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Dissipativeness and Dissipativation of discrete-time switched linear
systems

Marc Jungers, Member, IEEE, Francesco Ferrante, Member, IEEE, and Jérôme Lohéac

Abstract— Dissipativeness of dynamical systems is a crucial
notion in control theory that consolidates the link with physics.
It extends Lyapunov theory for autonomous systems to open
ones and formalizes the relation between frequency domain
conditions and matrix inequalities in state space representation.
As emphasized in the limited and recent literature on this
topic, dissipativeness of hybrid or continuous-time switched
systems is a not intuitive and delicate notion. This paper copes
with the dissipativeness analysis of discrete-time switched linear
systems. Conditions in the form of linear matrix inequalities
are provided to ensure dissipativeness of such systems with
arbitrary switching law. The approach relies on modal storage
functions. A second contribution is to design feedback switching
laws, based on a min-switching strategy related to the modal
storage functions, which ensures a dissipative behaviour of
the closed-loop system. Implication in terms of passivity and
stability of one single switched system, paving the way to
the framework of interconnected switched sub-systems are
discussed, before numerical illustrations.

I. INTRODUCTION

The notion of dissipativeness for dynamical systems has
been formalized by Willems in [1] for continuous-time
nonlinear systems. When considering a supply rate, a
system is called dissipative if there exists a storage function
associated with this supply rate. It can be interpreted as
the fact that the system absorbs more energy from the
external environ than it supplies. This concept extends
Lyapunov theory, related to autonomous system, to the
framework of open systems and has crucial implications for
the interconnection of dynamical systems [1] and small gain
theory. A large part of physical systems are dissipative as
emphasized in [2]. That consolidates also the link between
physics and control theory.

Independently, Yakubovich [3] and Kalman [4] obtained
what is now known as the Kalman–Yakubovich–Popov
(KYP) Lemma for continuous-time time-invariant linear
systems, (or positive real lemma). This lemma allows one
to establish an equivalent relation between linear matrix
inequalities (concerning to the state space representation of
linear systems) and a condition in the frequency domain. It
was originally obtained to solve the Lur’e problem [5, 6].
See also [7, 8] for a detailed discussion.
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The counterpart for discrete-time time-invariant systems
has been provided in [9] and fills the gap between linear
matrix inequalities weighted by the matrices of the state
space representation and the harmonic responses in the
frequency domain.

Dissipativeness of specific classes of systems has been
studied (see for instance the references in [8]), yet the notion
of passivity encounters a great attention in the literature.
Passivity is a particular type of dissipativeness for systems
with equal number of inputs and outputs, when considering
a supply rate defined as the scalar product between the input
and the output.

For switched systems, some preliminary results have been
published several years ago, mainly in [10] and [11]. In
the latter, it is shown that as for stability, the notion of
passivity for switched system is not intuitive and underlines
that switching among passive modes may destroy passivity.

The paper [12] presented a notion of passivity for switched
systems with a multiple storage function approach. First the
analysis of passivity is provided for a given switching law
and secondly, under suitable conditions (involving localized
form of KYP–Lemma and the S-procedure), a min-switching
law strategy over the modal storage functions is proposed.
In [13], dissipativity for continuous-time switched systems
is investigated by considering multiple storage functions and
multiple supply rates, including the concept of cross supply
rate related to the link between active and inactive modes.

In [14], on the one hand, the link between passivity
analysis of continuous-time switched systems and linear
matrix inequalities and on the other hand, the link between
the design of switching law to ensure the passivity of
the resulting switched system and Yakubovitch-Metzler
inequalities are provided.

The framework of discrete-time switched system has been
investigated in [15]: the contribution deals with piecewise
affine systems and provides first passivity analysis and also
offers sufficient conditions in the form of linear matrix
inequalities to design a switched state feedback to ensure
closed-loop passivity.

It should be emphasized that in [16], passivity of nonlinear
discrete-time switched systems switching suitably among
passive and not passive modes is studied, but this paper
assumes that there exists a common storage function. This
is a very restrictive assumption.

Passivity for hybrid systems and more generally for the
interconnection of hybrid sub-systems is more delicate and
is discussed for instance in [17, 18]. First contributions
have been obtained when considering only weak notions of



passivity: flow-passivity and jump-passivity, that is, when
only the flow or jump is passive.

