which yields

ã1
N

P−→
N→∞

(Ñφk[ϑk])−1
{
ηk[Lkfk+1] + φk[Lk{(Tkhk + h̃k)2fk+1}]

}
.

The second term is given by

ã2
N = (Ñ − 1)Ñ−1

N∑
j=1

∫
ωjkϑk(ξjk)pk(ξjk, x)∑N

m=1 ω
m
k ϑk(ξmk )

rk(ξjk, x)

ϑk(ξjk)pk(ξjk, x)
fk+1(x)

×

(
N∑
`=1

ω`krk(ξ`k, x)∑N
m=1 ω

m
k rk(ξmk , x)

{
τ `k + h̃k(ξ`k, x)

})2

µ(dx) ,

= (Ñ − 1)Ñ−1(φNk [ϑk])−1φNk [LkϕN ] ,

with, for all x ∈ X,

ϕN (x) = fk+1(x)

(
N∑
`=1

ω`krk(ξ`k, x)∑N
m=1 ω

m
k rk(ξmk , x)

{
τ `k + h̃k(ξ`k, x)

})2

.
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For all x ∈ X, by Lemma 4.1,

ϕN (x)
P−a.s.−→
N→∞

fk+1(x)

(
φk[Tkhkrk(·, x) + rk(·, x)h̃k(·, x)]

φk[rk(·, x)]

)2

.

In addition, for all x ∈ X, by (8),

φk[Tkhkrk(·, x) + rk(·, x)h̃k(·, x)]

φk[rk(·, x)]
=
←−
Qφk

(
Tkhk + h̃k

)
(x) = Tk+1hk+1(x)

so that
ϕN (x)

P−a.s.−→
N→∞

fk+1(x)T2
k+1hk+1(x) .

Therefore, as ‖ϕN‖∞ 6 ‖fk+1‖∞‖hk+1‖2∞, by the generalized Lebesgue dominated convergence
theorem, see Lemma A.2,

ã2
N

P−→
N→∞

(Ñ − 1)Ñ−1(φk[ϑk])−1φk[Lk{fk+1T
2
k+1hk+1}] .

Using that
φk[Lkfk+1T

2
k+1hk+1]

φk[Lk1]
= φk+1[fk+1T

2
k+1hk+1] ,

yields

aN
bN

P−→
N→∞

φk+1[fk+1T
2
k+1hk+1]+

ηk[Lkfk+1]

Ñφk[Lk1]
+
φk[Lk{(Tkhk + h̃k)2fk+1}]− φk[Lkfk+1T

2
k+1hk+1]

Ñφk[Lk1]
.

The proof is concluded upon noting that

φk[Lk{(Tkhk + h̃k)2fk+1}]− φk[Lkfk+1T
2
k+1hk+1]

= φk[Lk{
←−
Qφk(Tkhk + h̃k −Tk+1hk+1)2fk+1}] .

B.2 Proof of Proposition 4.1

Proof. The result is proved by induction on k. It holds for k = 0 as for all 1 6 i 6 N , τ i0 = 0.

Assume now that the result holds for some 0 6 k 6 n−1 and that φk+1[Tk+1hk+1fk+1 + f̃k+1] = 0.
Write

√
N

N∑
i=1

ωik+1

Ωk+1
{τ ik+1fk+1(ξik+1) + f̃k+1(ξik+1)} = Ω−1

k+1∆N
k+1 ,

where ∆N
k+1 =

√
N
∑N
i=1 ω

i
k+1{τ ik+1fk+1(ξik+1) + f̃k+1(ξik+1)} is decomposed as follows

∆N
k+1 = ∆N

k+1,1 + ∆N
k+1,2 ,
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where

∆N
k+1,1 =

√
N

N∑
i=1

E
[
ωik+1(τ ik+1fk+1(ξik+1) + f̃k+1(ξik+1))

∣∣∣FNk ] ,
∆N
k+1,2 =

√
N

N∑
i=1

{
ωik+1

(
τ ik+1fk+1(ξik+1) + f̃k+1(ξik+1)

)
−E

[
ωik+1(τ ik+1fk+1(ξik+1) + f̃k+1(ξik+1))

∣∣∣FNk ]} .

By Lemma B.1,

Ω−1
k+1∆N

k+1,1 =
N

Ωk+1

(
φNk [ϑk]

)−1√
N

N∑
`=1

ω`k
Ωk

{
τ `kLkfk+1(ξ`k) + Lk(h̃kfk+1 + f̃k+1)(ξ`k)

}
As φk+1[Tk+1hk+1fk+1 + f̃k+1] = 0,

φk[TkhkLkfk+1 + Lk(h̃kfk+1 + f̃k+1)] = 0 .

Therefore, using the induction hypothesis, Slutsky’s lemma and

N

Ωk+1

(
φNk [ϑk]

)−1 P−→
N→∞

(φk[Lk1])
−1

yields

Ω−1
k+1∆N

k+1,1
D−→

N→∞

σk〈Lkfk+1;Lk(h̃kfk+1 + f̃k+1)〉
φk[Lk1]

Z ,

where Z is a standard Gaussian random variable. By Lemma B.1,

Ω−1
k+1∆N

k+1,2 =
N

Ωk+1

N∑
i=1

υiN ,

where for all 1 6 i, j 6 N and all x ∈ X,

υiN =
1

√
NÑ

Ñ∑
j=1

υ̃N (Iik+1, J
(i,j)
k+1 , ξ

i
k+1) ,

υ̃N (i, j, x) =
rk(ξik, x)

ϑk(ξik)pk(ξik, x)

{(
τ jk + h̃k(ξjk, x)

)
fk+1(x) + f̃k+1(x)

}
−
(
φNk [ϑk]

)−1
N∑
`=1

ω`k
Ωk

{
τ `kLkfk+1(ξ`k) + Lk(h̃kfk+1 + f̃k+1)(ξ`k)

}
.

