
HAL Id: hal-02194157
https://hal.science/hal-02194157

Submitted on 8 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Water, Energy, and Carbon with Artificial Neural
Networks (WECANN): a statistically based estimate of

global surface turbulent fluxes and gross primary
productivity using solar-induced fluorescence

Seyed Hamed Alemohammad, Bin Fang, Alexandra Konings, Filipe Aires,
Julia Green, Jana Kolassa, Diego Miralles, Catherine Prigent, Pierre Gentine

To cite this version:
Seyed Hamed Alemohammad, Bin Fang, Alexandra Konings, Filipe Aires, Julia Green, et al.. Wa-
ter, Energy, and Carbon with Artificial Neural Networks (WECANN): a statistically based estimate
of global surface turbulent fluxes and gross primary productivity using solar-induced fluorescence.
Biogeosciences, 2017, 14 (18), pp.4101-4124. �10.5194/bg-14-4101-2017�. �hal-02194157�

https://hal.science/hal-02194157
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Biogeosciences, 14, 4101–4124, 2017
https://doi.org/10.5194/bg-14-4101-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Water, Energy, and Carbon with Artificial Neural Networks
(WECANN): a statistically based estimate of global surface
turbulent fluxes and gross primary productivity using
solar-induced fluorescence
Seyed Hamed Alemohammad1,2, Bin Fang1,2, Alexandra G. Konings3, Filipe Aires1,4, Julia K. Green1,2,
Jana Kolassa5,6, Diego Miralles7, Catherine Prigent1,6, and Pierre Gentine1,2,8

1Department of Earth and Environmental Engineering, Columbia University, New York, 10027, USA
2Columbia Water Center, Columbia University, New York, 10027, USA
3Department of Earth System Science, Stanford University, Stanford, 94305, USA
4Observatoire de Paris, Paris, 75014, France
5Universities Space Research Association/NPP, Columbia, MD, 21046, USA
6Global Modeling and Assimilation Office, NASA Goddard Spaceflight Center, Greenbelt, MD, 20771, USA
7Laboratory of Hydrology and Water Management, Ghent University, Ghent, 9000, Belgium
8Earth Institute, Columbia University, New York, 10027, USA

Correspondence to: Pierre Gentine (pg2328@columbia.edu)

Received: 16 November 2016 – Discussion started: 18 November 2016
Revised: 8 August 2017 – Accepted: 10 August 2017 – Published: 20 September 2017

Abstract. A new global estimate of surface turbulent fluxes,
latent heat flux (LE) and sensible heat flux (H ), and gross
primary production (GPP) is developed using a machine
learning approach informed by novel remotely sensed solar-
induced fluorescence (SIF) and other radiative and meteoro-
logical variables. This is the first study to jointly retrieve LE,
H , and GPP using SIF observations. The approach uses an
artificial neural network (ANN) with a target dataset gener-
ated from three independent data sources, weighted based on
a triple collocation (TC) algorithm. The new retrieval, named
Water, Energy, and Carbon with Artificial Neural Networks
(WECANN), provides estimates of LE, H , and GPP from
2007 to 2015 at 1◦× 1◦ spatial resolution and at monthly
time resolution. The quality of ANN training is assessed us-
ing the target data, and the WECANN retrievals are evaluated
using eddy covariance tower estimates from the FLUXNET
network across various climates and conditions. When com-
pared to eddy covariance estimates, WECANN typically out-
performs other products, particularly for sensible and latent
heat fluxes. Analyzing WECANN retrievals across three ex-
treme drought and heat wave events demonstrates the capa-
bility of the retrievals to capture the extent of these events.

Uncertainty estimates of the retrievals are analyzed and the
interannual variability in average global and regional fluxes
shows the impact of distinct climatic events – such as the
2015 El Niño – on surface turbulent fluxes and GPP.

1 Introduction

Turbulent fluxes from the land surface to the atmosphere, par-
ticularly sensible heat flux (H ) and latent heat flux (LE), and
plant carbon uptake characterized by gross primary produc-
tion (GPP) are key to understanding ecosystem response to
climate and the feedback on the overlying atmosphere, as
well as constraining the global carbon, water, and energy cy-
cles. In recent years, there has been substantial effort towards
estimating these variables from remote sensing observations
on a global scale (see, e.g., Fisher et al., 2008; Jiang and Ryu,
2016; Jiménez et al., 2009, 2011; Jung et al., 2009; Miralles
et al., 2011a; Mu et al., 2007; Mueller et al., 2011). Two typ-
ical approaches have been used to estimate these from re-
mote sensing information. The first approach uses physically
based or semiempirical models (e.g., the Priestley–Taylor or
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Penmann–Monteith equation in the case of evapotranspira-
tion (ET), or a light-use efficiency model in the case of GPP)
informed by remote sensing information (e.g., vegetation in-
dices, infrared temperature, microwave soil moisture), often
in combination with reanalysis meteorological forcing data
(Fisher et al., 2008; Miralles et al., 2011a; Mu et al., 2007;
Zhang et al., 2016b; Zhao et al., 2005; Zhao and Running,
2010). These approaches are sensitive to the assumptions and
imperfections of the underlying flux models. The second ap-
proach, uses machine learning (e.g., a model tree ensemble)
to determine LE, H , and GPP from meteorological drivers
and optical remote sensing data (Tramontana et al., 2016).
Like all supervised machine learning models, this approach
relies on a training dataset to determine the nonlinear statis-
tical relationships. In this case, in situ turbulent flux and GPP
estimates from eddy covariance towers are used (Beer et al.,
2010; Jung et al., 2011). Such an approach relies implicitly
on an assumption that a long temporal record of these vari-
ables at a small number of sites captures the full range of be-
havior and sensitivities of terrestrial ecosystems around the
globe. In addition, extreme and therefore rare events may be
difficult to capture based on the limited data availability.

Alternatively, one can use a machine learning approach,
such as an artificial neural network (ANN), trained on glob-
ally representative but imperfect estimates of the fluxes (such
as those from models) to parameterize the nonlinear statisti-
cal relationships between remote sensing observations and
surface fluxes. This approach has been successfully used for
global soil moisture retrieval (Aires et al., 2012; Kolassa et
al., 2013, 2016; Rodriìguez-Fernández et al., 2015) and sur-
face heat flux retrieval (Jiménez et al., 2009). Such ANNs
require a target dataset for training. Climate model simula-
tions of the relevant geophysical variable are usually used
as the training dataset to facilitate subsequent data assimila-
tion efforts (Aires et al., 2012; Kolassa et al., 2013, 2016).
However, the downside of this approach is that the result-
ing fluxes estimated by the ANN often exhibit some of the
same biases as the simulations used to train the network
(Rodriìguez-Fernández et al., 2015), even if improvements
can be achieved such as a more realistic seasonal cycle as it
is informed by the seasonal cycle of the remote sensing data
(Jiménez et al., 2009).

