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Flatness and submersivity of discrete-time
dynamical systems
Philippe Guillot1 and Gilles Millérioux2

Abstract—This paper addresses flatness of discrete-time sys-
tems called difference flatness. A definition of flatness, that
encompasses the standard ones, in particular backward and for-
ward difference flatness, is introduced. It also allows to cope with
systems which are not necessarily controllable or submersive.
Besides, it considers nonlinear dynamical systems defined on
general sets (without necessary special structures) which can
be either continuous or discrete. Based on this definition, a
result is established and stipulates that a flat and submersive
nonlinear system is fully reachable (which is equivalent to fully
controllable). Next, the special case of linear systems is considered
leading to a necessary and sufficient condition.

Index Terms—flatness, nonlinear discrete-time systems

I. INTRODUCTION

This paper is concerned with flatness of discrete-time
dynamical systems, which is called difference flatness. In
the literature, difference flatness is presented as the discrete
counterpart of differential flatness which was first introduced
in [1] and was dedicated to continuous-time systems. For a
discrete-time system, flatness means that the state variables as
well as the inputs are written as a function of the so-called flat
output, including forward and backward shifts in this output.
Difference flatness has been addressed in a much lesser
extent than differential flatness. It has been first reported in
[2], [3] and it is motivated by the fact that some systems are
intrinsically discrete (models of population growth, economy,
biology, finance, discrete automata,. . . ). Besides, it must be
stressed that the property of flatness may not be preserved
when a flat continuous-time system is discretized, even
in the linear case (see [2] for a simple counter-example).
Hence, flatness for sampled-data systems should preferably
be addressed directly in discrete-time.

Various issues related to flatness have been investigated
in the literature, like testing flatness for a specific output,
searching flat outputs, constructing flat systems. Most issues
are addressed for systems defined over sets with specific
structures as the field of real numbers. Moreover, the
properties of reversibility (also called invertibility, see [4]) of
the systems and/or reachability and/or submersivity are most
often assumed to hold. For example, for linear systems, a
condition to characterize flatness and a method to construct
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a flat output are provided in [2]. The construction of a flat
output is based on a change of variable involving the inverse
of the reachability matrix. However, the method may not
apply for non-reachable linear systems since the reachability
matrix is singular in such a case. Still for linear systems, a
computational approach for flat output test and construction
is given in [5]. For the construction issue, it is proposed
to transform the system into a canonical form (chain of
integrators). Thus, the forward and backward difference flat
outputs can be readily constructed by simple inspection.
The set of flat outputs are canonical outputs (only one
non-zero entry in the rows output matrix). The method,
suited for MIMO linear systems, follows similar lines to
the one proposed in [6] for SISO linear systems. However,
reachability is assumed to hold. As for nonlinear systems,
the paper [7] addresses the problem of dynamic feedback
linearization. The paper [8] addresses the construction of flat
outputs. The method requires the computation of so-called
unimodular matrices. The papers [9], [10] introduce a method
based on the transformations into a suitable normal form to
construct flat outputs. But in all the aforementioned papers, the
nonlinear system under consideration is assumed to have some
specific properties: it is submersive, merophorphic or analytic.

The contribution of this paper is twofold. First, a definition
of flatness, that encompasses the standard ones, in particular
backward and forward difference flatness, is introduced. It
also allows to cope with systems which are not necessarily
controllable or submersive. Besides, it considers nonlinear
dynamical systems defined on general sets (without necessary
special structures) which can be either continuous or discrete.
Then, based on this definition, a result is established and
stipulates that a flat and submersive nonlinear system is fully
reachable (which is equivalent to fully controllable). Next,
the special case of linear systems is considered leading to a
necessary and sufficient condition. The outline of the paper is
the following. In Section II, a definition of difference flatness
is given and its generality, compared to standard definitions,
is discussed. Section III focuses on definitions of reachability
and controllability which play a central role when addressing
flatness. A distinction is made between local and global
properties and the role of reversibility is discussed. Section IV
is devoted to the main result which states that flatness and
submersivity of nonlinear systems are sufficient conditions for
full controllability. Next, the specific case of linear systems is
considered. All along the paper, several examples which are
deliberately simple illustrate the notions and the results.