First, by Lemma 4.1,
N

Ωk+1

P−→
N→∞

φk[ϑk]

φk[Lk1]
.
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The proof is then concluded by applying Slutsky’s Lemma and Theorem A.1 to the sequence
(υiN )16i6N . By construction E[υiN |FNk ] = 0 so that the proof of (i) is based on

N∑
i=1

E[(υiN )2|FNk ] = Ñ−1E[E[(υ̃N (I1
k+1, J

(1,1)
k+1 , ξ

1
k+1))2|FNk ∨ GNk+1|FNk ]

+ (Ñ − 1)Ñ−1E[E[υ̃N (I1
k+1, J

(1,1)
k+1 , ξ

1
k+1)|FNk ∨ GNk+1]2|FNk ] . (30)

The first term of (30) is given by

E
[
E
[
υ̃2
N (I1

k+1, J
(1,1)
k+1 , ξ

1
k+1)

∣∣∣FNk ∨ GNk+1

]∣∣∣FNk ]
= E

[
N∑
`=1

ω`krk(ξ`k, ξ
1
k+1)∑N

m=1 ω
m
k rk(ξmk , ξ

1
k+1)

υ̃2
N (I1

k+1, `, ξ
1
k+1)

∣∣∣∣∣FNk
]
,

=

N∑
j=1

∫
ωjkϑk(ξjk)pk(ξjk, x)∑N

m=1 ω
m
k ϑk(ξmk )

N∑
`=1

ω`krk(ξ`k, x)∑N
m=1 ω

m
k rk(ξmk , x)

υ̃N (j, `, x)2µ(dx) ,

=
(
φNk [ϑk]

)−1
N∑
j=1

∫
ωjk
Ωk

ϑk(ξjk)pk(ξjk, x)

N∑
`=1

ω`krk(ξ`k, x)∑N
m=1 ω

m
k rk(ξmk , x)

υ̃N (j, `, x)2µ(dx) ,

=
(
φNk [ϑk]

)−1
∫
AN (x)BN (x)µ(dx)

−
(
φNk [ϑk]

)−2

(
N∑
`=1

ω`k
Ωk

{
τ `kLkfk+1(ξ`k) + Lk(h̃kfk+1 + f̃k+1)(ξ`k)

})2

,

where

AN (x) =

N∑
j=1

ωjk
Ωk

ϑk(ξjk)pk(ξjk, x)

(
rk(ξjk, x)

ϑk(ξjk)pk(ξjk, x)

)2

=

N∑
j=1

ωjk
Ωk

rk(ξjk, x)ω̄(ξjk, x) ,

BN (x) =

N∑
`=1

ω`krk(ξ`k, x)∑N
m=1 ω

m
k rk(ξmk , x)

{(
τ `k + h̃k(ξ`k, x)

)
fk+1(x) + f̃k+1(x)

}2

.

By Lemma 4.1,

(
φNk [ϑk]

)−2

(
N∑
`=1

ω`k
Ωk

{
τ `kLkfk+1(ξ`k) + Lk(h̃kfk+1 + f̃k+1)(ξ`k)

})2

P−→
N→∞

(φk[ϑk])
−2
(
φk[TkhkLkfk+1 + Lk(h̃kfk+1 + f̃k+1)]

)2

= 0 ,

since by assumption and [26, Lemma 11], φk[TkhkLkfk+1 + Lk(h̃kfk+1 + f̃k+1)] = 0. Then, write∫
AN (x)BN (x)µ(dx) = ã1

N + ã2
N + ã3

N ,
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where

ϕN : x 7→


N∑
j=1

ωjk
Ωk

rk(ξjk, x)ω̄k(ξjk, x)


(

N∑
m=1

ωmk
Ωk

rk(ξmk , x)

)−1

=
←−
QφNk

ω̄k(x) ,

ã1
N =

N∑
`=1

ω`k
Ωk

(τ `k)2

∫
rk(ξ`k, x)f2

k+1(x)ϕN (x)µ(dx) ,

ã2
N =

N∑
j=1

ωjk
Ωk

∫
rk(ξjk, x)ω̄k(ξjk, x)

N∑
`=1

ω`krk(ξ`k, x)∑N
m=1 ω

m
k rk(ξmk , x)

(
h̃k(ξ`k, x)fk+1(x) + f̃k+1(x)

)2

µ(dx) ,

ã3
N = 2

N∑
`=1

ω`k
Ωk

τ `k

∫
rk(ξ`k, x)ϕN (x)fk+1(x)

(
h̃k(ξ`k, x)fk+1(x) + f̃k+1(x)

)
µ(dx) .