Previous studies show a strong relationship between the
rate of photosynthesis and solar-induced fluorescence (SIF)
observations and indicate that the plant fluorescence mea-
surements can be a useful proxy for photosynthesis estima-
tion (Flexas et al., 2002; Govindjee et al., 1981; Havaux
and Lannoye, 1983; van Kooten and Snel, 1990; Krause and
Weis, 1991; McFarlane et al., 1980; Toivonen and Vidaver,
1988; van der Tol et al., 2009). Recently, satellite observa-
tions of SIF have become available, opening new possibil-
ities for the global monitoring of photosynthesis (Franken-
berg et al., 2011, 2012, 2014; Guanter et al., 2012; Joiner et
al., 2013; Schimel et al., 2015; Xu et al., 2015).

SIF observations from the Global Ozone Monitoring
Experiment–2 (GOME-2) instrument are shown to better
track the seasonal cycle of GPP compared to typical high-
resolution optically based vegetation index estimates (Guan-
ter et al., 2012, 2014; Joiner et al., 2014; Walther et al.,
2016). SIF has also been shown to be a pertinent indica-
tor of vegetation water stress (Lee et al., 2013). Moreover,
a near-linear relationship between monthly SIF retrievals
and GPP is found for different vegetation types, which sug-
gests that SIF estimates can strongly constrain GPP retrievals
(Frankenberg et al., 2011).

Recently, a new SIF product was developed from obser-
vations of the GOME-2 satellite using a new retrieval algo-
rithm that disentangles three components from multispectral
observations (Joiner et al., 2013). SIF retrievals are shown
not to be strongly affected by cloud contamination and sea-
sonal variabilities in aerosol optical depth (Frankenberg et
al., 2014). More recently, remotely sensed SIF retrievals have
been used to successfully provide estimates of GPP in crop-
land and grassland ecosystems (Guanter et al., 2014; Zhang
et al., 2016a). SIF retrievals are also integrated with pho-
tosynthesis estimates from the National Center for Atmo-
spheric Research Community Land Model version 4 (NCAR
CLM4), which result in significant improvement of the pho-
tosynthesis simulation (Lee et al., 2015). As GPP relates to
plant transpiration through stomata regulation (Damour et
al., 2010; DeLucia and Heckathorn, 1989; Dewar, 2002), and
transpiration water fluxes dominate continental ET (Jasechko
et al., 2013), the use of remotely sensed SIF has the poten-
tial to also better constrain estimates of the continental water
(LE) and energy (H ) cycles, in addition to the carbon (GPP)
cycle.

In this study, we develop an ANN approach to retrieve
monthly estimates of LE, H , and GPP on a global scale. The
network uses remotely sensed SIF estimates in addition to
other data including precipitation, temperature, soil moisture,
snow cover, and net radiation as inputs (predictor). To our
knowledge, this is the first study that uses remotely sensed
SIF estimates on a global scale to retrieve LE and H surface
turbulent fluxes along with GPP.

Moreover, to reduce any errors, we introduce a Bayesian
perspective to generate the target dataset for the ANN. Multi-
ple estimates of LE,H , and GPP are selected according to an
a priori probability that reflects the quality and information
content of the dataset at the particular pixel of interest (de-
tails are provided in Sect. 3.2). This approach enables us to
generate a robust target dataset for remote sensing observa-
tions along with a statistical algorithm for the retrieval, while
bypassing the need for a land surface model and radiative
transfer scheme. We use the triplet of GLEAM, ECMWF,
and FLUXNET-MTE (Multi-Tree Ensemble) for training of
LE and H and the triplet of MODIS-GPP, ECMWF, and
FLUXNET-MTE for GPP training.

This new global product is named WECANN (Water, En-
ergy, and Carbon Cycle with Artificial Neural Networks).
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WECANN monthly estimates for the period 2007–2015
are provided on a 1◦× 1◦ resolution grid and with units
of W m−2 for LE andH and gC m−2 day−1 for GPP. The spa-
tial coverage of WECANN is presented in Fig. S1 in the Sup-
plement. It includes all the land areas, except for Greenland,
Antarctica, and any 1◦× 1◦ pixel that permanently has more
than 75 % water, snow, or ice. To estimate the fraction of wa-
ter, snow, and ice in each pixel, we used the 0.05◦× 0.05◦

MODIS-based Land Cover Type product (MCD12C1 v051)
(NASA LP DAAC, 2016).

2 Data

The inputs of WECANN include six remotely sensed vari-
ables introduced in Sect. 2.2 and Table 2: SIF, net radiation,
air temperature, soil moisture, precipitation, and snow wa-
ter equivalent (SWE). These are used to retrieve LE, H , and
GPP. Different observation- and/or model-based datasets are
used as the training dataset and are explained in Sect. 2.1
and summarized in Table 1. All the data presented here are
projected and gridded on a 1◦× 1◦ geographic grid and av-
eraged at monthly temporal resolution. Finally, independent
datasets used for evaluation of the ANN retrievals are pre-
sented in Sect. 2.3.

2.1 Training datasets

Four products are introduced in this section, and a triplet of
them is used for training of each of the LE, H , and GPP
(Sect. 3.2). For LE and H , training is performed based on
GLEAM, FLUXNET-MTE, and ECMWF ERA HTESSEL
(Hydrology Tiled ECMWF Scheme for Surface Exchanges
over Land). For GPP, training is performed on FLUXNET-
MTE, ECMWF ERA HTESSEL, and MODIS-GPP. Table 1
summarizes the characteristics of the training datasets used
here.

2.1.1 GLEAM

The Global Land Evaporation Amsterdam Model (GLEAM)
is a set of algorithms to estimate terrestrial evapotranspira-
tion using satellite observations (Martens et al., 2017; Mi-
ralles et al., 2011a). GLEAM is a physically based model
composed of (1) a rainfall interception scheme, driven by
rainfall and vegetation cover observations; (2) a potential
evaporation scheme, calculated from the Priestley and Tay-
lor (1972) equation and driven by satellite observations; and
(3) a stress factor attenuating potential evaporation, based on
a semiempirical relationship between microwave vegetation
optical depth (VOD) observations and root zone soil mois-
ture estimates (based on a running water balance for rainfall
and assimilating satellite soil moisture). The data are pro-
vided at a 0.25◦× 0.25◦ spatial resolution and daily tempo-
ral resolution and start in 1980. GLEAM data have been used
for studying land–atmosphere interactions and the global wa-

ter cycle (Guillod et al., 2014, 2015, Miralles et al., 2011a,
2014a, b). In this study, we use LE and H estimates from the
latest version v3.0a (Martens et al., 2017).