The contribution of this paper is focused on two main
topics. The first study deals with the dissipativeness analysis
of a discrete-time switched linear systems when considering
an arbitrary switching law. The second contribution provides
sufficient conditions to design of a min-switching law
related to modal storage functions for the dissipativation
of discrete-time switched linear systems. In both cases,
we provide sufficient conditions in terms of linear matrix
inequalities (LMIs) or parameterized ones.

This paper is organized as follows. In Section II,
discrete-time switched linear systems are presented and the
notion of dissipativeness with time-dependent supply rates
and time-dependent storage functions is defined. Several
closely related concepts of dissipativeness are discussed.
Finally standard results in the frequency domain associated
with the Kalman–Yakubovich–Popov (KYP) Lemma are
recalled for linear time invariant systems. Section III is
focused on the analysis of dissipativeness of discrete-time
linear switched systems with arbitrary switching laws.
Our main contribution consists of sufficient conditions
in the form of linear matrix inequalities (LMIs) solving
in a constructive way time-dependent supply rate and
storage function for any switching law. Section IV is
dedicated to design a min-switching law, which is a state
feedback guaranteeing that the resulting system when such a
switching law is applied, is dissipative. Discussions about
sufficient conditions to ensure stability and stabilization
of discrete-time switched systems are also provided. A
numerical illustration emphasizes the applicability of the
main contribution before concluding remarks.

Notation: Notation is quite standard. R denotes the
set of real numbers, Z the set of integer ones, and
N the set of nonnegative integer numbers. Moreover
N∗ = N/{0} and NN = {1, · · · , N}. The symbol ? stands
for a symmetric bloc and • is used as a shortcut such that
(•)>MN = N>MN , for suitable matrices N and M , where
M> is the transpose of the matrix M and M∗ its Hermitian.
The set M ⊂ RN×N of Metzler matrices is composed
of matrices with nonnegative off-diagonal elements
M :=

{
Π ∈ RN×N , πji ≥ 0,∀(i, j) ∈ N2

N , i 6= j
}

.
We define the subclass Md of M such that
Md :=

{
Π ∈M, πii ≥ 0,

∑
`∈NN

π`i = 1,∀i ∈ NN
}

.
The convex combinations of positive definite matrices Pi
with weights being elements of the Metzler matrix Π ∈Md
is denoted as (P )p,i =

∑
`∈NN

π`iP`.

II. DESCRIPTION OF THE SYSTEM AND DEFINITIONS

Let us consider a discrete-time switched linear system,
with N ∈ N∗ modes satisfying ∀k ∈ Z:

xk+1 = Aσ(k)xk +Bσ(k)uk, (1)
zk = Cσ(k)xk +Dσ(k)uk, (2)

with xk ∈ Rn the state of the system, uk ∈ Rm the
exogenous input and zk ∈ Rp the output. The switching law
σ : N → NN indicates at each time which mode is active.

Switched system (1)–(2) is by nature a time-varying system.
It is of interest to notice that Willems in his fundamental
paper has already considered the framework dissipativeness
of nonstationary systems [1, Section 6]. Especially he pointed
out that the supply rate, and also the storage function, may
be time-varying. Here we adapt to the discrete-time domain
the definitions by Willems.

Definition 1 (Willems Dissipativeness): A time-varying
dynamical system (1)–(2) with a locally summable supply
rate

w : Rm × Rp × Z 7→ R (3)

is said to be dissipative if there exists a nonnegative function
S : Rn × Z 7→ R+, called storage function, such that, for
any (k0, k1, xk0) ∈ Z× Z× Rn, k1 ≥ k0, and any input uk
defined over {k0; · · · ; k1},

S(xk0 , k0) +

k1∑
k=k0

w(uk, zk, k) ≥ S(xk1 , k1), (4)

or equivalently,

S(xk+1, k + 1)− S(xk, k) ≤ w(uk, zk, k), (5)

where xk1 is the state at time k1 of the solution to
system (1)–(2) when applying the control uk. It is called
lossless when the equality occurs in (4).

Several particular cases of dissipativeness can be pointed
out, depending on the choice of supply rate, which can be
viewed as the input power for the system [1].

– When considering a quadratic supply rate,

w(uk, zk, k) = z>k Q(k)zk+2z>k L(k)uk+u>k R(k)uk, (6)

with Q(k) = Q(k)> ∈ Rp×p, R(k) = R(k)> ∈
Rm×m and L(k) ∈ Rp×m, we say that the system is
(Q(k), L(k), R(k))-dissipative.