II. DEFINITIONS AND PROBLEM STATEMENT

Let us consider a discrete-time controlled dynamical system
S described by

S : xk+1 = f(xk, uk) (1)

where xk ∈ X is the internal state (the i-th component is
denoted by x

(i)
k ), uk ∈ U is the input, f is the (one step)

possibly nonlinear state transition function.
When the system defined by Equation (1) is linear, the sets
U and X are finite dimensional vector spaces over the same
field denoted by F. In this case, the system is denoted by L
and it admits the state space representation

L : xk+1 = Axk + Buk (2)

where xk ∈ Fn, uk ∈ Fm, with n and m being some non-
zero natural integers. The matrices A and B, of appropriate
dimension, are respectively the dynamical matrix and the input
matrix.

It is clear that any property which holds for the system S
also applies for the system L.

Let us consider the system S defined by Equation (1).
Definition 1 (flat output): Let h be a possibly nonlinear

function defined over the set X × UI with I a non negative
integer. The function takes values in the set Y = U . For any
integer k ∈ N, let yk = h(xk, uk+`0 , . . . , uk+`0+I−1) with `0
an integer ranging in {−I + 1, · · · , 0} (past and future inputs
are possibly considered altogether). The function h is said to
be a flat output for the dynamical system S if there exists a
non negative integer k0 such that every variable of the system
can be expressed as a function of yk and a finite number of
its backward and/or forward iterates for k ≥ k0. In particular,
there exist two functions F , G and integers r1, r2, s1, s2 in
Z, satisfying r1 ≤ r2 and s1 ≤ s2, and such that, for k ≥ k0,{

xk = F(yk+r1 , · · · , yk+r2)
uk = G(yk+s1 , · · · , yk+s2)

(3)

Definition 2 (flat system): The dynamical system S is flat
if it admits a flat output.
A flat output is a function but, hereafter and with a somehow
abusive terminology, the value yk of the function h will also
be referred as flat output. If the flat output is exclusively a
function of the state xk, then the output and the system S are
called 0-flat. If the flat output is a function of xk and only
one (possibly shifted) input uk+`0 , then the output and the
system S are called 1-flat. More generally, if the flat output
is a function of I > 0 consecutive inputs, then the output
and the system S are called I-flat. For linear systems like
(2), a flat output must belong to Fm (square system). A 0-
flat output reads yk = Cxk where C ∈ Fm×n while a I-flat
output (for I > 0) reads yk = Cxk +

∑`0+I−1
`=`0

D`uk+` where
D` ∈ Fm×m (being ` a non negative integer). The notion of
I-flat outputs has been discussed for example in [11], [12] for
continuous-time systems or [5] for linear discrete-time systems
(restricted to the case when only past or future inputs are
considered in accordance with backward or forward flatness,
that is l0 = −I + 1 or l0 = 0).
The following remarks are in order.

Remark 1: By construction, a I-flat output (I >
1) for the system described by (1) is a 1-flat output
for the extended system defined by the extended state
x̃k = [xk, uk+`0 , · · · , uk+`0+I−2] ∈ X × UI−1 and input
uk+`0+I−1. Indeed, yk = h(xk, uk+`0 , . . . , uk+`0+I−1) =
h(x̃k, uk+`0+I−1) and it is clear that if x̃k can be expressed
as a function of backward/forward shifts in the output, it also
holds for xk and uk since xk and uk are involved in x̃k.

Remark 2: It must be emphasized that flatness of the
dynamical system S is a property characterizing only the state
transition function f .
The following remarks point out the generality of Definition 1.

Remark 3: Definition 1 involves relative integers ri and si
(i = 1, 2) and generalizes the standard definitions of forward
difference flatness when ri ≥ 0 and si ≥ 0 (i = 1, 2) or
backward difference flatness when ri ≤ 0 and si ≤ 0 (i =
1, 2) as discussed in [2] or [5] for Linear Time Invariant (LTI)
systems. This generalization was first introduced in [13] but
was restricted to fully controllable and invertible LTI discrete-
time systems. Besides, as already highlighted in [14] for the
special case of switched linear systems, the consideration of
relative integers ri and si (i = 1, 2) in Definition 1 allows to
consider SISO systems with arbitrary relative degree or MIMO
systems with arbitrary inherent delay (in the sense of [15],
[16]). The reader can refer to the example of Section IV for
an illustration.

