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Abstract. In this paper, we provide an a priori optimizability analysis of nonlinear

least squares problems that are solved by local optimization algorithms. We define

attraction (convergence) basins where the misfit functional is guaranteed to have only

one local - and hence global - stationary point, provided the data error is below some

tolerable error level. We use geometry in the data space (strictly quasiconvex sets)

in order to compute the size of the attraction basin (in the parameter space) and

the associated tolerable error level (in the data space). These estimates are defined

a priori, i.e., they do not involve any least squares minimization problem, and only

depend on the forward map. The methodology is applied to the comparison of the

optimizability properties of two methods for the seismic inverse problem for a time-

harmonic wave equation: the Full Waveform Inversion (FWI) and its Migration Based

Travel Time (MBTT) reformulation. Computation of the size of attraction basins for

the two approaches allows to quantify the benefits of the latter, which can alleviate the

requirement of low-frequency data for the reconstruction of the background velocity

model.
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1. Introduction

When it comes to the inverse problem of determining a parameter m from data d,

a natural and widely used approach consists in trying to minimize the data misfit

functional

min
m∈M

J (m) =
1

2
‖F(m)− d‖2

D. (1)

The data relates to m by some forward map F , and M is an admissible parameter

set which encodes the a priori knowledge on m. In a large number of situations, M is

convex, but the map F is not linear, and (1) is a nonlinear least squares problem.

The resolution of (1) is not easy, in particular because the nonlinearity of F can

result in several local minima in the misfit functional, which local optimization algorithm

cannot avoid. The reconstruction depends on the initial guess minit for the minimization

algorithm, which will converge to the first stationary point it encounters - and not

necessarily to the global minimum. One can figure out approximately the “attraction

basin” of the global minimum in the parameter space by solving (1) with different minit

and synthetic data d. Such an optimizability study can give only partial answers, as

one cannot cover all possible combinations minit and d.

In opposition, we perform in this paper an a priori optimizability study of the

least squares problem (1): we quantify the size of attraction basins and tolerable level

errors which ensure that a local algorithm with an initial guess inside the basin will

converge to the global minimum, provided the error on the data is less than the tolerable

error. With this definition, M is an attraction basin if and only if the attainable

set F(M) is strictly quasiconvex (s.q.c.), as defined in [13] where sufficient conditions

and a characterization are given in terms of deflection and global radius of curvature

along curves of the data space. By construction, these quantities depend solely on

the parameter-to-synthetic forward map F , but not on the data, and can be computed

without solving any optimization problem. However, their numerical determinations can

require a large number of evaluation of F and its derivatives, and becomes intractable

as soon as there are more than a few parameters. This is why we shall consider only

directional attraction basins along lines of the parameter space.

We demonstrate the interest of this optimizability approach for the analysis of the

Helmholtz inverse problem in a seismic context. The problem consists in recovering

the subsurface Earth properties m from wave measurements d at the surface, using the

Helmholtz acoustic equation for F . In this context, the minimization of the least squares

formulation (1) is referred to as the Full Waveform Inversion (FWI). The method was

introduced for time-domain acoustic problem in [3, 4] for one dimension, followed by

the work of [23, 38]. The time-frequency domain formulation was then developed by

Pratt et al. [32, 30, 31]. The FWI approach to seismic imaging has become more and
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more popular with the increase of computational power, and it has been investigated

with respect to several aspects such as the choice of misfit function, using logarithmic

function [39, 34, 35] the signal envelop [8], or optimal transport distance [26, 33, 45].

Convergence of the scheme is studied in [17, 19].

However, some difficulties inherent to FWI remain: because of the long distance

traveled by the signal from the source to the deep reflectors and back to the surface

receivers, a small change in the low spatial frequencies of the velocity (the “background

velocity”) will cause phase shifts of more than one cycle in the computed wavefield,

and hence create local minima in the data misfit J - which motivates the use of this

problem to test our a priori optimizability analysis. These local minima hamper the

FWI approach when it comes to the determination of the background velocity model, as

local algorithms will stop at the nearest local minimum, unless the initial background

velocity is already accurate, or the data contain unrealistically low frequencies [10, 36].

One way out of this dilemma could be random optimization, e.g., [20], which has the

ability to find the global minimum even in presence of many parasitic local minima. But

it requires a very large number of misfit evaluations for the determination of a small

number of parameters, which is not well adapted to seismic inversion, when the number

of parameter is very large (it is of several thousands in our applications).

Quite early, FWI has been reformulated to overcome the local minima problem,

at the price of an increased computational complexity. The Differential Semblance

Optimization (DSO), [37], extends the depth reflectivity model to account for the various

illuminations in the data, and defines a semblance objective function to retrieve the

background model. With the same objective, the Migration Based Travel Time (MBTT)

reformulation of FWI has been introduced in [15, 18, 5], where the Earth model m is

parameterized by a background velocity p and data-space reflectivity s.

So we apply in this paper our a priori analysis to the determination of directional

attraction basins for both the original FWI formulation and its MBTT data-space

reflectivity reformulation, which allows to quantify the effectiveness of the reformulation.

The paper is organized as follows. Section 2 defines the geometrical tools, based

on [13], needed to define and analyze the optimizability of problem (1): sufficient

and necessary optimizability conditions are given, and estimates of the size of the

attraction basin in the parameter space, and of the tolerable error level in the data

space are derived. Section 3 presents the time-harmonic inverse problem associated

with the Helmholtz equation, and the associated nonlinear iterative minimization

problem for the reconstruction of the velocity model. The strategy is based upon

a global model parametrization (standard FWI) or using the MBTT reformulation

(background/data space decomposition). Numerical estimates of the optimizability are

provided in Section 4, following the formulas of Section 2, and highlight quantitatively
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the size increase of the attraction basin provided by the MBTT approach. Appendix A

reviews the gradient computation in the frequency domain, emphasizing the specificity

of complex valued fields for the adjoint state method. In Appendix B, we provide some

experiments of reconstruction to highlight the influence of the background velocity.

details on the MBTT decomposition are given in Appendix C. Note that the research

report [5] contains several additional experiments with this methodology.

2. Optimizability of least squares minimization problems

In this section, we define precisely the optimizability of the general nonlinear least

squares problem (1). It refers to the possibility for a local (deterministic) optimization

algorithm to converge to a global minimum, without stopping prematurely in a local

minimum or stationary point. This analysis follows the work of [13], whose main results

are given in Subsection 2.2. In Subsections 2.3, 2.4 and 2.5, we provide the methodology

to compute numerical estimates that evaluate (quantitatively) the optimizability of least

squares problems. These estimates are a priori and only depend on the forward problem.

We provide local estimates, which are a first approximation and are computationally

inexpensive, and exact estimates which require more computations, but are more

accurate.

2.1. Problem statement and definition of optimizability

We consider the (possibly nonlinear) least squares minimization problem (1) where the

forward map (operator) is F , and d denotes the data (observations). We shall refer to

F(M) as the attainable set of the least squares problem.

Assumption 1. The following set of hypotheses is required for optimizability, cf. [13].

– The model space (or admissible parameter set) M is a closed convex and bounded

subset of the finite dimensional parameter space E equipped with the norm ‖ · ‖E.

– The data space D is a finite dimensional Hilbert space, equipped with the norm

‖ · ‖D.

– The forward map F :M→D is continuous and twice differentiable along segments

of M.

– There exists C ≥ 0 such that ∀m1,m2 ∈M, ∀t ∈ [0, 1],

‖DtF((1− t)m1 + tm2)‖D ≤ C‖m2 −m1‖E,

where Dt stands for the derivative with respect to t.
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The parameter and data space have been taken finite dimensional for convenience

only, in order to avoid technical difficulties, but the theory can be put to work in an

infinite dimensional setting.

Definition 1 (Path). A curve P drawn on F(M) ⊂ D is a path of F(M) if it is of

the form:

P : t ∈ [0, 1]→ F((1− t)m1 + tm2) where m1,m2 are two parameters of M. (2)

Definition 2 (Velocity and acceleration). P is twice differentiable and we denote by V

and A (velocity and acceleration along P ) its two first derivatives:

V (t) = P ′(t), A(t) = P ′′(t). (3)

For simplicity, we shall consider only paths for which V (t) 6= 0 for all t, so we can define

the unit tangent velocity v, and the normal acceleration a by

v(t) =
V (t)

‖V (t)‖D
, a(t) =

A(t)− 〈A(t), v(t)〉D v(t)

‖V (t)‖2
D

, (4)

where 〈·, ·〉D is the inner product in D.