By Lemma 4.1, for all x ∈ X, |ϕN (x)−
←−
Qφk ω̄k(x)| P−a.s.−→

N→∞
0, and note that

∣∣∣∣∣ã1
N −

N∑
`=1

ω`k
Ωk

(τ `k)2

∫
rk(ξ`k, x)f2

k+1(x)
←−
Qφk ω̄k(x)µ(dx)

∣∣∣∣∣
6 ‖hk‖2∞

N∑
`=1

ω`k
Ωk

∫
rk(ξ`k, x)f2

k+1(x)
∣∣∣ϕN (x)−

←−
Qφk ω̄k(x)

∣∣∣µ(dx) .

Since ‖f2
k+1|ϕN −

←−
Qφk ω̄k|‖∞ 6 2‖ω̄k‖∞‖f2

k+1‖∞ < ∞, by the generalized Lebesgue dominated
convergence theorem, see also Lemma A.2,∣∣∣∣∣ã1

N −
N∑
`=1

ω`k
Ωk

(τ `k)2

∫
rk(ξ`k, x)f2

k+1(x)
←−
Qφk ω̄k(x)µ(dx)

∣∣∣∣∣ P−→
N→∞

0

and by Lemma 4.2,

ã1
N

P−→
N→∞

ηk[Lk{f2
k+1

←−
Qφk ω̄k}] + φk[T2

khkLk{f2
k+1

←−
Qφk ω̄k}] .

On the other hand, by Lemma A.2 applied to

ψN : x 7→
N∑
`=1

ω`krk(ξ`k, x)∑N
m=1 ω

m
k rk(ξmk , x)

(
h̃k(ξ`k, x)fk+1(x) + f̃k+1(x)

)2

which is such that ‖ψN‖∞ 6 2(‖h̃kfk+1‖2∞ + ‖f̃k+1‖∞),

ã2
N

P−→
N→∞

∫
φk [rk(·, x)ω̄(·, x)]φk[rk(·, x)(h̃k(·, x)fk+1(x) + f̃k+1(x))2](φk[rk(·, x)])−1µ(dx) ,

which yields

ã2
N

P−→
N→∞

φk[Lk{(
←−
Qφk ω̄k)(h̃kfk+1 + f̃k+1)2}] .
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Finally,∣∣∣∣∣ã3
N − 2

N∑
`=1

ω`k
Ωk

τ `k

∫
rk(ξ`k, x)fk+1(x)

←−
Qφk ω̄k(x)

(
h̃k(ξ`k, x)fk+1(x) + f̃k+1(x)

)
µ(dx)

∣∣∣∣∣
6 ‖hk‖∞(‖fk+1‖∞‖h̃k‖∞ + ‖f̃k+1‖∞)

N∑
`=1

ω`k
Ωk

∫
rk(ξ`k, x)fk+1(x)

∣∣∣ϕN (x)−
←−
Qφk ω̄k(x)

∣∣∣µ(dx) ,

so that using again Lemma A.2 and Lemma 4.1,

ã3
N

P−→
N→∞

2φk

[
TkhkLk

{
(
←−
Qφk ω̄k)fk+1

(
h̃kfk+1 + f̃k+1

)}]
.

Therefore, the first term of (30) satisfies

Ñ−1E[E[(υ̃N (I1
k+1, J

(1,1)
k+1 , ξ

1
k+1))2|FNk ∨ GNk+1|FNk ]

P−→
N→∞

ηk[Lk{f2
k+1

←−
Qφk ω̄k}]

Ñφk[ϑk]
+
φk[Lk{(

←−
Qφk ω̄k)

[
(Tkhk + h̃k)fk+1 + f̃k+1

]2
}]

Ñφk[ϑk]
,

which concludes the proof for the first term of (30). The second term of (30) is given by

E[E[υ̃N (I1
k+1, J

(1,1)
k+1 , ξ

1
k+1)|FNk ∨ GNk+1]2|FNk ]

= E

( N∑
`=1

ω`krk(ξ`k, ξ
1
k+1)∑N

m=1 ω
m
k rk(ξmk , ξ

1
k+1)

υ̃N (I1
k+1, `, ξ

1
k+1)

)2
∣∣∣∣∣∣FNk

 ,

=

N∑
j=1

∫
ωjkϑk(ξjk)pk(ξjk, x)∑N

m=1 ω
m
k ϑk(ξmk )

(
N∑
`=1

ω`krk(ξ`k, x)∑N
m=1 ω

m
k rk(ξmk , x)

υ̃N (j, `, x)

)2

µ(dx) ,

=
(
φNk [ϑk]

)−1
φNk [ϑkϕ

N
k ] ,

where, for all x ∈ X,

ϕNk (x) =

∫
pk(x, z)

(
rk(x, z)

ϑk(x)pk(x, z)
fk+1(z)

N∑
`=1

ω`krk(ξ`k, z)∑N
m=1 ω

m
k rk(ξmk , z)

(
τ `k + h̃k(ξ`k, z)

)

+
rk(x, z)

ϑk(x)pk(x, z)
f̃k+1(z)−

(
φNk [ϑk]

)−1
N∑
`=1

ω`k
Ωk

{
τ `kLkfk+1(ξ`k) + Lk(h̃kfk+1 + f̃k+1)(ξ`k)

})2

µ(dz) .