2.1.2 FLUXNET-MTE

The FLUXNET-MTE provides global surface fluxes at
0.5◦× 0.5◦ spatial resolution derived from empirical upscal-
ing of eddy covariance measurements from the FLUXNET
global network (Baldocchi et al., 2001). The MTE method
used is an ensemble learning algorithm that enables the learn-
ing of a diverse sequence of different model trees by per-
turbing the base learning algorithm (Jung et al., 2009, 2010,
2011). The data cover the period from January 1982 to De-
cember 2012 and can be used for benchmarking land surface
models and assessment of biosphere gas exchange. We use
LE, H , and GPP estimates from FLUXNET-MTE.

2.1.3 ECMWF ERA HTESSEL

The ECMWF Reanalysis (ERA) is a global 3-D variational
data assimilation (3D-Var) product that uses HTESSEL in
the forecast system. HTESSEL has a surface runoff compo-
nent and accounts for a global nonuniform soil texture unlike
the old TESSEL model (Balsamo et al., 2009). This is an of-
fline model simulation, and HTESSEL is driven by meteoro-
logical forcing output from the forecast runs. Photosynthesis
in the model is computed independently (i.e., with its own
canopy conductance) from LE, so that the carbon cycle does
not interact with the water cycle at the stomata level, adding
errors. We use LE, H , and GPP estimates from ERA HTES-
SEL provided on a 0.25◦× 0.25◦ geographic grid with daily
temporal resolution.

2.1.4 MODIS-GPP

The MODIS sensor is onboard the sun-synchronous NASA
satellites Terra (10:30 LT overpasses) and Aqua (13:30 LT
overpasses). It provides 44 global data products (Justice et
al., 2002) from 36 spectral bands, including visible, infrared,
and thermal infrared spectrums to monitor and understand
Earth’s surface: atmosphere, land, and ocean processes. The
MODIS GPP/NPP project (MOD17) provides gross and net
primary production estimates covering the whole land sur-
face and is useful for analyzing the global carbon cycle and
monitoring environmental change. The MOD17 algorithm is
based on a light-use efficiency approach proposed by Mon-
teith and Moss (1977), which states that GPP is proportional
to the product of incoming photosynthetically active radi-
ation (PAR), fraction of absorbed PAR (fAPAR), and ef-
ficiency of radiation absorption in photosynthesis. We use
the monthly MOD17A2 GPP product (Running et al., 2004;
Zhao et al., 2005; Zhao and Running, 2010). MOD17A2
is available from 2000 until 2015 and was provided at a
0.05◦× 0.05◦ spatial resolution.

www.biogeosciences.net/14/4101/2017/ Biogeosciences, 14, 4101–4124, 2017
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Table 1. Characteristics of products used for training of ANN.

Product Output variables Temporal Spatial Temporal Spatial Reference
used for training coverage coverage resolution resolution

GLEAM LE, H 1980–2015 Global Daily 0.25◦× 0.25◦ Martens et al. (2017)
ECMWF ERA LE, H , GPP 2008–2015 Global Daily 0.25◦× 0.25◦ Balsamo et al. (2009)
HTESSEL
FLUXNET-MTE LE, H , GPP 1982–2012 Global Monthly 0.5◦× 0.5◦ Jung et al. (2009)
MODIS-GPP GPP 2000–2015 Global Monthly 0.5◦× 0.5◦ Running et al. (2004)

Table 2. Characteristics of observations used as input in the WECANN product.

Variable Product name Temporal Spatial Temporal Spatial Reference
and version coverage coverage resolution resolution

SIF GOME-2 Fluorescence v26 2007–present Global Daily 0.5◦× 0.5◦ Joiner et al. (2013)
Net radiation CERES L3 SYN 1deg 2002–present Global Monthly 1◦× 1◦ Wielicki et al. (1996)
Air temperature AIRS3STD v6.0 2002–present Global Daily 1◦× 1◦ Aumann et al. (2003)
Soil moisture ESA-CCI v2.3 1978–2015 Global Daily 0.25◦× 0.25◦ Liu et al. (2012)
Precipitation GPCP 1DD v1.2 1996–2015 Global Daily 1◦× 1◦ Huffman et al. (2001)
Snow water GlobSnow L3A v2 1979–present Global Daily 25 km× 25 km Luojus et al. (2013)
Equivalent

2.2 Input datasets

Six sets of observations are used as input to the WECANN
retrieval algorithm. These are selected in a way that pro-
vides necessary physical constraints on the estimates from
the ANN. Table 2 lists the characteristics of each of the
datasets, and they are briefly introduced in the following.

2.2.1 Solar-induced fluorescence

The GOME-2 instrument is an optical spectrometer onboard
the Meteorological Operational Satellite Program (MetOp-A
and MetOp-B) satellites, which were launched by the ESA.
GOME-2 was designed to monitor atmospheric ozone pro-
files as well as other trace gases and water vapor content. It
senses Earth backscatter radiance and solar irradiance at a
40× 40 km spatial resolution (prior to July 2013 the spatial
resolution was 40× 80 km). Recently, the retrieval of SIF us-
ing GOME-2 observations in the 650–800 nm spectrum has
been investigated (Joiner et al., 2013, 2016). We use version
26 of the daily SIF product that uses the MetOp-A GOME-
2 channel 4 with a ∼ 0.5 nm spectral resolution and wave-
lengths between 734 and 758 nm. SIF estimates are provided
on a geographic grid with 0.5◦× 0.5◦ grid spacing.

2.2.2 Net radiation

Net radiation is the main control of the rates of sensible and
latent heat in wet environments and is closely related to PAR.
The Clouds and Earth’s Radiant Energy System (CERES) is
a suite of instruments that measure radiometric properties
of solar-reflected and Earth-emitted radiation from the top

of the atmosphere to Earth’s surface, from three broadband
channels at 0.3–100 µm. The CERES sensors are onboard the
Earth Observing System (EOS), which includes Terra, Aqua,
and Tropical Rainfall Measuring Mission (TRMM) (Kato et
al., 2013; Loeb et al., 2009). We use the net radiation esti-
mates, which are provided on a 1◦× 1◦ geographic grid with
monthly time resolution, from the Synoptic Radiative Fluxes
and Clouds (SYN) product of CERES.