Due to the limited accuracy of the recording devices, model error and noise, the

observed data d do not belong in general to the attainable set F(M). Therefore, it is

important that the least squares misfit function does not have parasitic local minima for

data d which are “not too far” from the attainable set. This property is made precise

by the following definition.

Definition 3 (Optimizability/Attraction Basin). The least squares problem (1) is

optimizable on M, or equivalently the parameter set M is an attraction basin for (1),

if there exists a neighborhood V of F(M) such that

– uniqueness: all data d ∈ V have a unique projection d† on F(M),

– unimodality: for any d ∈ V, the distance to d has no parasitic stationary point over

F(M),

– convergence: if d ∈ V, any minimizing sequence dn ∈ F(M) of the distance to d is

a Cauchy sequence for both the norm ‖ · ‖D and the arc length distance `(P ) along

the path P defined by (2). Hence dn converges in F to the unique projection d† of

d onto F(M).

Therefore, the absence of local minimum (unimodality) and uniqueness of the

projection guarantee that the resolution of an optimizable (Definition 3) least squares

problem by a local gradient algorithm will converge to a global (but not necessarily

unique) minimizer, whatever the initial guess in its basin of attraction M.
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Remark 1. The size of attraction basins depends only on the forward map to be inverted,

but not on the optimization algorithm used (e.g. Newton method, gradient descent, etc).

The choice of the method naturally affects the rate of convergence and the speed at

which the final solution is eventually reached, but it has no influence on the presence

or absence of local minimum, and none of the deterministic local algorithms is robust

with respect to local minimum. On the other hand, for an optimizable problem as given

in Definition 3, local algorithms would be able to find the solution because any local

minimum in the attraction basin is a global minimum in such cases.

2.2. Global Radius of Curvature and Deflection

Following [13, pp. 167–172 and 300-308], we define the global radius of curvature and the

deflection along a path P , and further give in Propositions 1 and 2 a characterization

and a sufficient condition of optimizability.

Definition 4 (Radius of curvature). The (possibly infinite) radius of curvature R(t) of

a path P at t is given by:

1

R(t)
= ‖a(t)‖D =

‖A(t)‖D
‖V (t)‖2

D
sin(A(t), V (t)). (5)

The radius of curvature of the whole path P is then defined as:

1

R(P )
def
= sup

t∈[0,1]

1

R(t)
. (6)

It is straightforward to see that

1

R(t)
≤ ‖A(t)‖D
‖V (t)‖2

D
, for a.e. t ∈ [0, 1]. (7)

Definition 5 (Global radius of curvature). The (possibly infinite) global radius of

curvature RG(t, t′) of a path P at t seen from t′, with t 6= t′, is given by:

RG(t, t′) =

{
N+/D if 〈v(t), v(t′)〉D ≥ 0,

N+ if 〈v(t), v(t′)〉D ≤ 0,
(8)

where v(t), v(t′) are the normalized velocities along P defined by (4), and N+ = max(N, 0) where N = sign(t′ − t)〈P (t′)− P (t), v(t′)〉D,

D =
(

1− 〈v(t), v(t′)〉2D
)1/2

.
(9)

The global radius of curvature of the path P is then defined by

RG(P )
def
= inf

t,t′∈[0,1]
RG(t, t′) ≥ 0. (10)

The interest of global radius of curvature comes from the following proposition.
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Proposition 1 (RG > 0 ⇐⇒ optimizability).

The least squares problem (1) is optimizable - or equivalently M is an attraction basin

for (1) - if and only if there exists RG > 0 such that RG(P ) ≥ RG > 0 for all path P of

F(M). The associated neighborhood V is defined by:

V = {d ∈ F | dist(d,F(M)) < RG}. (11)

The proofs can be found in [13]. The global radius of curvature can be computed

numerically using (8) and (9), as will be done in Sections 4. It can also be estimated via

the usual radius of curvature depending on the value of the deflection, which we define

now, and which is illustrated Figure 1(a).

Definition 6 (Deflection). The deflection between two points t and t′ of the curve P is

the angle between the two velocities V (t) and V (t′) (see Figure 1(a)). It is given by:

Θ(t, t′) = arccos
( 〈V (t), V (t′) 〉D
‖V (t)‖D‖V (t′)‖D

)
∈ [0, π[. (12)

The deflection Θ(P ) of the curve P is defined as the largest angle Θ(t, t′) ∈ [0, π]

between any two tangent vectors V (t) and V (t′) for any two points t and t′ of [0, 1].

An infinitesimal variation of the deflection dΘ satisfies

dΘ ≤ ‖A(t)‖D
‖V (t)‖D

dt. (13)

Denoting t1 and t2 the values of t for which the deflection is maximum, the deflection

Θ(P ) along the curve P satisfies

Θ(P ) =

∫ t2

t1

dΘ ≤
∫ 1

0

‖A(t)‖D
‖V (t)‖D

dt. (14)

This upper bound is sharp, but it is very conservative: equality holds only when P

is an arc of circle with constant velocity ‖V (t)‖, i.e. when the path P turns always in

the same direction with a constant radius.

The relation between global and local radii of curvature is then given by the

following proposition.

Proposition 2 (Local and Global Radii of curvature). For any path P of F(M) one

has

R(P ) ≥ RG(P ) ≥ 0 and R(P ) = RG(P ) as soon as Θ(P ) ≤ π/2, (15)

Definition 7 (Finite Curvature/Limited deflection (FC/LD) problem). The minimiza-

tion Problem (1) is a FC/LD least squares problem if:

there exists R > 0 such that: ‖A(t)‖D ≤
1

R
‖V (t)‖2

D

for a.e. t ∈ [0, 1] and all paths P ,
(16)

Θ(P ) ≤ π

2
for all paths P . (17)
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From Definition 7 and using (15), a FC/LD problem verifies that

RG(P ) = R(P ) ≥ R > 0 for all paths P , (18)

which shows that FC/LD problems (also referred to as weakly nonlinear inverse problem

in [17]) are necessarily optimizable.

Notice that Proposition 1 gives a characterization of optimizable problems, whereas

Definition 7 provides only a sufficient condition.

2.3. Directional Attraction Basins

Numerical application of previous section to evaluate whether or not a given least squares

problem is optimizable becomes quickly intractable when the number of parameters

increases, as it is the case in seismic inversion. So we limit ourselves to directional (or

one-dimensional) parameter sets of the form:

M(m0, u,∆) = [m0 −∆u,m0 + ∆u] with ‖u‖E = 1. (19)

Here, m0 is a nominal model, u a normalized perturbation direction, and ∆ gives the

size of the domain of investigation. The associated attainable set is the image of the

path P defined by:

P : t ∈ [0, 1] F(m0 + (2t− 1)∆u). (20)

We refer to directional optimizability when the problem is optimizable for an interval

such as (19), and this interval is a directional attraction basin. Directional optimizability

is only a necessary condition for optimizability, but it will allow to analyze the behavior

of seismic inverse problems and to compare formulations: the size ∆ of a directional

attraction basin in a descent direction tells us how far one can move away in this

direction without being stopped by parasitic local minima. Our objective now is to

determine (see illustration Figure 1):

(i) the size ∆u
m0

of the directional attraction basin centered at m0. The larger ∆u
m0

, the

better the least squares problem is amenable to minimization by local algorithm,

because we allow a larger area for investigation. In our numerical experiments, we

shall scale the estimate with the norm of the nominal model, ‖m0‖E, to provide

relative (to the model) quantity.