By assumption and [26, Lemma 11], φk[TkhkLkfk+1+Lk(h̃kfk+1+f̃k+1)] = 0 so that by Lemma A.2,

φNk [ϑkϕ
N
k ]

P−→
N→∞

φk[ϑkϕk] ,

where

ϕk(x) =

∫
pk(x, z)

(
rk(x, z)

ϑk(x)pk(x, z)

)2 (
fk+1(z)

←−
Qφk(Tkhk + h̃k)(z) + f̃k+1(z)

)2

µ(dz) ,

=

∫
pk(x, z)

(
rk(x, z)

ϑk(x)pk(x, z)

)2 (
fk+1(z)Tk+1hk+1(z) + f̃k+1(z)

)2

µ(dz) .
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Therefore,

E[E[υ̃N (I1
k+1, J

(1,1)
k+1 , ξ

1
k+1)|FNk ∨ GNk+1]2|FNk ]

P−→
N→∞

(
1− 1

Ñ

)
(φk[ϑk])−1φk

[
Lk

{
ω̄k
(
fk+1Tk+1hk+1 + f̄k+1

)2}]
.

The proof of (ii) is an immediate consequence of H3 since for all 1 6 i 6 N ,

υiN 6 2‖ω̄k+1‖∞
(
‖hk+1‖∞‖f̃k+1‖∞ + ‖f̃k+1‖∞

)
N−1/2 .

Then, defining ck = 2‖ω̄k+1‖∞(‖hk+1‖∞‖f̃k+1‖∞ + ‖f̃k+1‖∞), for all ε > 0,

N∑
i=1

E[(υiN )21|υiN |>ε|F
N
k ] 6 c2k1ck>ε

√
N

P−→
N→∞

0 .

Writing
f̄k+1 = f̃k+1 − φk+1[Tk+1hk+1fk+1 + f̃k+1)],

yields

σ2
k+1〈fk+1; f̃k+1〉 =

σ2
k〈Lkfk+1;Lk{h̃kfk+1 + f̄k+1}〉

φk[Lk1]2
+
φk[ϑk]ηk[Lk{f2

k+1

←−
Qφk ω̄k}]

Ñφk[Lk1]2

+
φk[ϑk]φk

[
Lk

{
ω̄k
(
fk+1Tk+1hk+1 + f̄k+1

)2}]
φk[Lk1]2

+

φk[ϑk]φk

[
Lk{ω̄kf2

k+1

←−
Qφk

(
Tkhk + h̃k −Tk+1hk+1

)2

}
]

Ñφk[Lk1]2

and then, by (19),

σ2
k+1〈fk+1; f̃k+1〉 =

σ2
k〈Lkfk+1;Lk{h̃kfk+1 + f̄k+1}〉

φk[Lk1]2

+
φk[ϑk]φk

[
Lk

{
ω̄k
(
fk+1Tk+1hk+1 + f̄k+1

)2}]
φk[Lk1]2

+
φk[ϑk]

φk[Lk1]2

k∑
`=0

φ`[L`{
←−
Qφ`(T`h` + h̃` −T`+1h`+1)2L`+1 . . .Lk{f2

k+1

←−
Qφk ω̄k}}]

Ñk+1−`φ`[L` . . .Lk−11]
.

By definition of the kernel D̃k+1,k+1,

φk

[
Lkω̄k

(
fk+1Tk+1hk+1 + f̄k+1

)2]
= φk

[
Lkω̄kD̃

2
k+1,k+1

{
hk+1fk+1 + f̃k+1

}]
.

It remains to prove the explicit expression of σ2
k+1〈fk+1; f̃k+1〉 from this recursion formula. First,

following the proof of [26, Theorem 3], for all 0 6 s < k,

D̃s+1,k

(
Lkfk+1 + Lk{h̃kfk+1 + f̄k+1

)
= D̃s+1,k+1

(
hk+1fk+1 + f̃k+1

)
.
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In addition, 0 6 s < k,

φk[Lk1] =
φs[Ls . . .Lk1]

φs[Ls . . .Lk−11]
,

which concludes the proof.

C Convergence results for Pseudo marginal PaRIS algorithms

Lemma C.1. Assume that H1 and H2 hold. The, for all 0 6 k 6 n− 1, (fk+1, f̃k+1) ∈ F(X)2 and

N, Ñ > 0, the random variables {ω̂ik+1(τ̂ ik+1fk+1(ξik+1) + f̃k+1(ξik+1))}Ni=1 are i.i.d. conditionally

on F̃Nk with

E
[
ω̂ik+1(τ̂ ik+1fk+1(ξik+1) + f̃k+1(ξik+1))

∣∣∣F̃Nk ]
=
(
φ̂Nk [ϑk]

)−1 N∑
`=1

ω̂`k

Ω̂k

{
τ̂ `kLkfk+1(ξ`k) + Lk(h̃kfk+1 + f̃k+1)(ξ`k)

}
.

Proof. The proof follows the same lines as [21, Lemma 2]. Note first that

E
[
ω̂1
k+1

∣∣∣F̃Nk ∨ G̃Nk+1

]
= ω̄k+1(ξ

Î1
k+1

k , ξ1
k+1) ,

E
[
τ̂1
k+1

∣∣∣F̃Nk ∨ G̃Nk+1

]
=

N∑
`=1

ω̂`krk(ξ`k, ξ
1
k+1)∑N

m=1 ω̂
m
k rk(ξmk , ξ

1
k+1)

(
τ̂ `k + h̃k(ξ`k, ξ

1
k+1)

)
,

where ω̄k is defined by (18) in H3. Then, since conditionally on F̃Nk ∨ G̃Nk+1, τ̂1
k+1 is independent of

ω̂1
k+1,

E
[
ω̂1
k+1(τ̂ ik+1fk+1(ξ1

k+1) + f̃k+1(ξ1
k+1))