2.2.3 Air temperature

The Atmospheric Infrared Sounder (AIRS) is a high-
spectral-resolution spectrometer onboard the NASA Aqua
satellite launched in 2002. It provides hyperspectral (visi-
ble and thermal infrared) observations for monitoring pro-
cess changes in the Earth’s atmosphere and land surface, as
well as for improving weather prediction. The AIRS instru-
ment was designed to obtain atmospheric temperature and
humidity profiles of every 1 km layer of the atmosphere. The
accuracy of AIRS temperature observations is typically bet-
ter than 1 ◦C in the lower troposphere under clear sky con-
ditions (Aumann et al., 2003). We use daily temperature es-
timates from the lowest layer of the AIRS level 3 standard
product that is provided on a 0.5◦× 0.5◦ geographic grid.

2.2.4 Surface soil moisture

The ESA Climate Change Initiative (CCI) program soil
moisture (ESA CCI SM) is a multi-decadal (1980–2015)
global satellite-observed surface soil moisture product. It
merges observations from passive sensors (e.g., Scanning
Multichannel Microwave Radiometer (SMMR), Special Sen-
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sor Microwave/Imager (SSM/I), AMSR-E) and active ones
(e.g., the European Remote Sensing, ERS; Advanced Scat-
terometer, ASCAT), based on a triple collocation (TC) error
characterization (Dorigo, et al., 2017; Liu et al., 2011, 2012;
Wagner et al., 2012). Here, we use daily data from the latest
version, v2.3. ESA CCI SM is provided on a 0.25◦× 0.25◦

geographic grid.

2.2.5 Precipitation

The Global Precipitation Climatology Project (GPCP) pro-
vides global daily precipitation estimates at 1◦× 1◦ spatial
resolution from October 1996 to near present (Huffman et al.,
2001). Global precipitation estimates from infrared and mi-
crowave instruments are combined with monthly gauge mea-
surements to produce the daily estimates. In this study, v1.2
of the One-Degree Daily (1DD) product of GPCP is used
and daily estimates are aggregated to monthly scales. Sev-
eral studies have evaluated the GPCP 1DD product on global
or regional scales, and results show that it has high accuracy
and good agreement with independent in situ measurements
and other global precipitation estimates (Gebremichael et al.,
2005; Joshi et al., 2012; McPhee et al., 2005; Rubel et al.,
2002).

2.2.6 Snow water equivalent

The GlobSnow project is developed by ESA and provides
long-term snow-related variables: snow water equivalent
(SWE) and areal snow extent (SE). It combines microwave-
based retrievals of snow information (including Nimbus-7
SMMR, DMSP F8/F11/F13/F17 SSM/I(S) observations) and
ground-based station data through a data assimilation process
and provides the SWE and SE products at different temporal
resolutions: daily, weekly, and monthly (Pulliainen, 2006).
Here, we use v2 of the daily L3A SWE product, which is
posted on a 25 km× 25 km Equal-Area Scalable Earth Grid
(EASE).

2.3 Evaluation datasets

2.3.1 Eddy covariance tower estimates

FLUXNET is a network of regional tower sites that mea-
sure turbulent flux exchanges (water vapor, energy fluxes,
and carbon dioxide) between ecosystems and the atmosphere
(Baldocchi et al., 2001). FLUXNET comprises over 750 sites
covering five continents. Measurements from the FLUXNET
towers provide valuable information for evaluating satellite-
based retrievals of surface fluxes. In this study, FLUXNET
measurements from the FLUXNET 2015, the La Thuile Syn-
thesis dataset, and the Large-scale Biosphere–Atmosphere
(LBA) experiment in Brazil are used for evaluation (details
are provided in Sect. 4.2).

FLUXNET 2015 tier 1 and tier 2 data were retrieved from
http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/. The

data have been systematically quality controlled with a stan-
dard format throughout the dataset (http://fluxnet.fluxdata.
org/data/fluxnet2015-dataset/data-processing/, Pastorello et
al., 2014) and gap-filled using ERA meteorological forcing
downscaling.

From the LBA experiment in Brazil, we use data from sites
in Rondônia at the edge of a deforested region (BR-Ji1 and
BR-Ji2) and near São Paulo (BR-Sp1). As the data did not
span recent years, we instead use a climatology of the fluxes
for comparison from 1999 to 2003. We note that, of course,
the interannual variability in the region (such as El Niño and
La Niña) could alter the seasonality and magnitude of the
fluxes in the region.

We also use data from the La Thuile Synthesis Dataset
(http://fluxnet.fluxdata.org/data/la-thuile-dataset/) covering
24 sites. These data are part of the free and fair use version
of the dataset.

A total of 85 sites from the three datasets are selected
for evaluation of WECANN retrievals spanning a large cli-
matic and biome gradient (Fig. S2 and Table S1). For Ameri-
Flux towers, if measurements from both the FLUXNET 2015
dataset and the La Thuile dataset were available, we used
the FLUXNET 2015 data. We have only selected sites that
had at least 24 months of continuous measurements during
2007–2015. Any site that would have fallen outside of the
WECANN land mask (Fig. S1) is excluded (several sites in
coastal regions).

2.3.2 Basin-scale ET

We use estimates of an independent water budget closure
model across five major basins to evaluate WECANN re-
trievals on regional scales (Aires, 2014; Munier et al.,
2014) . ET estimates from the budget closure approach
satisfy a water budget closure with no residual; therefore,
they can be used as a reference to evaluate WECANN
ET estimates on a basin scale. These basins include the
Amazon (4 680 000 km2), Colorado (618 715 km2), Congo
(3 475 000 km2), Mississippi (2 964 255 km2), and Orinoco
(836 000 km2). Details of the water budget estimate are pro-
vided in Munier and Aires (2017), but in summary they com-
bine estimates of precipitation, evaporation, water storage,
and runoff to define a best estimate of the different fluxes and
changes in storage, constrained by the water budget over the
basin. Their analysis is carried out from 2002 through 2010.