– When Q(k) = −Ip, L(k) = 0p×m and R(k) = γ2Im,
with γ a scalar, the system has finite gain.

In addition, when p = m, i.e. when there are as many
inputs as outputs, we use the following concepts:

– If w(uk, zk, k) = z>k uk, (that is Q(k) = R(k) = 0m

and L(k) =
1

2
Im) the system is said passive.

– If w(uk, zk, k) = z>k uk−νu>k uk with ν > 0, the system
is said input strictly passive.

– If w(uk, zk, k) = z>k uk−νz>k zk with ν > 0, the system
is said output strictly passive.

Definition 1 involves a storage function. There are other
definitions of dissipativeness for system, among them, Hill
and Moylan considered the following definition by using
only a condition about the supply rate [19] for the trajectories
starting from the origin, that can be also extended to the
time-varying case.

Definition 2 ( Hill & Moylan’s Dissipativeness): System
(1)–(2) with a locally summable supply rate wk, given
by (3), is said to be dissipative if for any k1 ≥ k0,
all admissible input uk defined over {k0; · · · ; k1}, any
trajectory xk starting from xk0 = 0 satisfies:



k1∑
k=k0

w(uk, zk, k) ≥ 0. (7)

Under some weak assumptions, which are given below,
we can establish a link with the dissipativeness in the sense
of Willems and provide necessary and sufficient conditions
summarized in Theorem 1 for quadratic supply rates. This
is a time-varying discrete-time counterpart of [19, Theorem
1].

Assumption 1: The state space of the system (1) is
reachable from the origin. That is to say that given any
(xf , kf ) ∈ Rn × Z, there exist ki = ki(x

f , kf ) ∈ Z,
ki < kf and admissible control law uk = ũk(xf , kf ) and
switching rule σ(k) = σ̃k(xf , kf ), that are defined over
k ∈ {ki; · · · ; kf}, such that the corresponding state of (1) is
steered from xki = 0 to xkf = xf .

Assumption 2: For any y 6= 0, and k ∈ Z, there exists
some u such that the supply rate (3) verifies w(u, y, k) < 0.

Remark 1: Conditions to ensure the satisfaction of
Assumption 1 have been provided in [20]. Here we
assume those conditions hold. It should be noted that
for discrete-time systems, as opposed to continuous-time
ones, there may exist a bound related to the duration
kf − ki. However this does not have any impact on the
results. Assumption 1 concerns a structural property of
the combination of the modes and is independent of the
nature of the switching law (given, arbitrary or controlled).
Assumptions 2 is only related to a suitable choice of matrices
Q(k), L(k) and R(k) in the quadratic supply rate (6).

Theorem 1: System (1)–(2) is dissipative, in the sense of
Definition 2, with respect to the quadratic supply rate given
by (6) if and only if there exist a function φ : Rn×Z→ R,
which is quadratic with respect to its first argument, and real
functions ` : Rn × Z→ Rq and W : Rn × Z→ Rq×m (for
some integer q) satisfying

φ(x, k) > 0, for x 6= 0 and φ(0, k) = 0 (8)

and ∀(xk, uk, k) ∈ Rn × Rm × Z, solution of the
system (1)–(2),

(•)> [•]>
[
−H(k) 0

0 H(k + 1)

]
Mσ(k)

(
xk
uk

)
= (•)> [•]>

[
R(k) L(k)
? Q(k)

]
Nσ(k)

(
xk
uk

)
−‖`(xk, k) +W (xk, k)uk‖2 , (9)

where for any i ∈ NN ,

Mi =

[
In 0n×m
Ai Bi

]
, Ni =

[
0m×n Im
Ci Di

]
, (10)

and H(k) =
1

2

∂2φ(x, k)

∂x2
is half of the Hessian of the

quadratic function φ at time k.
Remark 2: It should be mentioned that in the original

result in the continuous-time domain [19, Theorem 1], the
function φ is not assumed to be quadratic. This assumption is
valid thanks to the result in [21] stating that for a dissipative
linear system associated with a quadratic supply rate, any
storage function can be represented as a quadratic function

of the state. The time-varying assumption does not affect this
result.