∣∣∣F̃Nk ]
= E

[
E
[
ω̂1
k+1

∣∣∣F̃Nk ∨ G̃Nk+1

]
E
[
τ̂1
k+1

∣∣∣F̃Nk ∨ G̃Nk+1

]
fk+1(ξ1

k+1)
∣∣∣F̃Nk ]

+ E
[
E
[
ω̂1
k+1

∣∣∣F̃Nk ∨ G̃Nk+1

]
f̃k+1(ξ1

k+1)
∣∣∣F̃Nk ] ,

= E

[
ω̄k+1(ξ

Î1
k+1

k , ξ1
k+1)

N∑
`=1

ω̂`krk(ξ`k, ξ
i
k+1)∑N

m=1 ω̂
m
k rk(ξmk , ξ

i
k+1)

(
τ̂ `k + h̃k(ξ`k, ξ

i
k+1)

)
fk+1(ξ1

k+1)

∣∣∣∣∣F̃Nk
]

+ E
[
ω̄k+1(ξ

Î1
k+1

k , ξ1
k+1)f̃k+1(ξ1

k+1)

∣∣∣∣F̃Nk ] ,
=
(
φ̂Nk [ϑk]

)−1 N∑
`=1

ω̂`k

Ω̂k

{
τ̂ `kLkfk+1(ξ`k) + Lk(h̃kfk+1 + f̃k+1)(ξ`k)

}
,

which concludes the proof.
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C.1 Proof of Lemma 4.3

Proof. The proof proceeds by induction and follows the same lines as [26, Lemma 13]. The case
k = 0 is a direct consequence of the fact that T0h0 = 0 and τ̂ i0 = 0 for all 1 6 i 6 N . Assume that
the result holds for some 0 6 k 6 n− 1 and write

N∑
i=1

ω̂ik+1

Ω̂k+1

(τ̂ ik+1)2fk+1(ξik+1) =
aN
bN

,

where

aN =
1

N

N∑
i=1

ω̂ik+1(τ̂ ik+1)2fk+1(ξik+1) and bN =
1

N

N∑
i=1

ω̂ik+1 .

The random variables (ω̂ik+1)16i6N are i.i.d. conditionally on F̃Nk with

E
[
ω̂1
k+1

∣∣∣F̃Nk ] = E
[
E
[
ω̂1
k+1

∣∣∣F̃Nk ∨ G̃Nk+1

]∣∣∣F̃Nk ] = E
[
ω̄k+1(ξ

Î1
k+1

k , ξ1
k+1)

∣∣∣∣F̃Nk ] ,
where ω̄k is defined by (18) in H3. Noting that by H4 for all 1 6 i 6 N |ω̂ik+1| 6 ‖ω̂k‖∞ and

E
[
ω̄k+1(ξ

Î1
k+1

k , ξ1
k+1)

∣∣∣∣F̃Nk ] =

∑N
i=1 ω̂

i
kLk1(ξik+1)∑N

i=1 ω̂
i
kϑk(ξik+1)

=
φ̂Nk [Lk1]

φ̂Nk [ϑk]
,

by Hoeffding’s inequality, there exist positive constants ck and c̃k such that

P

(∣∣∣∣∣bN − φ̂Nk [Lk1]

φ̂Nk [ϑk]

∣∣∣∣∣ > ε

)
6 cke−c̃kNε

2

.

Therefore, by Proposition 4.2 and Lemma A.1,

P
(∣∣∣∣bN − φk[Lk1]

φk[ϑk]

∣∣∣∣ > ε

)
6 cke−c̃kNε

2

so that,

bN
P−a.s.−→
N→∞

φk[Lk1]

φk[ϑk]
.

Since φk[Lk1] > 0 it remains to establish the convergence in probability of (aN )N>1. On the
other hand, by Hoeffding inequality, using that for all 1 6 i 6 N , |ω̂ik+1(τ̂ ik+1)2fk+1(ξik+1)| 6
‖ω̂k+1‖∞‖hk+1‖2∞‖fk+1‖∞,

P
(∣∣∣aN − E[aN |F̃Nk ]

∣∣∣ > ε
)
6 cke−c̃kNε

2

,

Then, write

E[aN |F̃Nk ] = E
[
ω̂1
k+1(τ̂1

k+1)2fk+1(ξ1
k+1)

∣∣∣F̃Nk ] ,
= E

[
E
[
ω̂1
k+1

∣∣∣F̃Nk ∨ G̃Nk+1

]
E
[
(τ̂1
k+1)2

∣∣∣F̃Nk ∨ G̃Nk+1

]
fk+1(ξ1

k+1)
∣∣∣F̃Nk ] ,

= E
[
ω̄k+1(ξ

Î1
k+1

k , ξ1
k+1)E

[
(τ̂1
k+1)2

∣∣∣F̃Nk ∨ G̃Nk+1

]
fk+1(ξ1

k+1)

∣∣∣∣F̃Nk ] ,
= ã1

N + ã2
N ,
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where

ã1
N = Ñ−1E

[
ω̄k+1(ξ

Î1
k+1

k , ξ1
k+1)fk+1(ξ1

k+1)E

[(
τ̂
Ĵ

(1,1)
k+1

k + h̃k(ξ
Ĵ

(1,1)
k+1

k , ξ1
k+1)

)2
∣∣∣∣∣F̃Nk ∨ G̃Nk+1

]∣∣∣∣∣F̃Nk
]
,

ã2
N = (Ñ − 1)Ñ−1E

[
ω̄k+1(ξ

Î1
k+1

k , ξ1
k+1)fk+1(ξ1

k+1)E
[
τ
Ĵ

(1,1)
k+1

k + h̃k(ξ
Ĵ

(1,1)
k+1

k , ξ1
k+1)

∣∣∣∣F̃Nk ∨ G̃Nk+1

]2
∣∣∣∣∣F̃Nk

]
.