3 Methodology

3.1 Artificial neural network setup

We developed an ANN retrieval algorithm to estimate the
surface fluxes (LE and H ) and GPP based on our six sets
of input observations: SIF, net radiation, air temperature, soil
moisture, precipitation, and SWE (as described in Sect. 2.2).
The ANN used here is a feedforward network consisting of

www.biogeosciences.net/14/4101/2017/ Biogeosciences, 14, 4101–4124, 2017
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Figure 1. Architecture of the ANN layers. Input layer provides the
matrix P of the inputs to the hidden layer. The hidden layer has a
matrix W of weights and b of biases for the neurons and the f1
transfer function. The output of the hidden layer (a = f1(WP+b))
is an input to the output layer that applies the transfer function f2
to the estimates and generates final outputs O.

three layers: (1) an input layer that directly connects to the
input data, (2) one hidden layer, and (3) an output layer that
produces the three output estimates. The number of neurons
in the input and output layer is determined by the number of
input and output variables, whereas for the hidden layer it has
to be chosen according to the complexity of the problem (see
below). The neuron output from each layer is fed to neurons
in the subsequent layer through weighted connections. Each
neuron output is the weighted sum of its inputs plus a bias,
which is then subjected to a transfer function. In this study,
we chose a tangent sigmoid transfer function for neurons in
the hidden layer and a linear transfer function in the output
layer. The change of the transfer function for the hidden layer
(log sigmoid or tangent sigmoid) did not produce any signif-
icant changes in the retrievals (not shown); thus, we used the
more common method. A schematic of the ANN architecture
is provided in Fig. 1.

The training step of the ANN aims at estimating the
weights for each of the neuron connections, such that the
mismatch between the ANN outputs and target estimates is
minimized. For this, we used the mean squared error (MSE)
as the cost function and a backpropagation algorithm to ad-
just the ANN weights. During the training, the network im-
plicitly learns the coupling of the LE, H , and GPP by using
one set of neurons (with their respective weights and biases)
to estimate the three variables. This is an advantage of us-
ing a machine learning technique that eliminates the need to
define physical relationships between different variables.

For the purpose of training, the target data are divided into
three subsets: training, validation, and testing constituting 60,
20, and 20 % of the target data, respectively. In each iteration,
the training subset is used to estimates the weights in the net-
work, and the convergence of the training towards the target
data is checked using the validation subset. When overfitting
of the network weights to the training data occurs, the vali-
dation estimates start diverging from the target data and the

training is stopped (early stopping). The weights from the
last iteration before the occurrence of the divergence repre-
sent the final solution. The testing subset is used to assess the
ANN performance after the training phase.

As an additional measure to avoid overfitting, we repeated
the training for several ANNs with an increasing number of
neurons in the hidden layer (1 to 15). For one to five neu-
rons, the R2 value between the target data and the ANN
estimates increased with an increasing number of neurons.
For more than five neurons, little change in the skill was ob-
served when increasing the number of hidden layer neurons
(Fig. S3). Thus, an ANN with five hidden layer neurons rep-
resents the simplest ANN that can converge to a solution and
model the nonlinear relationship between the satellite inputs
and the surface flux estimates.

To train the ANN, we used LE, H , and GPP estimates
from the years 2008–2010. The target dataset was generated
through a TC-based merging of triplets of the flux estimates
introduced in Sect. 2.1 (details are discussed in Sect. 3.2). Af-
ter completion of the training, the performance of the ANN
and its ability to generalize was evaluated using the LE, H ,
and GPP target data from 2011. Finally, WECANN retrievals
are evaluated against other global products and eddy covari-
ance tower data. Results of these comparisons are presented
in Sect. 4.

3.2 Target dataset: a Bayesian prior using triple
collocation

One of the key issues in the design of an ANN to retrieve any
geophysical variable is defining a good target dataset. One
practice has been to use outputs from a land surface model as
the target (Aires et al., 2005; Jiménez et al., 2013; Kolassa et
al., 2013; Rodriìguez-Fernández et al., 2015). However, all
observations and models contain random errors and biases.
Therefore, the retrieval based on the ANN exhibits some of
the biases of the original target dataset even if the ANN is
able to make corrections to its original target data (e.g., cor-
rection of an imperfect seasonal cycle, as demonstrated by
Jiménez et al., 2009). To address this issue, we use three
datasets, which are sufficiently independent so that the train-
ing can learn from each dataset and benefit from all of them,
synergistically. We implement a pseudo-Bayesian training by
probabilistically weighting the occurrence of each training
dataset by its likelihood and define a target dataset. The three
datasets are listed in Table 1 for each variable.

To define this prior distribution, we use the TC technique.
TC is a method to estimate the RMSE (and, if desired, cor-
relation coefficients) of three spatially and temporally collo-
cated measurements by assuming a linear error model be-
tween the measurements (McColl et al., 2014; Stoffelen,
1998). This methodology has been widely used in error es-
timation of land and ocean parameters, such as wind speed,
sea surface temperature, soil moisture, evaporation, precipi-
tation, fAPAR, and in the rescaling of measurement systems
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to reference system for data assimilation purposes (Alemo-
hammad et al., 2015; D’Odorico et al., 2014; Gruber et al.,
2016; Hain et al., 2011; Lei et al., 2015; Miralles et al., 2010,
2011b; Parinussa et al., 2011), as well as in validating cate-
gorical variables such as the soil freeze–thaw state (McColl
et al., 2016). The relationship between each measurement
and the true value is assumed to follow a linear model:

Xi = αi +βi t + εi i = 1,2,3, (1)

in which Xi is the measurement from the collocated sys-
tem i (e.g., remote sensing observation, model output), t is
the true value, and αi and βi are the intercept and slope
of the linear model, respectively. εi is the random error in
measurement i and TC estimates the variance of this ran-
dom variable in each measurement. By further assuming
that the errors from the three measurements are uncorrelated(
Cov

(
εi,εj

)
= 0, for i 6= j

)
and the errors are uncorrelated

with the truth (Cov(εi, t)= 0), the RMSE of each measure-
ment error can be calculated as (McColl et al., 2014)

 σε1

σε2

σε3

=


√
Q11−

Q12Q13

Q23√
Q22−

Q12Q23

Q13

Q33−
Q13Q23

Q12

 , (2)

in which Qij is the (ith or j th) element of the covariance
matrix between the three measurements. Since the triplet of
datasets used for training each of the fluxes (see Table 1)
is derived through different semiempirical approaches with
different sources of errors, the assumption of uncorrelated
errors is more likely to be met. In the following, we will cal-
culate the standard deviation of the random error component
of Eq. (1) using TC for each of the surface fluxes and use
them as TC-based errors of each product.