Proof: The proof follows the lines of [19, Theorem 1].
Sufficiency: Suppose that conditions (8)–(9) are verified, by
rearranging the terms, we have

k1∑
k=k0

w(uk, zk, k) = φ(xk1+1, k1 + 1)− φ(xk0 , k0)

+

k1∑
k=k0

‖`(xk, k) +W (xk, k)uk‖2 .

Taking xk0 = 0, we conclude that (7) holds.
Necessity: Let introduce žk = z(xk0 , {u`;σ(`)}k0≤`≤k, k)
denoting the value of the output zk at time k related to the
trajectory starting at k0 from x0 and when the input control
and switching law {u`;σ(`)}k0≤`≤k are applied. Assuming
that condition (7) holds, we show first that the available
storage function φa(xk, k) defined by

φa(x0, k0) = sup
K≥k0,

{uk;σ(k)}k0≤k≤K

−
K∑

k=k0

w(uk, žk), (11)

is well defined and solves (8)–(9).
Independently of the sequence of input control and

switching law {u`;σ(`)}k0≤` and by using Assumption 1,
we can determine a time ki < k0 and admissible input
and switching laws, defined over {ki, · · · , k0−1}, such that
xki = 0 can be steered to x0 at k = k0. We denotes with
some abuse of notation, ũk and z̃k the resulting input and
output of this trajectory. Condition (7) implies

−
K∑

k=k0

w(uk, zk, k) ≤
k0−1∑
k=ki

w(ũk, z̃k, k) < +∞,

where the righthand side is an implicit function of the
initial state x0. The available storage function φa defined
by (11) is finite. In addition, thanks to Assumption 2, φa is
positive definite. By following the lines of [1], the available
storage function is a solution to (4). To end the proof,
we need to determine `(xk, k) and W (xk, k) such that
for φ = φa, conditions (8)–(9) are satisfied. Introducing
d(xk, uk, k) = φa(xk+1, k + 1) − φa(xk, k) + w(uk, zk, k),
we have d(xk, uk, k) ≥ 0 thanks to (5) applied on φa.
Hence, φa and w being quadratic functions, and xk+1 and zk
being affine in the input uk, we can factorize d(xk, uk, k) as
d(xk, uk, k) = ‖`(xk, k) +W (xk, k)uk‖2, with `(xk, k) ∈
Rq and W (xk, k) ∈ Rq×m for some integer q. That leads to
conditions (8)–(9).

The framework of Theorem 1 is close to the one in
[16] related also to switched discrete-time systems but that
assumes only a unique supply rate and storage function. It
extends furthermore to time-dependency the continuous-time
result provided in [19, Theorem 1].

In the next sections, sufficient conditions will be provided
to derive Theorem 1 in a constructive way in distinct
frameworks. To end this preliminary section, we recall well
established results for the dissipativeness of a discrete-time



linear time-invariant (LTI) system, namely

xk+1 = Axk +Bwk, (12)
zk = Cxk +Dwk, (13)

with state xk ∈ Rn, exogenous input wk ∈ Rm, and output
zk ∈ Rp. The transfer function of this system is denoted by
T (q) = C(qIn −A)−1B +D, where q ∈ C.

Considering system (12)–(13) and quadratic
(Q,L,R)-dissipativeness, without lack of generality, it
is possible to look for quadratic storage functions. The
dissipative inequality (5) is then equivalent to the LMI in a
symmetric matrix P ∈ Rn×n such that

[•]>
[
−P 0
0 P

] [
In 0n×m
A B

]
≤

[•]>
[
R L
? Q

] [
0m×n Im
C D

]
. (14)

If (14) is verified, a storage function for system (12)–(13)
is given by S(x) = x>Px, which is a solution to the
time invariant dissipative inequality S(xk+1) − S(xk) ≤
w(uk, zk). When considering the particular case of passivity,
LMI (14) reads (see for example [9, Lemma 3]):[

A>PA− P A>PB − C>/2
? B>PB − (D +D>)/2

]
≤ 0n+m. (15)

The existence of a matrix P solution to LMI (14), without
assumption on its definiteness is related to a frequency
domain criterion, called circle criterion and mentioned in
the following lemma (see the discussion in [7]).

The advantage of the frequency domain criterion in the
KYP-Lemma lies in the fact that it can be numerically
checked without the computation of the given matrix P , and
as a consequence answer to the dissipative issue of a LTI
system.