(ii) the associated tolerable error level Ru
G,m0

. It is the largest tolerable error on the

data d which ensures the absence of parasitic local minima for the least squares

objective function

t ∈ [0, 1] 
1

2
‖F(m0 + (2t− 1)∆u

m0
u)− d‖2

D (21)

over [0, 1]. The larger Ru
G,m0

is, the better is the robustness of the minimization

procedure to noise in the data. In our numerical experiments, we divide the
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estimates with the norm of the synthetic data d0 = F(m0) to provide relative

(to the data) quantity.

t

t′

V (t)

t′
V (t′)

Θ(t, t′)

F(m0)

F(m0 −∆u)

F(m0 + ∆u)

(a)

F(m0)F(m0 −∆u)

F(m0 + ∆u)d

dist(d,F)

(b)

Figure 1. A one-dimensional setup for least squares problems. The figure lives in

the data space, the attainable set is the path P image of the interval M(m0, u,∆) of

the model space. (a) Illustration of the computation of the deflection Θ(t, t′) between

two arbitrary points t and t′. (b) The path has a finite curvature and the deflection

is smaller than π/2, so the FC/LD Property 7 is satisfied, and RG = R > 0 by

Proposition 2. Hence the “distance to d” function cannot have local minimum over P

provided the data d is at a distance of the attainable set P = F(M(m0, u,∆)) smaller

than R.

We shall use two types of estimate:

• Θ-estimates of ∆u
m0

, where the optimizability overM is obtained by satisfying the

sufficient condition Θ(P ) ≤ π/2 of Definition 7. In this case, RG(P ) = R(P ), so the

tolerable error level is given by the minimum over the [0, 1] interval of R(t) given

by (5).

• RG-estimates of ∆u
m0

, where optimizability is obtained by satisfying the RG > 0

characterization of optimizability of Proposition 1. In this case, the associated

tolerable error level RG has to be computed by evaluating numerically the infimum

in (10) using (8) and (9).

2.4. Local Θ-estimate for ∆u
m0

and associated tolerable error level Ru
m0

We provide here a local Θ-estimate ∆ of the attraction basin, in the sense that it is based

only on the velocity V and acceleration A at m0 in the direction u. In order to ensure

that the deflection of the path P defined by (20) is smaller than π/2, we use the upper

bound (14) of Θ(P ), which, according to the optimizability condition of Definition 7,

ensures in turn that M(m0, u,∆) is an attraction basin.

With the notations of [11] for the directional derivative (indicated between



A priori estimates of attraction basins for nonlinear least squares 10

parenthesis), the chain rule differentiation gives:
V (t) =

∂F
∂m

∂m

∂t
= 2∆DF(m)(u),

A(t) =
∂2F
∂m2

(∂m
∂t

)2

+
∂F
∂m

∂2m

∂t2
= 4∆2D2F(m)(u, u),

(22)

where u acts as the direction of derivation. Then we use a rectangle approximation

in (14), which gives the approximate upper bound Θu
m0

to the deflection Θ(P ):

Θ(P ) ≤
∫ 1

0

‖A(t)‖D
‖V (t)‖D

dt ∼ ‖A(1/2)‖D
‖V (1/2)‖D

= 2∆
‖D2F(m0)(u, u)‖D
‖DF(m0)(u)‖D

def
= Θu

m0
. (23)

This gives immediately a local Θ-estimate of the size ∆ of an attraction basin at m0 in

the direction u:

∆u
m0

=
π

4

‖DF(m0)(u)‖D
‖D2F(m0)(u, u)‖D

. (24)

This estimate is an approximate (because of the rectangle approximation of the integral)

lower bound (because it is based on the upper bound (14)) to the size of the largest

attraction basins at m0 in the direction u but it is computationally cheap.

The associated tolerable error level Ru
m0

is then the minimum of the radius of

curvature along P = F(M(m0, u,∆)), which is approximated by its value at m0, that

is R(t = 1/2) given by (5):

Ru
m0

=
( ‖V (t)‖2

D
‖A(t)‖D| sin (A(t), V (t))|

)
|t= 1

2
. (25)

where V (t) and A(t) have been defined in (22).

2.5. Exact Θ- and RG-estimates of ∆u
m0

and associated tolerable error levels

The determination of the exact Θ- and RG-estimates of the attraction basin centered at

m0 in a direction u inside an intervalM(m0, u,∆) of given size ∆ requires the numerical

computation of the deflection Θ(t, t′) and the global radius of curvature RG(t, t′) between

any two points

F(m0 + tu), −∆ ≤ t ≤ ∆ and F(m0 + t′u), −∆ ≤ t′ ≤ ∆ (26)

of the path P , which is the image by F of the investigated interval M(m0, u,∆).

For this purpose, deflection maps and global radius maps are computed, which

display the values of Θ(t, t′) (Definition 6) and of RG(t, t′) (Definition 5) between the

points of M(m0, u,∆). On the diagonal of the maps, where t = t′, RG is not defined

by (8) (9), and we indicate instead the values of R(t) given by (4) (5), which represent

the limits of RG(t, t′) when t′ → t. One can then read on these maps (cf. Section 4):
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– the exact Θ-estimate of the attraction basin size ∆u
m0

, given by the largest square

centered at (0, 0) where Θ(t, t′) ≤ π/2 for all t, t′;

– the exact RG-estimate of the attraction basin size ∆u
m0

, given by the largest square

centered at (0, 0) where RG(t, t′) > 0 for all t, t′.

During this process, when the size of the investigated square increases from 0 to the

exact Θ-estimate, the associated exact tolerable error Ru
m0

= inf−∆≤t≤∆ R(t) decreases

from its value R0 at m0 to the tolerable error Ru
m0

of the Θ-attraction basin. When

the size of the square increases further to the exact RG-estimate, the tolerable error

is RG = inf−∆≤t,t′≤∆ RG(t, t′), which continues to decrease, until it reaches the value 0

of the RG-attraction basin. Naturally, the exact estimates are computationally more

demanding than the local estimates, as they require evaluation of RG and Θ for many

couples (t, t′).

3. The Helmholtz inverse problem for seismic

To illustrate the optimizability study of Section 2, we describe now two formulations of

a seismic inverse problem associated to the Helmholtz equation: the objective is here

to reconstruct the sound velocity in the Earth (the parameter) given partial surface

measurements of reflected (backscattered) energy (the data), obtained from one side

illumination (the surface). Of course, the methodology developed in Section 2 is not

restricted to inverse wave problem or geophysical setup, and can be applied in any

context involving (nonlinear) least squares minimization schemes.

3.1. Time-harmonic wave equations

We consider a bounded domain Ω of R2 with boundary ∂Ω, which represents the region

of interest (the analysis holds similarly in three dimensions). We consider the Helmholtz

equation where the pressure field p is solution to,{
−(ω2c−2(x)−∆)p(x) = g(x), in Ω,

p(x) = 0, on ∂Ω.
(27)

The angular frequency is ω, the velocity (wavespeed) of the medium is denoted by c(x)

and the (interior) source of the phenomenon is g. The domain boundary is divided into

∂Ω = Γ1 ∪ Γ2, where we distinguish the upper free surface (physical interface, Γ1) from

the rest of the boundary (artificial boundary, Γ2), see Figure 2. Due to the numerical

truncation of the real domain (the Earth), appropriate conditions are imposed on Γ2 to

ensure that waves that reach Γ2 are not reflected back to the domain. Here, we consider
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Perfectly Matched Layers (PML, see [6]), which rewrite the derivative formula in the

layers (sides and bottom of the domain here, see Figure 2):

∂x → (1 + i
σ(x)

ω
)−1∂x, in ΩΓx (Perfectly Matched Layer), (28)

and analogously for the other direction, in ΩΓz . In our implementation, the damping

function σ is defined following the work of [41, 44].

ΩΓxΩΓx

ΩΓz

area of interest

Ω

Free surface Γ1

Γ2

source
receivers positions Σ

Figure 2. Illustration of the two-dimensional computational domain using Perfectly

Matched Layers (PML) at the lateral and bottom boundaries. The sources and

receivers that generate the data are located in the upper part, creating partial,

backscattered data, according to a seismic configuration.