Remark 4: The integer k0, introduced in Definition 1,
generalizes standard definitions to cope with special situations
like non fully reachable systems. The example given in Sub-
section IV-C will illustrate such a purpose.

Remark 5: If yk is a flat output for (1), the R-shift output
y′k = yk+R of (1), with R a non negative integer, is still a flat
output. Indeed, Equations (3) still hold by substituting yk+i by
y′k+i−R. The integers ri and si must be shifted accordingly.
The output y′k is well defined as a function h involving the
state xk and a finite number of consecutive inputs.

In this paper, we aim at studying the relationship between
flatness obeying Definition 1 and the properties of control-
lability and reachability. A special emphasis, which can be
considered as the main issue of the paper, is placed on the
role of reversibility and submersivity.

Definition 3 (reversibility): The system S defined by Equa-
tion (1) is said to be reversible (also called invertible), if for
any input u ∈ U , the function x 7→ f(x, u) is invertible.

For the linear dynamical system L defined by (2), reversibil-
ity means that the dynamical matrix A is invertible.

Definition 4 (submersivity): The dynamical system S is
submersive if the state transition function f is surjective (onto).
In other words, the dynamical system S is submersive if for
any state xk in X , there exists a control uk−1 in U and a
one-step preimage xk−1 of xk such that xk−1 reaches xk by
applying the control uk−1.

When we concentrate on the linear system L described by
Equation (2), the following remarks can be made.

Remark 6: As a linear function is surjective if and only if
it is full rank, it holds that the system L is submersive if and
only if

rank[A B] = n (4)



As a consequence, the following remark holds:
Remark 7: If A is invertible then rank[A B] = n and thus,

the dynamical system L is submersive.
In other words, reversible systems belong to the special class
of submersive systems. In the sequel, we discuss the role of
reversibility and submersivity when addressing controllability
and reachability. Indeed, as shown later, they play a central
role to characterize flatness.

III. REACHABILITY AND CONTROLLABILITY

It is recalled that controllability and reachability of a system
refer to the ability to steer the state, via the control input, to
some locations in the state space. Many definitions and propo-
sitions given in this section can be found in standard references
like [17], [18], [19], [20]. However, let us notice that, in the
literature, they are mostly presented for systems defined over
R. Here, the sets over which the system described by (1) is
defined is not assumed to have a special structure. Besides,
the subtleties induced by the reversibility or the submersivity
of (1) which may hold or not are deeply highlighted.

1) The general case: In the sequel, xi and xf will denote
respectively an initial and final (or target) state in X .

Definition 5 (reachability from xi of a state): A state xf of
S is reachable from xi if there exists an integer N > 0 and a
non empty input sequence (u0, · · · , uN−1) of length N that
steers xi to xf .

Definition 6 (reachability from xi of a system): The dynam-
ical system S is reachable from xi if any state xf is reachable
from xi.

Definition 7 (full reachability of a system): The dynamical
system S is fully reachable if, for any initial state xi, it is
reachable from xi.
The reachability from xi of a system is also called local
reachability or forward accessibility (see [21] and references
therein).

The following proposition highlights a connection between
reachability and submersivity.

Proposition 1: If there exists an internal state xi such
that the dynamical system S is reachable from xi then S is
submersive.
Indeed, if there exists an internal state xi such that the
dynamical system S is reachable from xi then there exists
a non empty control sequence that steers xi to any target state
xf . The last step just before reaching xf provides the state and
the control of which existence proves the submersivity. This
result was already established for nonlinear systems defined
over the field of real numbers in [22]. It will be shown further
that for a linear dynamical system L described by Equation (2),
Definition 6 and Definition 7 are equivalent.