Lemma 1: Suppose that the pair (A,B), of the
system (12)–(13), is controllable. The two following
conditions are equivalent:

1) For all ω ∈ R, iω not eigenvalues of matrix A,

0m ≤
(

Im
T (eiω)

)∗ [
R L
? Q

](
Im

T (eiω)

)
; (16)

2) There exists a symmetric matrix P ∈ Rn×n such that
LMI (14) is verified.

Lemma 1 calls several comments and remarks.
Remark 3: When considering strict inequalities (14)

and (16), the equivalence between the two items is true even
if the controllability assumption is relaxed.

Remark 4: In practice, in order to have a positive definite
storage function, P in (14) will be assumed to be positive
definite. That will be assumed in the following.

Remark 5: Feasibility of the LMI (14) in the variable P
allows a time independent solution of relation (9), in which
the choice of `(xk, k) and W (xk, k) is made to reach the
equality.

Remark 6: The (Q,L,R)−dissipativeness with P> =
P > 0n and C>QC ≤ 0n, guarantees stability of

system (12). This implication comes from the fact that the
left-upper block in matrix inequality (14) reads A>PA −
P < C>QC. This is obviously true when considering the
particular case of passivity, because C>QC = 0m.

III. DISSIPATIVENESS OF DISCRETE-TIME SWITCHED
SYSTEMS WITH ARBITRARY SWITCHING LAW

In this section, we consider the system (1)–(2), with
the assumption that the switching law σ(·) is arbitrary.
Sufficient conditions to ensure that this system is dissipative
irrespective to the choice of the switching law are provided in
Theorem 2. The idea is to take advantage of the time-varying
nature of the conditions in Theorem 1 to deal with the
switching behaviour of the system (1)–(2). Nevertheless, due
to the restriction of the time-dependency via the switching
law, we provide only sufficient conditions. The conservatism
of this is still an open issue. The obtained sufficient
conditions, based on LMIs, allow to build a switching storage
function related to a switching supply rate. This is an
extension of [16].

Theorem 2: Consider the system (1)–(2) and N triplets
of matrices (Qi, Li, Ri) ∈ Rp×p × Rp×m × Rm×m with
Qi = Q>i and Ri = R>i . If there exist N symmetric positive
definite matrices P1, · · · , PN such that ∀(i, j) ∈ N2

N the
following LMIs are verified

[•]>
[
−Pi 0

0 Pj

]
Mi < [•]>

[
Ri Li
? Qi

]
Ni, (17)

with Mi and Ni defined by (10), then the system (1)–(2)
is dissipative with respect to a time-varying, or switching,
quadratic supply rate w(uk, zk, k) = wσ(k)(uk, zk), with

wi(uk, zk) = z>k Qizk + 2z>k Liuk + u>k Riuk,∀i ∈ NN ,
(18)

and switching storage function S(xk, k) = x>k Pσ(k)xk.
Proof: The proof is straightforward by considering

(i, j) = (σ(k), σ(k + 1)) and multiplying the LMI (17)
at left by ( x>k u>k ) and at right by its transpose. It
results that S(xk, k) = x>k Pσ(k)xk is positive definite and
x>k+1Pσ(k+1)xk+1 − x>k Pσ(k)xk ≤ wσ(k)(uk, zk).

LMIs (17) with i = j recovers condition (14) for
discrete-time LTI system. As a consequence, each mode
i ∈ NN of system (1)–(2) is a LTI system which is
(Qi, Li, Ri)-dissipative with respect to the supply rate
wi(uk, zk) and modal (time independent) storage function
S(xk, k) = x>k Pixk.

Remark 7: When Theorem 2 applies, thanks to the
positive definiteness of matrices Pi, i ∈ NN , if C>i QiCi ≤
0n, for all i ∈ NN , then the first diagonal block of LMI (17)
reads A>i PjAi−Pi < 0n, for any (i, j) ∈ N2

N , which ensures
the stability of the discrete-time switched autonomous system
xk+1 = Aσ(k)xk under any switching rule σ(·) [22].

When considering passivity as a specific dissipativeness,
Theorem 2 applies with LMIs (17) replaced by the LMIs[

A>i PjAi − Pi AiPjBi − Ci/2
? B>i PjBi − (Di +D>i )/2

]
< 0m+n.