3.2. Inversion via classical FWI: global model representation

The FWI formulation is the most natural one: the parameter is the squared slowness

m = c−2, discretized at the n cells or nodes of a grid covering Ω: m ∈ E = Rn, the

data d ∈ D = Cq consist in q = nrcv × nsrc × nfreq complex measurements of p at the

receivers locations Σ for a finite number of sources g and frequencies ω. The spaces E

and D are equipped with the norms:

‖m‖E =
(∑n

i=1
m2

i

)1/2

, ‖d‖D =
(∑q

i=1
didi

)1/2

,

〈d, d′〉D = Re
(∑q

i=1
did̄′i

)
,

(29)

where mi and di are the ith component of m and d respectively, and denotes the

complex conjugate. Note that the representation of m with piecewise constant function

over a partition of Ω is also used to estimate the stability of the inverse problem, see [1, 7].

The essence of FWI ([38, 32, 43]) is to reconstruct the subsurface properties by

minimizing a misfit functional defined as the difference between the observed and

simulated signals, starting from an initial model. The information on the deep Earth

structure is brought by backscattered energy only, so one has to suppress the energy that

has traveled directly from the source to the receivers (direct arrivals) from the observed
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and simulated data. Let us denote by p
(g)
ω and p

(g)
s,ω the solutions of (27) for m and ms,

for the source g at frequency ω. Here, ms is a ‘smooth’ version of m, close enough to

m near the surface to generate the same direct arrivals, and smooth enough so that it

scatters back negligible energy. So we define the forward operator F : E  D by:

F(m) =
{
Fg,x

ω (m) = pgω(x)− p g
s,ω(x) for all x ∈ Σ, g, ω

}
∈ D. (30)

When computing derivatives of F , it will be necessary to remember that ms depends also

on m. Then, FWI amounts to solve the nonlinear least squares minimization problem

(1), which we recall here for convenience:

min
m∈M

J (m) =
1

2
‖F(m)− d‖2

D. (31)

The minimization is usually performed by a Quasi-Newton algorithm, which requires

only the gradient of the cost function:

∇J (m) = DF(m)∗ (F(m)− d), (32)

where DF stands for the Fréchet derivative of F and ∗ is the adjoint. This gradient can

be efficiently computed by the adjoint method, which does not require the formation of

the Jacobian matrix. Appendix A describes a careful adaptation of this method to the

case of complex variables (contrarily to the time-domain formulation, the data and the

wavefields are, in the harmonic formulation, complex).

As recalled in the introduction, the determination of the background (low spatial

frequencies) of m by (31) is hampered by the many local minima of J , caused by phase

shifts in the synthetics (see Figure 6). This can be overcome only if the data contain

very low frequencies. These difficulties are a motivation for alternative techniques such

as the MBTT reformulation of FWI below, and for the optimizability study developed

in this paper.

3.3. Inversion via MBTT–FWI ( background/data-space-reflectivity decomposition)

In the MBTT (Migration-Based Traveltime) approach, see [18], the model m is

parameterized by a smooth background p ∈ E and a data-space reflectivity s ∈ D using

a migration operator:

m = m(p, s) = p + r = p +W DF(p)∗ s = p +
∑
ω

W(ω)DFω(p)∗s(ω), (33)

where r is the depth reflectivity associated to s and p; W is a scaling operator (which

possibly depends on the frequency) and ∗ denotes the adjoint. The weight W is

meant to compensate for the lower amplitude of deep migrated events, see [28]. In

our experiments we use a simple scaling proportional to the square root of the depth.

We refer to Appendix C for more details regarding the computational aspects of the
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decomposition. Note that the solution of the linearized version (Born approximation)

of the FWI problem (31) is of the form (33), in which case parameterization (33) is

not underparameterizing. Hence, when the full model (27) is used, the parameterization

by the data space reflectivity s will be able to generate all primary events of the data,

but maybe not all multiple events (i.e., it will miss the events associated to multiple

reflections involving at least one reflector which generates no primary reflection), cf. [14].

When this decomposition is employed, the natural choice for the smooth version

ms of m in (30) (in order to suppress direct arrivals in the forward map F) is simply

ms = p. With this change of parameter, the forward map given by (30) rewrites

F(p, s)
def
= F(m) with F given by (30) and m by (33). (34)

By construction, F does not contain the direct arrivals, which implies that, for a

background p smooth enough, F satisfies:

F(p, 0) = F(p) ≈ 0. (35)

The motivation for this parameterization is to eliminate phase shifts induced in the

synthetics by changes in the background p: the events in the synthetics are obtained

from the data-space reflectivity s by migration followed by simulation with the same

kinematic, and hence are expected to have the same phase as those of s, as illustrated

in Figure 6. Besides controlling the phase, this migration-demigration process has the

additional property that the stack involved in DFω(p)∗ turns, for a fixed data space

reflectivity s, the data misfit into a coherency measure for the current background p,

[14]. The price to pay is that the computational times are multiplied by three, because

the evaluation of DF(p)∗ in (33) requires the resolution of two Helmholtz problems (see

Appendix C) and the evaluation of F(m) in (34) requires the resolution of one additional

Helmholtz equation (i.e. total of three forward problems instead of one).

Then, the MBTT–FWI minimization problem is

min
p∈Ms,s∈D

J(p, s) =
1

2
‖F(p, s)− d‖2

D, (36)

where Ms ⊂M is the set of admissible smooth backgrounds, D is the data space.

This approach has been shown successful in [18, 16] for the inversion of synthetic

data, in particular when low frequencies are missing. Hence another motivation for the

optimizability study of this paper is to quantify how far the MBTT reformulation of

FWI succeeds in overcoming the local minima problem inherent to classical FWI.

4. Comparison of optimizability for FWI and MBTT

In this section, we analyze numerically the directional optimizability of the two

least squares minimization problem of Section 3, using the computational estimates
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obtained in Section 2. Namely, optimizability of the original FWI problem (31) (where

the unknown model is the squared slowness m) is compared to that of the MBTT

formulation (36) of FWI (where the unknown model is parametrized by a smooth

background p and a data space reflectivity s). Our objective is twofold:

– compare local estimates of attraction basins and tolerable error, which are

numerically inexpensive, with the, more expensive, exact ones.

– Quantify the gain with respect to optimizability - if any - of the MBTT formulation

over the classical FWI.

Remark 2. The research report [5] associated with this paper contains several additional

experiments where the same methodology is applied to analyze the convergence properties

of least squares minimization. In particular, [5, Section 4] investigates the optimizability

properties of global model reconstruction in FWI with respect to the search direction

geometry, and the use of sequential or multiple (possibly complex) frequency data; the

experiments are extended for elasticity and alternative boundary conditions problems in

[5, Section 6].

4.1. Choice of a nominal model

For the numerical estimates, we consider a two-dimensional geophysical setup for the

Helmholtz equation (27), with a domain of size 9.2 × 3 km. The domain follows the

Marmousi model, which is a geophysical subsurface wavespeed profile designed by the

Institut Français du Pétrole (IFP) in the late eighties, [42], see Figure 3(b). We consider

nsrc = 19 sources and nrcv = 183 receivers associated with each source (the receivers

remain in the same position for all sources). Both are located near the surface, according

to Figure 2. Therefore, we work with reflection data obtained from a one side (the

surface) illumination. For a given frequency ω, the forward map Fω associates a vector

Fω(m) of Cnrcv×nsrc to any squared slowness model m.

For a fair comparison, the two inversion approaches (FWI and MBTT) have to

be applied to the same nominal model, so we construct a model m0 whose MBTT

decomposition, p0, s0, is known exactly, i.e. which satisfies

m0 = m(p0, s0) according to (33), it implies that F(m0) = F(p0, s0). (37)

We first choose the smooth background p0 as the one-dimensional ramp pictured in

Figure 3(a). Note that our figures plot the wavespeed (in km s−2) per consistency with

the geophysical settings but we remind that we have chosen the squared slowness as

unknown parameter i.e. p0 = c−2
0 .

Then we choose for nominal s0 the first guess approximation of the data space

reflectivity of the Marmousi model of Figure 3(b), given by the Marmousi synthetic
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(b) Marmousi velocity model cm.

Figure 3. Wavespeed models of size 9.2 × 3 km used for the numerical estimates,

the values are indicated in km s−1. For the computation, the models are p0 = c−20 ,

mm = c−2m .

section deprived from its direct arrivals:

s0(ω) = Fω(mm) from (30), using ms = p0, (38)

where mm and p0 are shown in Figure 3. Hence, we remove the direct arrivals given by

p0 from pressure fields simulated with mm.