The TC-estimated errors for the surface fluxes and GPP
are shown in Figs. S4–S6. The white regions represent miss-
ing retrievals or discarded negative estimates due to an in-
sufficient data record. For LE, high TC errors are found
in the Amazon rainforest and tropical Africa for GLEAM,
in the Amazon rainforest and the Sahel for ECMWF, on
the Indian peninsula for FLUXNET-MTE, and in US Great
Plains for ECMWF and FLUXNET-MTE. For H , in addi-
tion to the aforementioned regions, high TC errors are also
found in Southeast Asia for GLEAM and ECMWF and in
northern Canada for FLUXNET-MTE. For GPP, MODIS and
ECMWF have the highest errors in the Amazon rainforest,
ECMWF and FLUXNET-MTE have relatively higher errors
in US Great Plains, and all three products have similar errors
in tropical Africa.

There are several likely causes for these errors. For the
FLUXNET-MTE data, the regions that are not covered by
(many) FLUXNET eddy covariance stations may result in
larger uncertainties, and those regions for which interception

is a large component of the LE flux as well (Michel et al.,
2016). For the GLEAM and ECMWF data, thick vegetation
generally induces biases compared to the satellite observa-
tions, especially in tropical regions (Anber et al., 2015).

Finally, we use the TC-based RMSE estimates at each
pixel to compute the a priori probability (Pi) of selecting a
particular dataset in each pixel, if that pixel is used as part of
the training dataset:

Pi =

1
σ 2
εi∑3

i=1
1
σ 2
εi

, (3)

in which Pi is the probability of selecting dataset i when
sampling from three measurements. We assume that these
probabilities are time independent as we are limited by the
currently available duration of the input data; however, future
versions will explore the use of seasonally varying probabil-
ities.

4 Results and discussion

4.1 Global magnitude of and variability in LE, H , and
GPP

In this section, we present and compare the retrievals of LE,
H , and GPP for the year 2011, which was not included in the
training step of WECANN. Thus, it is used here to evaluate
the ANN fit to the target values.

Figure 2 illustrates the annual global average and scat-
ter plots of retrievals vs. target estimates. The spatial pat-
terns of the WECANN retrievals are similar to expecta-
tions. The average global values in 2011 are 38.33 W m−2

for LE, 39.44 W m−2 for H , and 2.34 gC m−2 day−1 (or
123.16 PgC yr−1) for GPP. LE has the best R2 (0.95) com-
pared to H (R2

= 0.89) and GPP (R2
= 0.90). The root

mean squared difference (RMSD) of each of the retrievals
with respect to the target estimates is as following: for LE,
RMSD= 11.06 W m−2; for H , RMSD= 13.13 W m−2; and
for GPP, RMSD= 1.22 gC m−2 day−1.

The seasonal variability in and spatial pattern of the re-
trievals from 2011 are shown in Figs. 3–5. LE does not ex-
hibit any variability over deserts such as the Sahara and Ara-
bian Peninsula, as expected (Fig. 3). Wet tropical forests ex-
hibit subtle seasonal variability in LE. These spatial variabil-
ities in the seasonal cycle reflect changes in the radiation,
temperature, water availability during the dry season, soil
nutrients, soil type conditions, and leaf flushing (Anber et
al., 2015; Morton et al., 2014, 2016; Restrepo-Coupe et al.,
2013; da Rocha et al., 2009; Saleska et al., 2016). In con-
trast, seasonal variability dominated by radiation availability
is noticeable in wet midlatitude regions for both the North-
ern Hemisphere (NH) and Southern Hemisphere (SH), i.e.,
East Asia, the eastern US, and the north and east Australian
coasts with over 60 W m−2 difference between winter and
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Figure 2. Left column: annual average retrievals in 2011 for (a) LE, (b)H , and (c) GPP. Right column: density scatter plot between estimates
of ANN and target data for (d) LE, (e) H , and (f) GPP during the validation period (2011). The density of scatter points is represented by the
shading color. The diagonal black line depicts the 1 : 1 relationship.

summer months. One exceptional case is South Asia, where
LE does not significantly rise in spring, likely due to the ef-
fects of the monsoonal climate. In eastern South America,
the ET estimates are relatively high compared to GPP esti-
mates. This difference can be caused by either low water use
efficiency or significant rain reevaporation and soil evapora-
tion. Moreover, the SIF relationship with GPP likely changes
in C4 plants. However, we did not impose the C4–C3 de-
limitation in the ANN as it would be highly dependent on
the quality of the classification map used. We note that all
training products used here include C3–C4 delimitation and
therefore the C3–C4 delimitation is implicit in the training
dataset; therefore, it can be learned by the network.

Seasonal variabilities in H (Fig. 4) are distributed in an
opposite pattern to LE, as expected. Deserts and dry regions,
i.e., the Sahara, southwestern US, and Western Australia
demonstrate much more seasonal variability than the rest of
the world. Given the strong water limitations there, the avail-
able energy converted into H becomes dictated by the sea-
sonal cycle of solar radiation. In contrast, tropical rainforests

(Amazon, Congo, Indonesian) exhibit limited seasonal vari-
ability. In midlatitude energy-limited regions (central and
eastern Europe, the eastern US), H also reflects the course
of available energy, and in more water-limited regimes (e.g.,
the western US and Mediterranean Europe), it reflects the
interplay between soil dryness and available energy, with a
peak between spring and summer for dry regions.

The seasonal variability in GPP (Fig. 5) in northern lati-
tudes follows the availability of radiation in wet regions, with
a peak in summer and another in spring for dry regions, cor-
responding to both soil water availability and high incoming
radiation. A clear east–west transition conditioned by water
availability is observed in the continental US. In the tropics
and subtropics, the response is diverse. The Amazon rain-
forest exhibits high GPP throughout the year with a peak
between September and February in the wetter part of the
basin, following the dry season, consistent with the observa-
tions at eddy covariance towers near Manaus and Santarém
(Restrepo-Coupe et al., 2013; da Rocha et al., 2009). Com-
pared to LE, substantial geographical variability is observed
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Figure 3. Global patterns of seasonal average LE from WECANN in 2011: (a) December–February, (b) March–May, (c) June–August, and
(d) September–November.

Figure 4. Similar to Fig. 3 but for H instead of LE.

in the Amazon because of the strong variabilities in soil type,
green-up, biodiversity, and rooting depth. In the drier part
of the basin, water availability controls the seasonal cycle
of photosynthesis, and the peak in GPP is observed in the
wet season (DJFMA). In the Congo rainforest, GPP exhibits
four seasons, with two wet and two dry ones, with a substan-
tial decrease in GPP during those dry spells. In Indonesia,

GPP is steadier throughout the year, exhibiting high values
year round. Monsoonal climates over India, Southeast Asia,
northern Australia, and Central–North America are well cap-
tured with rapid rise in GPP following water availability. The
highest GPP values are observed in rainforests and the agri-
cultural US Great Plains, in JJA for the latter. Northern lat-
itude regions mainly exhibit substantial GPP in the summer
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Figure 5. Similar to Fig. 3 but for GPP instead of LE.

and late spring and small values throughout the rest of the
year.