By Lemma 3.1, the first term is given by

ã1
N = Ñ−1

N∑
j=1

∫
ω̂jkϑk(ξjk)pk(ξjk, x)∑N

m=1 ω̂
m
k ϑk(ξmk )

rk(ξjk, x)

ϑk(ξjk)pk(ξjk, x)
fk+1(x)

×
N∑
`=1

ω̂`krk(ξ`k, x)∑N
m=1 ω̂

m
k rk(ξmk , x)

(
τ̂ `k + h̃k(ξ`k, x)

)2

µ(dx) ,

= Ñ−1(φ̂Nk [ϑk])−1

∫
fk+1(x)

N∑
`=1

ω̂`k

Ω̂k
rk(ξ`k, x)

(
τ̂ `k + h̃k(ξ`k, x)

)2

µ(dx) ,

By the induction hypothesis and Proposition 4.2,

a1
N

P−→
N→∞

(Ñφk[ϑk])−1
{
ηk[Lkfk+1] + φk[T2

khkLkfk+1] + φk[Lk(fk+1h̃
2
k)] + 2φk[TkhkLk(fk+1h̃k)]

}
,

which yields

a1
N

P−→
N→∞

(Ñφk[ϑk])−1
{
ηk[Lkfk+1] + φk[Lk{(Tkhk + h̃k)2fk+1}]

}
.

The second term is given by

ã2
N = (Ñ − 1)Ñ−1

N∑
j=1

∫
ω̂jkϑk(ξjk)pk(ξjk, x)∑N

m=1 ω̂
m
k ϑk(ξmk )

rk(ξjk, x)

ϑk(ξjk)pk(ξjk, x)
fk+1(x)

×

(
N∑
`=1

ω̂`krk(ξ`k, x)∑N
m=1 ω̂

m
k rk(ξmk , x)

{
τ̂ `k + h̃k(ξ`k, x)

})2

µ(dx) ,

= (Ñ − 1)Ñ−1(φ̂Nk [ϑk])−1φ̂Nk [LkϕN ] ,

with, for all x ∈ X,

ϕN (x) = fk+1(x)

(
N∑
`=1

ω̂`krk(ξ`k, x)∑N
m=1 ω̂

m
k rk(ξmk , x)

{
τ̂ `k + h̃k(ξ`k, x)

})2

.

For all x ∈ X, by Proposition 4.2,

ϕN (x)
P−a.s.−→
N→∞

fk+1(x)

(
φk[Tkhkrk(·, x) + rk(·, x)h̃k(·, x)]

φk[rk(·, x)]

)2

.
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Therefore, as ‖ϕN‖∞ 6 ‖fk+1‖∞‖hk+1‖2∞, by the generalized Lebesgue dominated convergence
theorem, see Lemma A.2,

ã2
N

P−→
N→∞

(Ñ − 1)Ñ−1(φk[ϑk])−1φk[Lk{fk+1T
2
k+1hk+1}] .

This concludes the proof following the same steps as in the proof of Lemma 4.2.

C.2 Proof of Proposition 4.3

Proof. The result is proved by induction on k. It holds for k = 0 as for all 1 6 i 6 N , τ̂ i0 = 0.

Assume now that the result holds for some 0 6 k 6 n−1 and that φk+1[Tk+1hk+1fk+1 + f̃k+1] = 0.
Write

√
N

N∑
i=1

ω̂ik+1

Ω̂k+1

{τ̂ ik+1fk+1(ξik+1) + f̃k+1(ξik+1)} = Ω̂−1
k+1∆N

k+1 ,

where ∆N
k+1 =

√
N
∑N
i=1 ω̂

i
k+1{τ̂ ik+1fk+1(ξik+1) + f̃k+1(ξik+1)} is decomposed as follows

∆N
k+1 = ∆N

k+1,1 + ∆N
k+1,2 ,

where

∆N
k+1,1 =

√
N

N∑
i=1

E
[
ω̂ik+1(τ̂ ik+1fk+1(ξik+1) + f̃k+1(ξik+1))

∣∣∣F̃Nk ] ,
∆N
k+1,2 =

√
N

N∑
i=1

{
ω̂ik+1

(
τ̂ ik+1fk+1(ξik+1) + f̃k+1(ξik+1)

)
−E

[
ω̂ik+1(τ̂ ik+1fk+1(ξik+1) + f̃k+1(ξik+1))

∣∣∣F̃Nk ]} .

By Lemma B.1,

Ω̂−1
k+1∆N

k+1,1 =
N

Ω̂k+1

(
φ̂Nk [ϑk]

)−1√
N

N∑
`=1

ω̂`k

Ω̂k

{
τ̂ `kLkfk+1(ξ`k) + Lk(h̃kfk+1 + f̃k+1)(ξ`k)

}
As φk+1[Tk+1hk+1fk+1 + f̃k+1] = 0,

φk[TkhkLkfk+1 + Lk(h̃kfk+1 + f̃k+1)] = 0 .