Finally, the nominal model m0 is simply defined by (37), that is

m0 = p0 + r0, r0 =
∑
ω

r0(ω), r0(ω) =W(ω)DF∗ω(p0)s0(ω) ∀ω. (39)

where r0 (respectively r0(ω)) is the depth reflectivity associated to the sum of all

frequencies (respectively to frequency ω‡ ).

We choose the weight W proportional to the square root of depth, as proposed in

Section 3, and adjust its amplitude by (arbitrarily) imposing a model reflectivity level

of 1%,

‖r0(ω)‖/‖p0‖ = 10−2, ∀ ω. (40)

In Figure 4, we illustrate the resulting models r0(ω) for three frequencies: 2, 4 and

7 Hz. We also show the model r0 where the frequency sum contains frequencies between

0.5 to 15 Hz, with 0.5 Hz increment. We observe that the reflectivity, defined from the

difference between observations and simulations using a smooth background, provides

structures of size consistent with the selected frequency. For the global model, shown in

Figure 4(d), we see the contributions of all wavelengths, and we can distinguish some

structures of the Marmousi medium given in Figure 3(b).

For simplicity, in the following, we restrict ourselves by studying only single

frequency nominal models, which means that we only work with models resulting from

‡ Note that with s0 given by (38), the resulting r0(ω) is the gradient of the misfit function (1) at

frequency ω at m = p0, see Appendix A.
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(a) Model r0(ω) at 2 Hz frequency.
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(b) Model r0(ω) at 4 Hz frequency.
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(c) Model r0(ω) at 7 Hz frequency.
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(d) Model r0 using frequencies from 0.5 to 15

Hz with 0.5 Hz increment.

Figure 4. Reflectivity models r0 obtained from the MBTT representation defined

by (39). The model s is defined from (38) as the difference between the data obtained

from the Marmousi model Figure 3(b) and the smooth background Figure 3(a). The

figures correspond with squared slowness and the values are given in (m s−1)−2.

a single, fixed ω:

m0(ω) = p0 + r0(ω) = p0 +W(ω)DF∗ω(p0)s0(ω). (41)

It allows us to study the behaviour of both approaches (FWI and MBTT) with individual

frequency.

4.2. Choice of perturbation directions

We define now the unit norm directions u to be used for the determination of the

directional attraction basins introduced in Section 2.

Background perturbation The direction for the background perturbation, u, is selected

as the one-dimensional ramp of Figure 5. This perturbation is either applied onto the

global model m (FWI), or onto the background unknown p (MBTT). We first illustrate

the effect of the background perturbation onto the forward map in Figure 6. It shows

the unperturbed and perturbed synthetic data for the center source at frequency 4 Hz.

It corresponds to the solution of the Helmholtz equation (27) recorded at the receivers
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location. Note that, from (30) the direct arrivals are removed from the forward operator.

One sees on this figure that, when the perturbation in the direction u is applied to the

global model m (FWI), both phase and amplitude of the signal are modified. On the

contrary, when it is applied to the background part p (MBTT), the phase of the original

signal is preserved, and only the amplitudes are modified.
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d
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)

−3

−2

−1

·10−3

Figure 5. Perturbation u used for the background model p. The amplitude is

determined such that ‖u‖ = 1 and the values are given in (m s−1)−2 = s2 m−2.
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−2

0
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·10−2

Receiver index

F(m0)
F(m0 + τu)
F(p0 + τu, s0)

Figure 6. Comparison of the synthetic data associated with the center shot at 4 Hz

using a model perturbed by the direction u of Figure 5 applied onto the global model m

or on the part p using the MBTT model decomposition. The step for the perturbation

is τ = 5× 10−5.

Reflectivity perturbation The FWI objective function is known to be nearly quadratical

with respect to reflectivity, i.e. to the high spatial frequency part of m, and the same

property holds by construction for the dependance of the MBTT objective function with

respect to the data space reflectivity s. Hence one expects large basins of attraction with

respect to s in the MBTT formulation. There is no clear strategy to select the direction

us for s, hence, we choose for a random vector of the data space.
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4.3. Comparison of local Θ-estimates

The formulas for the local estimate of the size ∆u
m0

of the Θ-attraction basin have already

been derived in Section 2.4 for the classical FWI. Application of the same formulas (24)

(25) to F(p, s) instead of F(m) gives immediately for the MBTT formulation the local

estimates of the sizes ∆u
p0

and ∆us
s0

of the Θ-attraction basins with respect to p and s in

directions u and us at p0, s0. Figure 7 shows the evolution of the local Θ-estimates with

frequency. We observe that:

– the size of the corresponding attraction basins decreases with frequency, when the

perturbation is applied on m, p and s. It is the expected behaviour as one knows

that high frequencies are more prone to local minima (with the decrease of the

wavelength).

– Figure 7(a) shows a slightly larger attraction basin in the direction of the

background perturbation u when it is applied to the propagator part p0 of the

MBTT parameterization rather than when applied directly to m0. But it is not up

to the expectations raised by the claim that the MBTT parameterization allows to

overcome the phase shift problem [14, 15].

– Regarding s, the estimated size appears surprisingly small compared to the large

attraction basin expected.

Yet, one has to remember that these are local Θ-estimate, which can be very pessimistic,

as explained in Section 2.4, and we postpone more definitive comments to the end of

Subsection 4.4, where exact Θ-estimates are calculated.

0 5 10 15

10−2

10−1

Frequency (Hz)

∆u
m0
/‖m0‖

∆u
p0
/‖p0‖

(a) Perturbation of the background model p.

0 5 10 15

10−3

10−2

Frequency (Hz)

∆us
s0
/‖s0‖

(b) Perturbation of the reflectivity s.

Figure 7. Evolution with frequency of the local Θ-estimates of the size of the

attraction basins given by (24), in the context of FWI and MBTT. Here p0 is the

smooth velocity background of Figure 3(a), the direction u for p is given Figure 5, and

the direction us for s is a random vector. In the MBTT representation, the reflectivity

uses only the selected frequency.
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4.4. Comparison of exact Θ- and RG-estimates

We apply the method described in Section 2.5 for the case of classical FWI, which

translates immediately to the case of MBTT by replacing the FWI forward map

m  F(m) by the MBTT forward map p, s  F(p, s). This leads to the computation

of deflection and global radius of curvature maps between the following points:

FWI (attraction basin for m) : F(m0 + tu) and F(m0 + t′u);

MBTT (attraction basin for p) : F(p0 + tu, s0) and F(p0 + t′u, s0);

MBTT (attraction basin for s) : F(p0, s0 + tus) and F(p0, s0 + t′us);

for all −∆ ≤ t, t′ ≤ ∆.

We first compute the deflection and global radius of curvature maps for m and p,

using values of t and t′ in an interval [−∆,∆] which is chosen to represent in each case

about ±20% of the norm of m0 or p0 defined in (39). Figures 8 and 9 show these maps

at two selected frequencies: 4 and 7 Hz, and Table 1 summarizes the extracted exact

estimates of ∆u
m0

, ∆u
p0

, together with the local estimates extracted from Figure 7(a).

Table 1. Size ∆ of attraction basins centered at m0 and corresponding maximal

tolerable error RG for the different estimations, at 4 and 7 Hz. By construction, the

RG-estimates correspond to the limit case of a zero tolerable error, the other values

are extracted from Figures 7, 8, 9 and 10.

model m model p model s
∆u

m0

‖m0‖
Ru

G,m0

‖F(m0)‖
∆u

p0

‖p0‖
Ru

G,p0

‖F(m0)‖
∆u

s0

‖s0‖
Ru

G,s0

‖F(m0)‖

4 Hz
Local Θ-estimates 0.02 1.6 0.022 0.8 2× 10−3 6.5
Exact Θ-estimates 0.02 0.6 0.2 0.05 54 6.5
Exact RG-estimates 0.05 0.0 0.23 0 60 0

7 Hz
Local Θ-estimates 0.01 1.6 0.014 0.7 1× 10−3 4.9
Exact Θ-estimates 0.01 0.6 0.11 0.06 23 4.9
Exact RG-estimates 0.025 0.0 0.20 0 >35 0

– The first observation is that lower values of deflection are achieved when the

background perturbation u is applied to p (MBTT) rather than to m (FWI): at 4 Hz,

Figures 8(b), it never reaches π/2, and at 7 Hz, Figure 9(b), only a few portions

attain this value. On the contrary, for FWI, Figures 8(a) and 9(a), the deflection

rapidly reaches π/2 at both frequencies. This indicates that the MBTT formulation

produces larger Θ-attraction basins than the standard FWI formulation, roughly
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−0.1 0 0.1

−0.1

0

0.1

t/‖p0‖

t′
/‖
p

0
‖

0

π

Θ
(t
,t
′ )

−0.1 0 0.1

−0.1

0

0.1

t′
/‖
p

0
‖

0

0.8

R
G

(t
,t
′ )
/‖
F

(m
0
)‖

(b) MBTT: perturbation of the background p.