IV. SWITCHING LAW DESIGN FOR DISSIPATIVATION OF
DISCRETE-TIME SWITCHED SYSTEMS

This section is devoted to offer sufficient conditions
allowing the dissipativation of a discrete-time linear switched
system of the form (1)–(2), that is to say the existence of a
switching rule making the system dissipative. Furthermore,
under these sufficient conditions, it is possible to explicitly
build and exhibit such a switching rule. The main result is
gathered in the following theorem.

Theorem 3: Consider the system (1)–(2) and N triplets
of matrices (Qi, Li, Ri) ∈ Rp×p × Rp×m × Rm×m with
Qi = Q>i and Ri = R>i . If there exist N symmetric positive
definite matrices Pi, i ∈ NN and a Metzler matrix Π ∈Md

such that for any i ∈ NN the following matrix inequalities
are verified:

[•]>
[
−Pi 0

0 (P )p,i

]
Mi < [•]>

[
Ri Li
? Qi

]
Ni, (19)

with Mi and Ni defined by (10), then system (1)–(2)
is rendered dissipative by applying the min-switching rule
related to the multiple storage functions

σ(k) = µ(xk) ∈ arg min
i∈NN

x>k Pixi. (20)

Proof: Assume that the condition (19) is verified. Let
us multiply it at left by ( x>k u>k ) and at right by its
transpose, that yields (Aixk+Biuk)>(P )p,i(Aixk+Biuk)−
x>k Pixk ≤ wi(uk, Cixk + Diuk). Let us introduce the
minimum storage function as Smin(x) = mini∈NN

x>Pix,
∀x ∈ Rn. Thus, we have

Smin(Aixk +Biuk) = min
j∈NN

(•)>Pj(Aixk +Biuk),

≤ (•)>(P )p,i(Aixk +Biuk),

≤ x>k Pixk + wi(uk, Cixk +Diuk),

because the minimum of a set of positive scalars is always
less or equal to any of their convex combinations. By
selecting the min-switching strategy defined by (20), it yields

Smin(Aµ(xk)xk +Bµ(xk)uk)− Smin(xk)

≤ wµ(xk)(uk, Cµ(xk)xk +Dµ(xk)uk). (21)

The positive definiteness of Smin(·) is inherited by the
positive definiteness of matrices Pi, in finite number. The
function Smin(·) is thus the induced storage function related
to the min-switching strategy (20).

It should be noticed that the min-switching rule, when the
matrices Pi are given, is only a (non-linear) state-feedback
and does not depend explicitly on the supply rates wi(uk, zk)
defined by (18). This choice may be done irrespectively with
the input uk.

Remark 8: With C>i QiCi ≤ 0n, the left-upper block of
inequality (19) leads to the Lyapunov-Metzler inequalities
A>i (P )p,iAi − Pi < 0n, which is a sufficient condition to
stabilize the autonomous system xk+1 = Aσ(k)xk via the
min-switching strategy (20) (see [23] or [24, 25] for more
details). Less conservative implications may be investigated
in future research.

Remark 9: The result in Theorem 3 deals with switched
systems having not necessarily (Qi, Li, Ri)-dissipative
modes. Nevertheless the (Qi, Li, Ri)-dissipativeness of the
LTI system

xk+1 = π
1/2
ii Aixk + π

1/2
ii Biuk, (22)

yk = Cixk +Diuk, (23)

is a required condition for the feasibility of inequalities (19),
because it can be rewritten as

[•]>
[
−Pi 0

0 πiiPi

]
Mi < [•]>

[
Ri Li
? Qi

]
Ni

−
∑

j∈NN ,j 6=i

[•]>
[

0 0
0 πjiPj

]
Mi. (24)

One further necessary condition for the feasibility of
inequalities (19) is that Ri+LiDi+D

>
i L
>
i +D>i QiDi ≤ 0m.

That can be viewed by deriving the lower right block of
inequality (19) and noticing that B>i (P )p,iBi ≤ 0n.

It is noteworthy that our framework using multiple storage
functions leads to a storage function, which apparently does
not depend on the switching rule, however a main difference
with the approach using a common storage function, as
in [16] is that Smin(x) may not be differentiable with respect
to x ∈ Rn.