Therefore, using the induction hypothesis, Slutsky’s lemma and

N

Ω̂k+1

(
φ̂Nk [ϑk]

)−1 P−→
N→∞

(φk[Lk1])
−1

yields

Ω̂−1
k+1∆N

k+1,1
D−→

N→∞

σ̄k〈Lkfk+1;Lk(h̃kfk+1 + f̃k+1)〉
φk[Lk1]

Z ,

32



Pseudo marginal SMC

where Z is a standard Gaussian random variable. By Lemma B.1,

Ω̂−1
k+1∆N

k+1,2 =
N

Ω̂k+1

N∑
i=1

υiN ,

where for all 1 6 i, j 6 N and all x ∈ X,

υiN =
1

√
NÑ

Ñ∑
j=1

υ̃N (Îik+1, Ĵ
(i,j)
k+1 , ξ

i
k+1) ,

υ̃N (i, j, x) =
r̂k(ξik, x; ζik)

ϑk(ξik)pk(ξik, x)

{(
τ̂ jk + h̃k(ξjk, x)

)
fk+1(x) + f̃k+1(x)

}
−
(
φ̂Nk [ϑk]

)−1 N∑
`=1

ω̂`k

Ω̂k

{
τ̂ `kLkfk+1(ξ`k) + Lk(h̃kfk+1 + f̃k+1)(ξ`k)

}
.

First,
N

Ω̂k+1

P−→
N→∞

φk[ϑk]

φk[Lk1]
.

Then, by construction, E[υiN |F̃Nk ] = 0 and

N∑
i=1

E[(υiN )2|F̃Nk ] = Ñ−1E[E[(υ̃N (Î1
k+1, Ĵ

(1,1)
k+1 , ξ

1
k+1))2|F̃Nk ∨ G̃Nk+1|F̃Nk ]

+ (Ñ − 1)Ñ−1E[E[υ̃N (Î1
k+1, Ĵ

(1,1)
k+1 , ξ

1
k+1)|F̃Nk ∨ G̃Nk+1]2|F̃Nk ] . (31)

The first term of (31) is given by

E
[
E
[
υ̃2
N (Î1

k+1, Ĵ
(1,1)
k+1 , ξ

1
k+1)

∣∣∣F̃Nk ∨ G̃Nk+1

]∣∣∣F̃Nk ]
=
(
φ̂Nk [ϑk]

)−1
∫
AN (x)BN (x)µ(dx)

−
(
φ̂Nk [ϑk]

)−2
(

N∑
`=1

ω̂`k

Ω̂k

{
τ̂ `kLkfk+1(ξ`k) + Lk(h̃kfk+1 + f̃k+1)(ξ`k)

})2

,

where, for all (x, y) ∈ X× X,

$k(x, y) =

∫
r̂k(x, y; z)ω̂k+1(x, y; z)Rk(x, y, dz) ,

AN (x) =

N∑
j=1

ω̂jk

Ω̂k

∫
r̂k(ξjk, x;u)2Rk(ξjk, x; du)

ϑk(ξjk)pk(ξjk, x)
=

N∑
j=1

ω̂jk

Ω̂k
$k(ξjk, x) ,

BN (x) =

N∑
`=1

ω̂`krk(ξ`k, x)∑N
m=1 ω̂

m
k rk(ξmk , x)

{(
τ̂ `k + h̃k(ξ`k, x)

)
fk+1(x) + f̃k+1(x)

}2

.

33



Pseudo marginal SMC

By Proposition 4.2,

(
φ̂Nk [ϑk]

)−2
(

N∑
`=1

ω̂`k

Ω̂k

{
τ̂ `kLkfk+1(ξ`k) + Lk(h̃kfk+1 + f̃k+1)(ξ`k)

})2

P−→
N→∞

(φk[ϑk])
−2
(
φk[TkhkLkfk+1 + Lk(h̃kfk+1 + f̃k+1)]

)2

= 0 ,

where by assumption φk+1[Tk+1hk+1fk+1 + f̃k+1] = 0, so that φk[TkhkLkfk+1 + Lk(h̃kfk+1 +

f̃k+1)] = 0. Then, write ∫
AN (x)BN (x)µ(dx) = ã1

N + ã2
N + ã3

N ,

where

ϕN : x 7→


N∑
j=1

ω̂jk

Ω̂k
$k(ξjk, x)


(

N∑
m=1

ω̂mk

Ω̂k
rk(ξmk , x)

)−1

,

ã1
N =

N∑
`=1

ω̂`k

Ω̂k
(τ̂ `k)2

∫
rk(ξ`k, x)f2

k+1(x)ϕN (x)µ(dx) ,

ã2
N =

N∑
j=1

ω̂jk

Ω̂k

∫
$k(ξjk, x)

N∑
`=1

ω̂`krk(ξ`k, x)∑N
m=1 ω̂

m
k rk(ξmk , x)

(
h̃k(ξ`k, x)fk+1(x) + f̃k+1(x)

)2

µ(dx) ,

ã3
N = 2

N∑
`=1

ω̂`k

Ω̂k
τ̂ `k

∫
rk(ξ`k, x)ϕN (x)fk+1(x)

(
h̃k(ξ`k, x)fk+1(x) + f̃k+1(x)

)
µ(dx) .