4.2 Evaluation with FLUXNET data

Direct validation of the WECANN retrievals is challenged
by the fact that no global, error-free estimates of LE, H ,
and GPP are available. Remote sensing or model products
such as those used for training have their own errors. When
three datasets with uncorrelated errors (commonly assumed
to be true if the sources of error in each dataset have no com-
mon physical origin) are available, TC provides a valuable
technique to evaluate large-scale datasets in the absence of a
known truth. However, WECANN’s use of different training
datasets will cause the presence of some correlated errors be-
tween WECANN retrievals and any of the datasets used for
the training. Instead, we evaluate the retrievals by compar-
ing them to data from a set of FLUXNET eddy covariance
towers. WECANN uses three training datasets, one of which
(FLUXNET-MTE) is based on upscaling FLUXNET eddy
covariance tower estimates. This might cause some depen-
dence between WECANN retrievals and the tower estimates.
However, WECANN learns from all three training datasets
collectively and uses remote sensing observations as input.
Therefore, this dependence is negligible. In situ estimates
from eddy covariance towers with a footprint of a few hun-
dred meters to kilometers may not be representative of the
entire 1◦× 1◦ pixel and are known to have problems with
energy closure (Foken et al., 2010). However, in the com-
parison against tower data the impact of large-scale climate
variability and seasonality can still be seen even on different

spatial scales. For instance, the phenology has a strong im-
pact on the seasonal cycle of the LE, H , and GPP and in the
following examples; it is clearly highlighted when compar-
ing different products to flux tower estimates.

A summary of statistics across 85 FLUXNET sites is pro-
vided in Tables S2–S4. Overall, WECANN performs bet-
ter than other alternative global products. In particular, WE-
CANN has the highest correlation for 76 % of sites for LE,
58 % of sites for H , and 55 % of sites for GPP. This high R2

reflects the capacity of WECANN to correctly capture the
seasonal cycle and interannual variability, as it is largely im-
posed by the remote sensing observations rather than by the
statistical retrieval (Jiménez et al., 2009). One of the reasons
for this is the presence of the SIF information in the ANN
retrieval, which is directly related to GPP and plant transpi-
ration (Frankenberg et al., 2011). The RMSE of WECANN
is lower than all other products at 71 % of sites for LE, 46 %
of sites for H , and 51 % of the sites for GPP. The bias is also
reduced compared to other retrievals, even if some variability
can be seen from site to site.

Figure 6 shows a summary of the correlation coefficients
presented in Tables S2–S4 for each group of plant functional
types (PFTs). Each class has between 6 and 22 sites. WE-
CANN has the best mean within each PFT class, and the
smallest variability in most of the classes for all three vari-
ables.

Figure 7 shows the comparison of monthly WECANN re-
trievals and three other global products’ estimates with the
tower estimates across five select sites that span a range of
climatic and vegetation coverage conditions. At the Okla-
homa agricultural site (US-ARM), H and LE are reproduced
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Figure 6. Correlation coefficient (R2) between WECANN retrievals and FLUXNET tower estimates categorized across different plant
functional types for (a) LE, (b) H , and (c) GPP. Markers show mean, and whiskers show 1-standard-deviation intervals. (CRO: croplands,
DBF: deciduous broadleaf forests, EBF: evergreen broadleaf forests, ENF: evergreen needleleaf forests, GRA: grasslands, MF: mixed forests,
SAV: savannas, and WET: permanent wetlands).

well, yet dry yearH is underestimated (Fig. 7a). The GPP re-
ported at the site very rapidly decays at the end of the spring,
whereas the region is highly agricultural with sustained agri-
culture in the summer. The difference between the reported
GPP and WECANN retrievals might again be due to the dif-
ference in the footprint of the two estimates.

At the Brasschaat, Belgium, site (BE-Bra) (Fig. 7b), LE
is very well captured by WECANN, which captures the sea-
sonal cycle well, yet misses some of the interannual variabil-
ity. WECANN outperforms the other retrievals of LE and
GPP and captures the GPP seasonal cycle very well com-
pared to other products, which display a too-early GPP rise
and overestimate summer GPP. Again, the SIF data provide
independent useful data compared to other environmental in-
formation (radiation, temperature, vegetation indices) used
by the other retrieval schemes. All retrievals strongly under-
estimate the reported eddy covariance H . At this humid site
though, the magnitude of the measured H is often higher or
on the same order in the summer as LE. Given the high de-
gree of urbanization around the site, it is most likely a reflec-
tion of the footprint of the eddy covariance and the fact that it

observes urbanized surfaces with highH . Indeed, the surface
energy budget is not locally balanced and turbulent fluxes
are higher than the observed net radiation minus ground heat
flux.

At the cold Finland site (FI-Hyy), WECANN captures the
seasonal cycle of GPP and LE very well, as well as H to
a lesser extent. WECANN reproduces the seasonality, am-
plitude, and interannual variability better compared to other
retrievals (Fig. 7c). It also reflects the difficulties of retriev-
ing fluxes in snow-dominated regions. SIF has the great ad-
vantage that it is not directly sensitive to snow compared to
vegetation indices, for instance, which incorrectly attribute
snowmelt and changes in observed ground color to photo-
synthesis onset (Jeong et al., 2017).

At the monsoonal grassland site of Santa Rita, AZ, WE-
CANN correctly captures the complex dynamics of H and
LE at the site, with some rain periods preceding the mon-
soon period (Fig. 7d). However, WECANN slightly underes-
timates LE and overestimates GPP. In fact, all products over-
estimate GPP in the dry and cold seasons. The landscape in
the region is highly heterogeneous, with denser vegetation in
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Figure 7. Comparison of the retrievals with eddy covariance observations of LE, H , and GPP across five sites: (a) US-ARM site, USA;
(b) AT-Neu site, Austria; (c) BE-Bra site, Belgium; (d) FI-Hyy site, Finland; (e) US-SRG, USA; and (f) ZA-Kru, South Africa.

riparian zones, away from the tower location, which may ex-
plain the lower GPP value at the site compared to estimates
of the larger-scale values.

Finally, at the South African Mediterranean site, ZA-Kru,
WECANN reproduces some of the dynamics of the observed

H , yet is typically smoother (Fig. 7e). It reasonably cap-
tures the LE dynamics, except for the suspect cold season in-
crease reported at the tower in 2013 (like other products). All
products overestimate the reported GPP, though WECANN

Biogeosciences, 14, 4101–4124, 2017 www.biogeosciences.net/14/4101/2017/



S. H. Alemohammad et al.: Water, Energy, and Carbon with Artificial Neural Networks 4113

is closest to the observations and captures the seasonal dy-
namics better compared to other products.