Figure 8. Maps of the deflection (12) (top) and global radius (8) (bottom) between

two perturbed velocity or background models at frequency 4 Hz. The perturbation

direction is the ramp of Figure 5, it is either applied to the global model m (left) or

to the background parameter p (right). The black lines indicate when the deflection

becomes higher than π/2, the white lines indicate when the global radius becomes 0.

by a factor ten (Table 1). Notice that the size of the Θ-attraction basin is divided

by two for both FWI and MBTT when the frequency increases from 4 to 7 Hz.

– The second observation concerns the strict positivity of the global radius of

curvature RG (bottom of Figures 8 and 9), which determines the RG-attraction

basin characterized by a zero tolerable error (see Section 2.5). For the MBTT

formulation, Figures 8(b) and 9(b), RG remains strictly positive all over the map,

which shows that the RG-basin is larger than the investigated interval. Its size is

of approximately 20% at both 4 and 7 Hz (Table 1). On the contrary, for the usual

FWI formulation, Figures 8(a) and 9(a), RG decreases very rapidly to zero when one

moves away of the diagonal, producing smaller RG-attraction basins, with size of

5% at 4 Hz and 2.5% at 7 Hz, smaller by a factor four to eight to the corresponding

MBTT attraction basins.

– Concerning the magnitude of RG, whose minimum over the attraction basin gives
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Figure 9. Maps of the deflection (12) (top) and global radius (8) (bottom) between

two perturbed velocity or background models at frequency 7 Hz. The perturbation

direction is the ramp of Figure 5, it is either applied to the global model m (left) or

to the background parameter p (right). The black lines indicate when the deflection

becomes higher than π/2, the white lines indicate when the global radius becomes 0.

the tolerable error level, one sees that it takes larger values for FWI near the main

diagonal (i.e. for small attraction basins) than for MBTT over the whole map (i.e.

for larger attraction basins). It is confirmed by the values of RG in Table 1 which

gives the tolerable error level associated with the Θ-attraction basins (this level is

zero by definition for the RG attraction basins).

To summarize, MBTT extends significantly the size of attraction basins with respect

to background perturbations, at the price of a reduction in the admissible error level.

This explains the success of MBTT’s alternate minimization algorithm, as reported in

[18, 16]. We further illustrate in Appendix B.

We compare now the above exact Θ-estimates with the local Θ-estimates of

Subsection 4.3.

– For the FWI approach, Figures 7(a), 8(a) and 9(a) and Table 1, it shows that both

local and exact Θ-estimates of ∆u
m are of the same size. In sight of the upper bound
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estimate (14) on which the local Θ-estimate is based, one can think that the FWI

formulation corresponds to the worst situation, where the image of a segment in

the background space is a curve close to an arc of circle in the data space.

– The situation is completely different for the MBTT formulation: Figures 7(a), 8(b)

and 9(b) and Table 1, we see that the exact Θ-estimate ∆u
p is about ten times larger

than its local Θ-estimate.

We can also determine the exact attraction basins in the MBTT formulation for

the data space reflectivity s at s0 in the direction us, which we expect to be large

because the forward map F is nearly linear with respect to s. Figure 10 shows the

corresponding deflection and global radius of curvature maps for values of t and t′ in an

interval [−∆,∆] which is chosen to represent in each case about ±35 times the norm of

s0 defined in (39). As expected, the exact Θ-attraction basin is large (23 to 54 times

the norm of s0 depending on frequency), and is 105 times larger than its local estimate,

which, together with the previous results on the estimation of ∆u
p, confirms the necessity

of exact estimates for accuracy in MBTT.
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Figure 10. Maps of the deflection (12) (left) and global radius (8) (right) at frequency

7 Hz between two perturbed data-space reflectivities, for the perturbation direction us
chosen in Section 4.2. The black lines indicate when the deflection becomes higher

than π/2, the white lines indicate when the global radius becomes 0.

4.5. Parameter tuning

Numerical experimentation in [5] with the smoothness of the background p and the

reflectivity level (40) have shown that the effectiveness of the MBTT reformulation

of FWI decreases when the reflectivity level is too small (the energy backscattered

by the reflectors becomes of the same order of magnitude as the “negligible” energy

backscattered by the background), or too large (the energy of multiples, whose phase
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is not controlled by MBTT, becomes comparable to that of the primary reflections). A

priori computation of attraction basins allows to fine tune the parameters of the inverse

problem to produce the largest attraction basin and hence to determine the precision

required for the initial guess to ensure convergence of local algorithms to the global

minimum.

5. Conclusion

We have presented theoretical and numerical tools for the a priori analysis of the

optimizability of nonlinear least squares minimization problems by local algorithms.

They consist in the definition of attraction basins around a nominal parameter and the

associated tolerable errors such that for any data below tolerable error, one is sure that

the data misfit has a unique local - and hence global - minimum over the basin. The

computation of these quantities can be intensive, but it only depends on directional

derivatives of the map to be inverted, and it provides a priori information on the model

space size where there is no local minimum, without having to experiment with the

misfit function for different data.

These optimizability tools have been applied to seismic inversion in the time-

frequency domain, where the misfit function exhibits local minima in the directions

associated with low spatial frequencies perturbation of the background velocity.

Computation of directional background attraction basins for the FWI approach and

its MBTT reformulation has confirmed and quantified the benefits associated to the

reformulation, in terms of optimizability. This provides a strong incentive for the use

of the MBTT decomposition in order to alleviate the low frequency requirement of

FWI, despite its larger computational burden. It is the subject of our future work

(implementation and analysis of the choice of tuning parameters).

More important, the computation of attraction basins has been shown to be a useful

quantitative tool for tuning the parameters of the inverse problem, in order to ensure

an as-large-as-possible attraction basin. It also tells how precise the initial parameter

guess has to be for a local algorithm to converge to the global minimum. Note that the

methodology is applicable for other least squares minimization problems (see [5]).
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Appendix A. Adjoint-state for complex variables, directional derivatives

The quantitative reconstruction method follows an iterative minimization of the cost

function defined as the difference between simulation and observations. We follow the

standard least squares formulation of (31), and consider the Helmholtz equation (27) to

write

J (m) =
1

2

∑
ω

∑
g

‖Fg
ω(m)− dgω‖2

D =
1

2

∑
ω

∑
g

‖Rpgω − dgω‖2
D, (A.1)

where the forward problem is written with the restriction operator to receiver location

R, and we use the index g for the sources. For the minimization, one needs to obtain

the gradient of the cost function, which is usually obtained using adjoint state method,

see [29] for a review of the method in geophysical application. In this appendix, we

specify the computations associated with complex-valued fields. For the sake of clarity,

we omit the source and frequency sums, and consider

J (m) =
1

2
‖F(m)− d‖2

D =
1

2
‖Rp− d‖2

D. (A.2)

In the frequency domain, the pressure field p is complex, which requires some

precaution for the application of the adjoint state method. In particular, note that

the functional

J(p) =
1

2
‖Rp(m)− d‖2

D =
1

2
(Rp(m)− d)(Rp(m)− d) (A.3)

is not analytic (holomorphic) with respect to the field p. A workaround is relatively

standard, see for example [9, 24, 22], with elements of complex calculus based on

Wirtinger calculus. We believe it is important to mention this aspect which is too

often disregarded in seismic applications and hereby present the steps involved.