On the other hand, reachability from a given initial state
xi and full reachability are, in general, not equivalent for
nonlinear dynamical systems, as shown by the following
counter-example. Let us consider the system S described by
Equation (1) and defined on the finite set X = {x0, x1}.
The input belongs to the finite alphabet {0, 1} and the state
transition function f verifies:

f(x0, 0) = x0, f(x0, 1) = x1, f(x1, 0) = f(x1, 1) = x1

This system is not fully reachable since, clearly, it is reachable
from x0 but not from x1.

Definition 8 (controllability to xf of a state): A state xi

of the dynamical system S is controllable to xf if there
exists an integer N > 0 and a non empty input sequence
(u0, · · · , uN−1) of length N that steers xi to xf .

Definition 9 (controllability to xf of a system): The dynami-
cal system S is controllable to xf if any state xi is controllable
to xf .

Definition 10 (full controllability of a system): The dynam-
ical system S is fully controllable if, for any target state xf ,
it is controllable to xf .

The controllability to xf of a system is also called local con-
trollability or backward accessibility (see [21] and references
therein).

It will be shown further that, unlike reachability, even
for a linear dynamical system L described by Equation (2),
Definition 9 and Definition 10 are not equivalent.

Remark 8: It can be noticed that a state xf is reachable
from xi is equivalent to that the state xi is controllable to xf .
Similarly, a system is fully controllable if and only if it is fully
reachable.

2) The special case of linear systems: For the linear system
L described by Equation (2), reachability and controllability
properties can be expressed in terms of rank matrix conditions.
They are based on the relation directly obtained by iterating n
times Equation (2) from an initial condition xi ∈ Fn at time
k = 0 and reaching the state xf ∈ Fn at time k = n

xf = Anxi + Qcu
n
0 (5)

where un
0 denotes the vector [uT

0 · · · uT
n−1]T (T stands for

the transposition) and where Qc is defined as

Qc =
[
B AB · · · An−1B

]
The vector un

0 can be equivalently considered as an input
sequence of finite length n. The matrix Qc is called the
reachability matrix.

Let xi be a given initial state. From equality (5), any target
state xf can be reached from xi in at most n steps if and
only if there exists an input sequence un

0 of length n such that
Qcu

n
0 = xf −Anxi which is equivalent to that

∀ xf ∈ Fn, xf −Anxi ∈ Im(Qc) (6)

where Im denotes the range space.
It can be noticed that if there exists a state xi such that the
dynamical system L is reachable from xi, then, as the above
relation holds for any xf , it is also satisfied for any other xi.
Thus, as opposed to nonlinear systems, the reachability of the
linear system L defined by Equation (2) from a given initial
state xi implies its full reachability. From Remark 8, this is
equivalent to the full controllability of L. Hence, the following
proposition holds.

Proposition 2: The following properties are equivalent:
a) There exists an initial state xi ∈ Fn such that L is reachable
from xi

b) L is fully reachable
c) L is fully controllable



From (6), one obtains the well-established Kalman reachability
rank condition which stipulates that the linear dynamical
system L described by Equation (2) is fully reachable (which
is equivalent to fully controllable) if and only if

rankQc = n. (7)

On the other hand, the controllability to state xf means that
for any initial state xi ∈ Fn, there exists an input sequence
un
0 of length n such that Qcu

n
0 = xf −Anxi. Hence, one has

the following proposition:
Proposition 3: The linear dynamical system L described by

Equation (2) is controllable to xf if and only if

∀xi ∈ Fn, xf −Anxi ∈ Im(Qc) (8)

Thus, unlike reachability, a linear dynamical system may be
controllable to a given state xf without being fully control-
lable. It holds in particular for non reversible systems as
illustrated by the following example. Let us consider the 2-
dimensional linear system described by Equation (2) with state
space matrices

A =

[
a 0
0 0

]
, B =

[
1
0

]
.

The reachability matrix is Qc =

[
1 a
0 0

]
whose rank is 1.

Thus, the system is not fully controllable. On the other hand,
it is controllable to state [1 0]T but not to state [0 1]T . This
is explained by the fact that in this special case, the matrix A
is singular, that is the linear system is not reversible. On the
other hand, if A is full rank, the following proposition holds.