Following the same steps as in the proof of Proposition 4.1,

ã1
N

P−→
N→∞

ηk[Lk{f2
k+1Q̂φk$k}] + φk[T2

khkLk{f2
k+1Q̂φk$k}] ,

ã2
N

P−→
N→∞

φk

[∫
$k(·, x)φk[rk(·, x)(h̃k(·, x)fk+1(x) + f̃k+1(x))2](φk[rk(·, x)])−1µ(dx)

]
,

ã3
N

P−→
N→∞

2φk

[
TkhkLk

{
(Q̂φk$k)fk+1

(
h̃kfk+1 + f̃k+1

)}]
,

where Q̂φk$k : x 7→ φk[$k(., x)]/φk[rk(., x)]. Therefore, the first term of (31) satisfies

Ñ−1E[E[(υ̃N (I1
k+1, J

(1,1)
k+1 , ξ

1
k+1))2|FNk ∨ GNk+1|FNk ]

P−→
N→∞

∫
ηk[f2

k+1(x)rk(·, x)]φk [$k(·, x)]

Ñφk[ϑk]φk[rk(·, x)]
µ(dx)

+

∫
φk[rk(·, x){(Tkhk + h̃k(·, x))fk+1(x) + f̃k+1(x)}2]φk [$k(·, x)]

Ñφk[ϑk]φk[rk(·, x)]
µ(dx) ,

which concludes the proof for the first term of (31). The second term of (31) is given by

E[E[υ̃N (I1
k+1, J

(1,1)
k+1 , ξ

1
k+1)|FNk ∨ GNk+1]2|FNk ] =

(
φ̂Nk [ϑk]

)−1

φ̂Nk [ϑkϕ
N
k ] ,
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where, for all x ∈ X,

ϕNk (x) =

∫
pk(x, z)

(
rk(x, z)

ϑk(x)pk(x, z)
fk+1(z)

N∑
`=1

ω̂`krk(ξ`k, z)∑N
m=1 ω̂

m
k rk(ξmk , z)

(
τ̂ `k + h̃k(ξ`k, z)

)

+
rk(x, z)

ϑk(x)pk(x, z)
f̃k+1(z)−

(
φNk [ϑk]

)−1
N∑
`=1

ω̂`k

Ω̂k

{
τ̂ `kLkfk+1(ξ`k) + Lk(h̃kfk+1 + f̃k+1)(ξ`k)

})2

µ(dz) .

By assumption, φk[TkhkLkfk+1 + Lk(h̃kfk+1 + f̃k+1)] = 0 so that by Lemma A.2,

φ̂Nk [ϑkϕ
N
k ]

P−→
N→∞

φk[ϑkϕk] ,

where

ϕk(x) =

∫
pk(x, z)

(
rk(x, z)

ϑk(x)pk(x, z)

)2 (
fk+1(z)

←−
Qφk(Tkhk + h̃k)(z) + f̃k+1(z)

)2

µ(dz) ,

=

∫
pk(x, z)

(
rk(x, z)

ϑk(x)pk(x, z)

)2 (
fk+1(z)Tk+1hk+1(z) + f̃k+1(z)

)2

µ(dz) .

Therefore,

E[E[υ̃N (I1
k+1, J

(1,1)
k+1 , ξ

1
k+1)|FNk ∨ GNk+1]2|FNk ]

P−→
N→∞

(
1− 1

Ñ

)
(φk[ϑk])−1φk

[∫
rk(·, z)ω̄k(·, z)

(
fk+1(z)Tk+1hk+1(z) + f̃k+1(z)

)2

µ(dz)

]
.

The proof of (ii) is an immediate consequence of H4 since for all 1 6 i 6 N ,

υiN 6 2‖ω̂k+1‖∞
(
‖hk+1‖∞‖f̃k+1‖∞ + ‖f̃k+1‖∞

)
N−1/2 .

Then, defining ck = 2‖ω̂k+1‖∞(‖hk+1‖∞‖f̃k+1‖∞ + ‖f̃k+1‖∞), for all ε > 0,

N∑
i=1

E[(υiN )21|υiN |>ε|F
N
k ] 6 c2k1ck>ε

√
N

P−→
N→∞

0 .

Writing
f̄k+1 = f̃k+1 − φk+1[Tk+1hk+1fk+1 + f̃k+1)],
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yields

σ̄2
k+1〈fk+1; f̃k+1〉 =

σ̄2
k〈Lkfk+1;Lk{h̃kfk+1 + f̄k+1}〉

φk[Lk1]2
+
φk[ϑk]

∫
ηk[rk(·, x)]f2

k+1(x)Q̂φk$k(x)µ(dx)

Ñφk[Lk1]2

+
φk[ϑk]φk

[∫
rk(·, z)ω̄k(·, z)

(
fk+1(z)Tk+1hk+1(z) + f̄k+1(z)

)2
µ(dz)

]
φk[Lk1]2

+

φk[ϑk]φk

[∫
$k(·, z)f2

k+1(z)
←−
Qφk

(
Tkhk + h̃k −Tk+1hk+1

)2

(z)µ(dz)

]
Ñφk[Lk1]2

,

+
φk[ϑk]φk

[∫
Cov{̂rk(·, z; ζk)ω̂k(·, z; ζk)}

(
fk+1(z)Tk+1hk+1(z) + f̄k+1(z)

)2
µ(dz)

]
Ñφk[Lk1]2

,

which concludes the proof.
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