Appendix A.1. Complex derivation

The derivation of complex functional is conducted by taking independently the complex

variable and its conjugate, respectively z and z, for a complex parameter z = x + iy,

with i2 = −1.

Theorem 1. [9, Theorem 1] Let g : C × C → C be a function of a complex number

z and its conjugate z and let g be analytic with respect to each variable (z and z)

independently. Let h : R × R → C be the function of the real variables x and y such

that g(z, z) = h(x, y) where z = x + iy. Then the partial derivative ∂zg (treating z

as a constant) gives the same result as (∂xh − i∂yh)/2. Similarly, ∂zg is equivalent to

(∂xh+ i∂yh)/2.



A priori estimates of attraction basins for nonlinear least squares 26

Corollary 1. Following the statement of Theorem 1, we have

∂g

∂z
=
∂g

∂z
. (A.4)

Proof. By direct application of Theorem 1,

∂g

∂z
=

1

2

(∂f
∂x

+ i
∂f

∂y

)
=

1

2

(∂f
∂x
− i

∂f

∂y

)
=
∂g

∂z
. (A.5)

We straightforwardly apply the theorem to the misfit function where we identify

p := z = x+ iy.

J : (x, y) → 1

2
‖R(x+ iy)− d‖2

D, (A.6)

where x, y and d can be assimilated with vectors in the discrete setting. Then by

deriving independently with respect to x and y we obtain
∂J

∂x
=

1

2
[R∗(R(p)− d )]T +

1

2
(R(p)− d )∗R,

∂J

∂y
= − i

2
[R∗(R(p)− d )]T +

i

2
(R(p)− d )∗R.

(A.7)

We can further deduce the derivative of J with respect to p and p, where they are

considered independent such that J = J(p, p), with Theorem 1,
∂J

∂p
=

1

2
[R∗(R(p)− d )]T =

1

2
(R(p)− d )TR,

∂J

∂p
=

1

2
(R(p)− d )∗R =

1

2
(R(p)− d )TR.

(A.8)

The following theorems give the framework of what can be seen as the chain rule

for complex derivation.

Theorem 2. Consider the complex-valued function f of a real parameter m and the

real-valued functions g1 and g2 such that f(m) = g1(z(m), z(m)) + ig2(z(m), z(m)). The

derivative with respect to the real parameter m is defined by

∂f

∂m
=
∂g

∂z

∂z

∂m
+
∂g

∂z

∂z

∂m
. (A.9)
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Proof. From the definition of f we have

∂f

∂m
=
∂g1(z(m), z(m))

∂m
+ i

∂g2(z(m), z(m))

∂m

=
∂g1

∂z

∂z

∂m
+
∂g1

∂z

∂z

∂m
+ i

∂g2

∂z

∂z

∂m
+ i

∂g2

∂z

∂z

∂m

=
∂(g1 + ig2)

∂z

∂z

∂m
+
∂(g1 + ig2)

∂z

∂z

∂m

=
∂g

∂z

∂z

∂m
+
∂g

∂z

∂z

∂m

(A.10)

Theorem 3. Consider the real-valued functions f and g defined by f(m) =

g(z(m), z(m)),

∂f

∂m
= 2Re

(∂g
∂z

∂z

∂m

)
= 2Re

(∂g
∂z

∂z

∂m

)
. (A.11)

Proof. Direct application of Theorem 2 gives

∂f

∂m
= Re

(∂g
∂z

∂z

∂m
+
∂g

∂z

∂z

∂m

)
. (A.12)

We use Theorem 1 and Corollary 1, and take z(m) = x(m) + iy(m) to have

Re
(∂g
∂z

∂z

∂m

)
= Re

(∂g
∂z

∂z

∂m

)
= Re

(∂g
∂z

∂z

∂m

)
= Re

(∂g
∂z

∂z

∂m

)
, (A.13)

where

∂z

∂m
=
∂(x− iy)

∂m
=
( ∂x
∂m
− i

∂y

∂m

)
=

∂x

∂m
+ i

∂y

∂m
=

∂z

∂m
. (A.14)

We inject in (A.12) to obtain

∂f

∂m
= Re

(
∂g

∂z

∂z

∂m

)
+ Re

(
∂g

∂z

∂z

∂m

)
= 2Re

(
∂g

∂z

∂z

∂m

)
. (A.15)

The alternative expression is obtained similarly but by replacing ∂zg in (A.12), instead

of ∂zg.

Application of Theorem 3 gives the gradient of the cost function with respect to m,
∇mJ =

∂

∂m

(
J(m, p)

)T
= 2Re

(∂J
∂p

∂p

∂m

)T
= Re

(
(R(p)− d )∗R ∂p

∂m

)T
= Re

(( ∂p
∂m

)∗
R∗(R(p)− d )

)
,

(A.16)

where T stands for the transposed.
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Appendix A.2. Adjoint state method

In order to avoid explicit computation of ∂mp in (A.16), the gradient is computed with

the first order adjoint state method. It has been introduced in the work of [25], and

implemented by [12] for the computation of a functional gradient. The formulation for

the elastic wave problem has been carried out by [39, 40]. It is a relatively standard

techniques nowadays, e.g. [21], see [29] for a review in geophysical situations. Yet, the

complex variable specification is less common in seismic literature. In order to compute

the derivative ∇J , we formulate the constrained minimization problem (omitting the

space dependency)

min
m∈M

J (m) = J(p) subject to A(m)p = g, (A.17)

where we introduce the wave operator A, which corresponds to the Helmholtz equation

defined in (27). Note that we consider a single source for now, for clarity, and shall later

reintroduce the source summation, by linearity, cf. (A.25). The problem (A.17) is recast

into a formulation with Lagrangian such that

L(m, p̂, γ̂) = J(m, p̂) + 〈Ap̂− g, γ̂〉, (A.18)

where 〈·, ·〉 stands for the complex inner product in L2 such that 〈v, w〉 = v∗w, with v∗

the adjoint. By taking p solution of Ap = g, we have that ∇mL(m, p, γ̂) = ∇mJ (m).

Furthermore, by application of complex derivation Theorem 2, we have

∂

∂m

(
L(m, p, γ̂)

)
= Re

( ∂L
∂m

+
∂L
∂p

∂p

∂m
+
∂L
∂p

∂p

∂m

)
, (A.19)

and with Corollary 1,

∂

∂m

(
L(m, p, γ̂)

)
= Re

( ∂L
∂m

+
(∂L
∂p

+
∂L
∂p

) ∂p
∂m

)
. (A.20)

The adjoint state γ is now selected such that

Re
(∂L
∂p

+
∂L
∂p

)
= 0, (A.21)

which gives,

Re
(∂J
∂p

+
∂J

∂p
+A∗γ

)
= 0. (A.22)

We now incorporate (A.8), and the adjoint state γ solves the problem

A∗γ = −R∗(R(p)− d). (A.23)

Using this formulation for γ, the gradient reduces to

∇mJ = Re
(
〈∂mAp, γ〉

)T
. (A.24)
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We can eventually reintroduce the sum over the sources, which, by linearity, gives

∇mJ =
∑
g

Re
(
〈(∂mA)pg, γg〉

)T
, where γg solves A∗γg = −R∗(R(pg)− dg). (A.25)

Using the adjoint-state approach, the gradient is derived from the resolution of

additional (adjoint) forward problem, using the residuals for sources.

Appendix A.3. Directional derivative computation

For the computation of the directional Fréchet derivative, we consider the path

P (t) = F(m0 + tu), (A.26)

associated with the pressure field p solution to the Helmholtz equation

(− ω2(m0 + tu)−∆)p = g, (A.27)

according to (27), where we omit the space dependency and boundary conditions.

Deriving (A.27) with respect to t gives

(− ω2(m0 + tu)−∆)∂tp = ω2up, (A.28)

and we have

V (t) = R(∂tp) = DF(m0)(u). (A.29)

It is straightforward to reproduce the operation for the second order derivative:

(− ω2(m0 + tu)−∆)∂2
t p = 2ω2u∂tp, (A.30)

and we obtain,

A(t) = R(∂2
t p) = D2F(m0)(u, u). (A.31)

Therefore, the directional derivative only required the resolution of Helmholtz

equation with appropriate right-hand side. The technique can also be found in the

context of elastic-fluid interaction in [2], where the derivation is conducted with respect

to the Lamé parameters.