Proposition 4: If the linear dynamical system L described
by Equation (2) is reversible, that is A is non-singular, the
following properties are equivalent.
a) There exists an initial state xi ∈ Fn such that L is reachable
from xi

b) L is fully reachable
c) L is fully controllable
d) There exists a target state xf ∈ Fn such that L is
controllable to xf

Let us further consider the reachability from zero and the
controllability to zero. From (6) and setting xi = 0, the
following proposition applies regardless whether the linear
dynamical system (2) is reversible or not.

Proposition 5: The linear dynamical system L described by
Equation (2) is reachable from zero if and only if

rankQc = n

On the other hand, the linear dynamical system L is control-
lable to zero if and only if, for any initial state xi, there exists
an input sequence un

0 of length n such that Qcu
n
0 = −Anxi.

Thus, the following proposition applies
Proposition 6: The linear dynamical system L described

by Equation (2) is controllable to zero if and only if

ImAn ⊆ ImQc (9)

The following remark is straightforward for the linear dynam-
ical system L.

Remark 9: Reachability from zero of the linear system L
described by Equation (2) implies controllability to zero of
L. If A is nilpotent then the linear dynamical system L is
controllable to zero.

IV. MAIN RESULT

In this section, a relation between flatness and full control-
lability (which is equivalent to full reachability according to
Remark 8) is presented. It is shown that submersivity is a
specific property that must be considered in this regard.
Motivated by Remark 5, if Equations (3) hold, we can assume
without any restriction that the dynamical system S admits a
flat output such that{

xk = F(yk−r+1, · · · , yk)
uk = G(yk−s+1, · · · , yk)

(10)

where r and s are appropriate positive integers.
Before giving the main theorem, next subsection addresses

the property of left-invertibility which, in addition to con-
trollability and reachability, also plays a central role when
addressing flatness.

A. Left invertibility

There exist different definitions of left invertibility. We
recall the definition used here, which is in accordance with
the ones proposed in [15], [16], [23] in a linear context and
in [24] in a nonlinear context.

Definition 11 (Left invertibility): The dynamical system S
is said to be left invertible if, for a given (infinite length)
output sequence (y) produced by S, the (infinite length) input
sequence (u) that produces (y) is unique.
In other words, the function (not given explicitly here) that
defines the output sequence (y) from the input sequence (u)
is injective. If the system S is left invertible, then there exists a
system that produces the input from the output. By definition,
such a system is called a left inverse of S and is denoted by
S−1.

Remark 10: The condition in Definition 11 only involves
output sequences (y) that are effectively produced by the
system S. There is no restriction on other sequences that are
not an output of S. Thus, a given dynamical system may admit
several left inverses which differ from each other by input
sequences that are not produced by S.
The equality involving the function G in Equations (10) means
that the input of a flat system can be recovered from the output
sequence. It acts as the input/output equation of a flat system.
Hence, left invertibility is a necessary condition for flatness
and a left inverse, called canonical left inverse, can be defined
from G as follows.

Definition 12 (Canonical left inverse of a flat system): Let
us assume that the dynamical system S is flat with flat output
yk = h(xk) (0-flat) or yk = h(xk, uk) (1-flat). Its canonical
left inverse S−1 is defined by:

1) The internal state (y) in the set of s-dimensional vectors
of components in Y;

2) The dynamic equation as a shift fed by the inputs yk−i ∈
Y;



3) The output function as the function G involved in
Equation (10).

Remark 11: Note that the internal state of system S is not
involved in the definition of the canonical left inverse. But if
needed, it may be recovered from the internal state of S−1 by
the function F involved in Equation (10).

Remark 12: For I-flat outputs with I > 1, the canonical left
inverse can be defined from the extended system as explained
in Remark 1 and considering the I-flat output of S as a 1-flat
output for the extended system of S.