V. NUMERICAL ILLUSTRATION

This section provides a numerical example illustrating the
contribution in Section IV. Let us consider the following
example with n = 3, m = p = 1 and two modes (N = 2),
resulting from the discretization, with an unitary sampling
period, of exemple [14, Exemple 2].

[
A1 B1

C1 D1

]
=

 0.82 0.59 0.20 0.09
−0.41 0.01 0.18 0.20
−0.36 −1.12 −0.36 0.18

−1 0 0 0.25

;

[
A2 B2

C2 D2

]
=

 0.72 0.78 0.16 0.07
−0.63 0.40 0.15 0.16
−0.58 −0.92 −0.18 0.15

1 0 0 0.33


and the quadratic supply rates defined by (Q1, L1, R1) =
(Q2, L2, R2) = (0, 1/2, 0). The two modes are stable, but
are not passive. That can be checked numerically because the
frequency domain inequality (16) is not satisfied, as shown
in Figure 1, with frequency ω ∈ [−π, π] and q = ejω.

Nevertheless, there is a solution to inequalities (19) with

P1 =

[
9.22 −0.66 6.18

−0.66 1.78 −1.73
6.18 −1.73 5.77

]
;

P2 =

[
2.25 0.07 −0.03
0.07 3.26 0.63

−0.03 0.63 0.20

]
; Π =

[
0 0.8
1 0.2

]
.

Let us consider as exogenous input uk = 4 sin(k). The
min-switching strategy σ(k) defined by (20) is depicted on
Figure 2. This figure emphasizes also that the dissipative
inequality (21) is verified, as expected.



Fig. 1. Frequency domain inequality (16) for mode 1 (blue dashed line),
and mode 2 (red line).

Fig. 2. Top: min-switching law σ(k) = µ(xk) defined by (20); Bottom:
current value of the supply rate (circle in red); Smax(xk+1) − Smax(xk)
(star in black).

VI. CONCLUSION

The issue of dissipativeness for discrete-time linear
switched systems has been investigated in this paper. Starting
from the derivation of necessary and sufficient conditions in
the time-dependent framework for dissipativeness, we obtain
a concept of dissipativeness for a given switching law. Then,
we assume that the supply rates are quadratic. That allows
to establish our two main contributions. First, we provide
sufficient conditions in terms of linear matrix inequalities
ensuring that for any switching law, the discrete-time linear
switched system is dissipative. The second contribution
consists of providing parameterized linear matrix inequalities
with parameters belonging to the entries of a Metzler matrix.
That guarantees that there exists a min-switching law that
renders the discrete-time linear switched system dissipative.
Such a min-switching law is then build via multiple storage
functions associated to multiple supply rates. These results
have been discussed and illustrated in a numerical exemple.

REFERENCES

[1] J. C. Willems, “Dissipative dynamical systems part I: General theory,”
Archive for Rational Mechanics and Analysis, vol. 45, no. 5, pp.
321–351, 1972.

[2] ——, “Dissipative dynamical systems,” European Journal of Control,
vol. 13, pp. 134–151, 2007.

[3] V. A. Yakubovich, “Solution of some matrix inequalities encountered
in the automatic control theory,” Doklady Akademii Nak, vol. 43, pp.
1304–1307, 1962.

[4] R. Kalman, “Lyapunov functions for the problem of Lur’e in automatic
control,” Proceedings of National Academy of Sciences, no. 49, pp.
201–205, 1963.

[5] A. I. Lur’e and V. N. Postnikov, “On the theory of stability of control
systems,” Applied Mathematics and Mechanics, vol. 8, no. 3, pp. 3–13,
1944.

[6] V. Popov, “Absolute stability of nonlinear systems of automatic
control,” Avtomatika i Telemekhanika, vol. 22(8), pp. 961–979, 1961.

[7] A. Rantzer, “On the Kalman-Yakubovich-Lemma,” Systems & Control
Letters, vol. 28, no. 1, pp. 7–10, 1996.

[8] B. Brogliato, B. Maschke, R. Lozano, and O. Egeland, Dissipative
Systems Analysis and Control. Springer London, 2007.

[9] L. Hitz and B. D. O. Anderson, “Discrete positive-real functions and
their application to system stability,” Proceedings of the Institution of
Electrical Engineers, vol. 116, no. 1, pp. 153–155, 1969.

[10] A. Y. Pogromsky, M. Jirstrand, and P. Spångéus, “On stability and
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