Appendix B. Influence of background wavespeed in FWI

In Section 4, the a priori estimates have shown that the MBTT-reformulation of FWI

provides an increase of the size of the attraction basins, in particular with respect

to the background velocity. In this appendix, we carry out numerical experiments of

reconstruction to highlight the importance of this background velocity for the iterative

reconstruction algorithm and how it impacts on the reconstructed models.
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We use the FWI method for the identification of the wavespeed c in (27), and

target the Marmousi model of Figure 3(b). We consider a seismic configuration, where

the data consist in time-domain measurements of the pressure field (p in (27)). We take

91 sources equally distributed along the horizontal axis and located at a fixed depth

of 10 m (i.e. near the surface, cf. Figure 2). We consider 183 receivers to acquire the

data: they are positioned at a depth of 100 m. In order to mimic a realistic acquisition,

the data d input to the time-harmonic FWI problem (31) is obtained by generating

time-domain seismic traces, then adding noise with a signal-to-noise ratio of 15 dB, and

finally applying a discrete Fourier transform. These steps are illustrated in Figure B1

for a source located in x = 4500 m.
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(a) Noiseless time-domain trace.
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dB signal-to-noise ratio.
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Figure B1. The time-domain data used for the reconstruction of the Marmousi

wavespeed encode noise and we compute a discrete Fourier transform at frequencies

from 2 to 10 Hz for the reconstruction.

For the reconstruction, we follow a sequential frequency progression from 2 to 10 Hz,

with a 1 Hz step (lower frequencies are not available because of the noise). We compare

two choices of starting models, which are pictured in Figure B2. Both correspond to

one-dimensional variations of the wavespeed (which only changes with the depth). They

have similar values on the first 200 m in depth but below, they have different magnitude

for the profile slope.

We perform the iterative reconstruction with FWI for these two initial guesses,

i.e. we proceed with (31). The gradient is computed with the adjoint-state method

(see Appendix A) and we use the nonlinear conjugate gradient method for the search

direction, cf. [27]. We perform 20 iterations per frequency, for a total of 180 iterations.

The final reconstructions (i.e. after 10 Hz frequency) are shown in Figure B3.
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Figure B2. The starting wavespeeds for the reconstruction of the Marmousi model

of Figure 3(b) consist in one-dimensional variation (with the depth only). On the left,

the profile varies from 1.5 to 3.7 km s−1 while on the right from 1.5 to 3.3 km s−1.
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(b) Reconstruction starting from model B.
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Figure B3. Wave speed reconstruction and vertical profile in x = 7 km of the

Marmousi model Figure 3(b) using the initial guesses of Figure B2 with data of

frequency between 2 and 10 Hz.

While the two initial models are quite close (see the vertical section Figure 3(c)),

the final reconstructions are totally different.

– The reconstruction using starting model A (Figure 3(a)) is accurate and encodes the
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appropriate velocity values and structures. Only the deepest parts are less accurate

due to limited illumination.

– However, the reconstruction using starting model B (Figure 3(b)) only gives a low-

valued wavespeed, where none of the actual structures appear.

– It is confirmed in the one-dimension section in x = 7 km of Figure 3(c), where we

see that the reconstruction from initial model A follows the Marmousi structures,

but the reconstruction from initial model B fails after about 1 km depth. For the

latter, the reconstruction is actually sometimes worse (i.e. lower values) than its

starting model B.

This experiment confirms the importance of the velocity background for the

reconstruction algorithm and clearly, its absence of knowledge leads to the failure of

the procedure. With FWI, this can only be overcome by accessing lower (unrealistically

low) frequency content, see [10]. It is anticipated that the MBTT algorithm would not

suffer from this issues, as it increases the attraction basins, cf. Section 4.

In a similar approach as what we did for Figure 6, we evaluate the misfit functional

for a background variation applied either to the full model (i.e. FWI) or to p in the

MBTT-formulation, see Figure B4. It corresponds to 7 Hz frequency with the direction

u of Figure 5.
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Figure B4. Comparison of the misfit functional associated with the Marmousi data

(see Figure B1) at 7 Hz with a perturbation of the background wavespeed. The

perturbation is either applied to the global model (FWI approach) or restricted to

the background p in the MBTT formulation.

As expected, we observe that the MBTT increases the size of the attraction basin

with respect to background perturbation. Indeed, local minima appear on the right and

left sides of Figure B4 for FWI (global model perturbation) while the cost function is

monotone for MBTT (perturbation of p); see also the comparisons of [5]. Therefore,
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it confirms that the MBTT would be able to overcome the lack of low frequency, as

observed in the reconstruction experiments of [18, 16].

Our next step is now the implementation of the full MBTT framework for

reconstruction, but the method remains a complicated task numerically speaking (e.g.,

choice of basis to ensure the smoothness of the background p) and it is part of ongoing

investigations (cf. the conclusion section). The a priori estimates we have given

Section 4 already provides a quantitative measure of the expected gain and advices

for implementation (Subsection 4.5).

Appendix C. Details on the MBTT model decomposition

In this appendix, we provide additional details on the MBTT model decomposition, and

the computational framework. In particular, we avoid the explicit computation of DF
to obtain the reflectivity in (33), using the adjoint-state method. Then, we give the

directional derivative computations.

Appendix C.1. Computation of reflectivity

The reflectivity part of the MBTT model representation is given by, cf. (33),

r =WDF∗0 s. (C.1)

The adjoint state method of Appendix A allows to compute r without explicitly

forming DF0. Indeed, the adjoint state method provides, by identification from (A.16)

and (A.25), 
∑
g

(
〈(∂mA)pg, γg〉

)T
=
∑
g

(∂pg
∂m

)∗
R∗(R(pg)− dg)

⇒
∑
g

(
(∂mA)pg)∗γg

)T
= DFg(m)∗(R(pg)− dg),

(C.2)

where Fg stands for the forward operator associated with source g. The fields pg and

γg solve respectively the forward and ajoint problems, see (27) and (A.25). Proceeding

by analogy with the reasoning of Appendix A, it is straightforward to see that r can be

express as

r =W
∑
g

(
((∂pA0)pg0)∗γg0

)T
, (C.3)

where A0 is the Helmholtz operator with zero reflectivity (i.e., using m = p),

A0 := (− ω2p−∆); (C.4)
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pg0 solves the forward problem with A0 for the source g, and γ0 solves for the source g,

A∗0γ
g
0 = −R∗sg, (C.5)

where s (in the data space) writes as s = {s(1) . . . s(nsrc)}. The model representation (33)

becomes

m(p, s) = p +W
∑
g

(
((∂pA0)pg0)∗γg0

)T
. (C.6)

Therefore, the model is expressed after the computation of direct and adjoint fields p0

and γ0 using the background p only.

Appendix C.2. Directional derivative computation

For the estimation of the size of the basin of attraction and of the radius of curvature, we

need the directional derivative of the forward operator. The method is given in Appendix

A.3 and only necessitates the resolution of the forward problem, with an additional step

for the MBTT decomposition. For clarity, we focus on the parameter p, the chain rule

gives (where (up) indicates the directional derivative),

∂F

∂p
(p, s)(up) =

∂F

∂m

∂m

∂p
(up). (C.7)

We derive from (C.6),(∂m
∂p

(p, s)(up)
)T

= up+W
∑
g

((∂pA0)∂pp
g
0+(∂2

p2A0)pg0)∗(up)γ
g
0+((∂pA0)pg0)∗∂pγ

g
0(up).(C.8)

The workflow is as follows

(i) compute the directional derivative (∂pp0)(up) and (∂pγ0)(up) with the same method

as presented in Appendix A.3 (thus, each requires the resolution of the wave

equation with specific right-hand side).

(ii) Formulate (∂pm)(up) from (C.8).

(iii) Compute the directional derivative ∂F
∂m

(um̂), where um̂ = (∂pm)(up), using the same

methodology as prescribed in Appendix A.3.

One can proceed similarly for s, adapting the chain rule. Regarding the second

order derivatives, it is analogous with one degree more of derivation in the chain

rule. Computationally speaking, it simply requires the resolution of additional forward

problems.
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