Remark 13: For left-invertible linear systems described by
(2) and defined over the field of real-numbers (the gener-
alization to any field is possible), the flat outputs can be
characterized in terms of invariant zeros. Indeed, it has been
shown in [13] or in [14] (considering that a linear system is
a special switched linear one) that a linear system like (2),
assumed to be left-invertible, is flat according to Definition 1,
if and only if the dynamics of the left-inverse is trivial, a
terminology introduced in [4]. It is equivalent to stipulate that
either, there are no invariant zeros (see [25] for a well-admitted
definition of zeros in MIMO systems). In this case, the system
is strongly observable [26] or they are all equal to zero. It
is also in accordance with the result given in [5] regarding
forward difference flatness.

B. Main theorem

We are now able to state the main result of the paper.
Theorem 1: If the dynamical system S is flat and submer-

sive, then it is fully controllable (which is equivalent to fully
reachable according to Remark 8).

Proof 1: Let us assume that S is flat with flat output
yk = h(xk) (0-flat) or yk = h(xk, uk) (1-flat) obeying
Equations (10) and that S is submersive. Let x and z be two
arbitrary internal states in X . It must be shown that there exists
a finite input sequence that steers the state x to the state z.

As the system S is supposed to be submersive, there exists
an initial state x0 and an input sequence (uz) of finite length r
that steers the state x0 to the state z. Let us denote by (yz) the
corresponding output sequence of length r. Since S is flat, one
has z = F

(
(yz)

)
. Similarly, there exists an initial state x′ and

an input sequence (ux) of finite length r that steers the state x′

to the state x. Let us denote by (yx) the corresponding output
sequence of length r. Since S is flat, one has x = F

(
(yx)

)
.

In order to show that there exists an input sequence denoted
by (u), that steers system S from x to z and that produces the
output sequence (yz), let us consider the canonical left inverse
S−1 of S, initialized to state (yx) and forced by the sequence
(yz). It turns out that, by definition of the left-inverse, the
state reached by S−1 is (yz) and the corresponding r-length
output sequence is the expected sequence (u). Indeed, when
(u) forces system S initialized to x, the corresponding output
is the sequence (yz) and since z = F

(
(yz)

)
, it means that

the final state reached after r steps is precisely z. Finally,
if the dynamical system S is I-flat with I > 1, the same
reasoning applies when considering, as stressed in Remark 1,
the extended system of S with extended state x̃k, the extended
canonical inverse as defined in Remark 12 and pointing out

that submersivity and full reachability of the extended system
of S imply, by construction, submersivity and full reachability
of S.
The result applies for dynamical systems defined on general
sets without necessary particular structures. The sets can be
either continuous or discrete. Regarding possible singularities,
they may be disregarded by defining sets where the singular
points are removed. For sets where a measure can be defined,
the result must be understood as generic (it holds everywhere
except on sets of measure zero). Finally, if the sets are
considered around particular points, the result must be
considered as local.

The following example simply illustrates Theorem 1. Let
us consider the nonlinear system defined over R∗ = R \ {0}
(the singular value 0 is thereby omitted) where R denotes the
field of real numbers. The state transition function (xk, uk) ∈
R2
∗ × R∗ 7→ xk+1 = f(xk, uk) ∈ R2

∗ is defined as{
x
(1)
k+1 = x

(2)
k · uk

x
(2)
k+1 = uk

(11)

Such a system is flat since yk = x
(2)
k is a flat output (0-flat).

Indeed, for k ≥ 0, x(2)
k = yk, x(1)

k = yk−1 · yk (r1 = −1 and
r2 = 0 in Equation (3)). Furthermore, it holds that uk = yk+1

(s1 = s2 = 1 in Equation (3)) and this equation defines the
canonical left inverse of (11). It is also submersive since, for
any pair (x̄1, x̄2) ∈ R2

∗×R2
∗, there exists a control u0 = x̄2 ∈

R∗ and a preimage (x1, x2 = x̄1/x̄2) ∈ R2
∗ × R2

∗ such that
f(x1, x2) = (x̄2, x̄2). Finally, the system is fully controllable
on R2

∗. Indeed, for any target state (x̄1, x̄2) ∈ R2
∗ × R2

∗ and
any initial state in (x1, x2) ∈ R2

∗ × R2
∗, there exists a control

sequence of length equal to 2 that steers (x1, x2) to (x̄1, x̄2).
The control verifies u0 = x̄1/x̄2 and u1 = x̄2. Let us note
that the output yk = uk is another flat output (1-flat). It holds
that x(2)

k = yk−1, x(1)
k = yk−2 · yk−1 (r1 = −2 and r2 = −1

in Equation (3)) and uk = yk (s1 = s2 = 0 in Equation (3)).
That illustrates Remark 3 which points out that the integers
ri and si depend on the relative degree for a SISO system.
Here, the relative degree of (11) with respect to yk = x

(2)
k is

1 whereas it is 0 with respect to yk = uk.

C. The linear case

In the linear case, unlike nonlinear systems, the following
theorem (see for example [2]) holds.

Theorem 2: If the linear dynamical system L is fully
controllable (which is equivalent to fully reachable) then it
is flat.

Proof 2: The proof is given in [2] and essentially shows
that if the system L is fully controllable (which is equivalent
to fully reachable), then, there exists a linear change of
coordinates involving the reachability matrix Qc, such that in
the new coordinate space, both the state and the input can be
expressed in terms of forward output shifts. The flat output is
given by the linear combination of the state obtained from the
last row of the inverse reachability matrix Qc, up to a constant
factor. Hence, the system is 0-flat.



Corollary 1: The linear dynamical system L is flat and
submersive if and only if it is fully reachable (which is
equivalent to fully controllable).

Proof 3: Consider the linear dynamical system L. According
to Theorem 2, if it is fully controllable then it is flat. Moreover,
according to Proposition 1, it is also submersive, which proves
the necessity. The sufficiency is straightforward by considering
Theorem 1.
As a consequence of this corollary, a linear flat system with
flat output yk does not necessarily implies that the system is
fully reachable. However, the following theorem stipulates that
for linear systems, controllability to the origin is a necessary
condition for flatness.

Theorem 3: If the linear system L is flat, then it is control-
lable to the origin.

Proof 4: According to Remark 13, the linear system L is
flat if and only if either it admits no invariant zeros or they are
all equal to zero. Hence, if the system is not controllable, the
uncontrollable subspace is spanned by the eigenvectors of the
zero eigenvalues and therefore is controllable to the origin.
As a consequence, the uncontrollable part of a flat system is
stable and thus, a flat system is necessarily stabilizable.
The following example illustrates Corollary 1 and Theorem 3.
Consider a linear system L with

A =

[
6 8
−3 −4

]
, B =

[
2
−1

]
.

The system is flat since yk = [2 3]xk and yk = [6 8]xk +
2uk + uk+1 are respectively 0-flat and 2-flat outputs. Indeed,
the equalities (3) of Definition 1 apply for k ≥ k0 = 1 (the
initial condition cannot be recovered) and read respectively

x
(1)
k = 2yk

x
(2)
k = −yk

uk = yk+1 − 2yk

,


x
(1)
k = 2yk−2

x
(2)
k = −yk−2

uk = yk−1 − 2yk−2

The reachability matrix reads

Qc =

[
2 4
−1 −2

]
. Since rankQc = 1, thus the system is not fully reachable.
Furthermore, rank[A B] = 1 thus the system is not submer-
sive. That explains why the system is flat whereas it is not
fully controllable. On the other hand, ImA2 is spanned by
[2 − 1]T and ImQc is also spanned by [2 − 1]T . Thus, (9)
is fulfilled and the system is controllable to zero.

V. CONCLUSION

This paper has investigated the property of flatness of
discrete-time systems. A definition of flatness that encom-
passes the standard ones, in particular backward and forward
difference flatness, has been introduced. It also allows to
cope with systems which are not necessarily controllable or
submersive. Besides, it considers nonlinear dynamical systems
defined on general sets (without necessary special structures)
which can be either continuous or discrete. Then, based on this
definition, it has been established that a flat and submersive
nonlinear system is fully reachable (which is equivalene to
fully controllable). It has been shown that the equivalence
holds for the special case of linear systems.
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