Overall, across the different sites, the WECANN retrieval
performs better than other products, especially in terms of
the seasonality of LE,H , and GPP. Several factors contribute
to the improved retrieval of WECANN compared to other
products, even at those smaller footprint sites. First, the SIF
measurements that are directly correlated with GPP provide
a better constraint on estimating LE, H , and GPP. The ANN
approach in WECANN also uses a novel training technique
based on probabilistically merging different datasets to re-
move outliers from its target dataset. Therefore, WECANN
retrievals learn collectively from the different datasets (and
remote sensing observations) and are closer to the truth than
each of the individual target datasets.

4.3 Comparison against other products based on
remote sensing

In this section, we compare the WECANN-based estimates
to other datasets used in the training to better understand how
WECANN differs from those training data. Figure 8 shows
the comparisons for LE and indicates that our product has
a relatively similar R2 with the three products (R2

= 0.96
with FLUXNET-MTE and ECMWF and R2

= 0.94 with
GLEAM). However, the scatter plot with FLUXNET-MTE
is more concentrated and aligned along the 1 : 1 line, fur-
ther emphasizing the consistency between the two datasets
(RMSD of 6.42 W m−2 for FLUXNET MTE versus 8.47 and
9.72 W m−2 for GLEAM and ECMWF, respectively). Differ-
ences in spatial patterns shown in Fig. 8a–c reflect that WE-
CANN exhibits smaller spatial differences with FLUXNET-
MTE than GLEAM or ECMWF and such differences exhibit
a narrower range between −10 and 10 W m−2. FLUXNET-
MTE overestimates LE compared to WECANN in transi-
tional tropical and subtropical regions and particularly over
India, which are regions with few eddy covariance towers.
GLEAM exhibits substantial differences with our product,
particularly in regions dominated by seasonal water stress
such as Brazilian savannas, the Horn of Africa, Central
America, India, and the subtropical humid part of Africa
south of the Congo. In the Sahel, GLEAM LE is higher
than our estimate and FLUXNET-MTE. The LE estimate
of ECMWF is nearly always higher than our estimate, with
much higher values in the Congo, the Amazon, southern
Brazil, and northern Canada. In Europe, where the ECMWF
estimate should be best because of the frequent weather op-
erational forecast checks and model adjustment in the region,
the estimates are more similar. The differences and similari-
ties of WECANN retrievals with the three target datasets are
consistent with the error estimates from TC. For example,
Fig. S4 shows that FLUXNET-MTE has the smallest error in
LE estimates globally compared to GLEAM and ECMWF,
other than across India. WECANN retrievals also have better
agreement with FLUXNET-MTE.

The differences in H estimates are more complex (Fig. 9).
First, the R2 values between WECANN and the other
datasets are slightly lower than for LE. ECMWF and
FLUXNET-MTE yield a higher R2 with WECANN (0.92)
while GLEAM has an R2 of 0.87. GLEAM exhibits lower
H in most of the NH, especially in seasonally dry regions,
potentially due to its simple formulation of ground heat flux
(G). H estimates are relatively higher over the Amazon and
Congo but lower over Indonesia for GLEAM. In the south-
ern Sahara and northern Sahel as well as in eastern Asia and
Canada, GLEAM has lower H compared to WECANN and
FLUXNET-MTE. ECMWF exhibits higher values in sea-
sonal dry regions such as the western US, Brazilian savannas,
southern Congo, and the Sahel compared to WECANN and
smaller values in the Amazon, Indonesia, over desert areas of
the Sahara and Arabian Peninsula, and Southeast Asia. The
GLEAM and ECMWF H difference maps show many sim-
ilar patterns: the Sahara, eastern Europe, and East Asia are
underestimated, while southern Africa and the eastern part of
the Amazon are overestimated. Similarly the errors patterns
estimated from TC (Fig. S5) are consistent with the compar-
ison of WECANN and the target datasets. Figure S5 shows
that ECMWF has higher errors in the Sahel, southern Congo,
and Brazilian savanna, and GLEAM has higher errors in the
Amazon, East Asia, and Central Africa.

The comparison between the GPP estimates shows sig-
nificant differences (Fig. 10). WECANN compares the
best against FLUXNET-MTE (R2

= 0.93), with MODIS
(R2
= 0.91) and ECMWF (R2

= 0.90) following. While all
three products have a similar R2, their spatial differences
are distinct. In the Amazon, ECMWF and FLUXNET-MTE
have larger GPP estimates compared to WECANN, while
MODIS estimates are much smaller. In cold northern lati-
tude regions of Siberia and northern Canada, all three prod-
ucts have a higher GPP than WECANN. In Congo, MODIS
and FLUXNET-MTE have higher GPP, while ECMWF has
a lower one. In central and the southwestern US, all three
products tend to yield lower GPP. Comparison of these
findings with the error estimates from TC (Fig. S6) shows
that FLUXNET-MTE has the lowest errors globally, while
ECMWF has the largest errors in the Amazon.

Finally, we compare annual anomalies of WECANN re-
trievals and the three training datasets globally and in dif-
ferent climatic zones. The zones are defined as polar (90–
60◦ N), NH midlatitude (60–10◦ N), tropics (10–15◦ S), and
SH midlatitude (15–60◦ S). Results are presented in Fig. S7.
WECANN anomalies are derived from the mean values be-
tween 2007 and 2015. However, not all the training products
are available for this period. Therefore, their anomalies are
calculated from their respective temporal domain, which is
2007–2011 for FLUXNET-MTE, GLEAM, and MODIS and
2008–2011 for ECMWF. Anomalies from the four products
have similar patterns in general, while their absolute values
differ. Anomalies in GPP have better agreement across dif-
ferent products compared to LE and H . Evaluation of the
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Figure 8. Difference between annual mean LE retrieved by WECANN and the three target datasets (a–c). Scatter plots of LE retrieved from
WECANN vs. from each of the target datasets (d–f). Data used are from 2011.

discrepancies between these anomalies is beyond the scope
of this paper and will be characterized in detail in a future
study.

4.4 Extreme event assessment

In order to further assess WECANN on regional scales, we
analyze its capacity to capture extreme events. We thus se-
lected three major heat wave and drought events that oc-
curred during the temporal coverage of the WECANN prod-
uct. These events are the 2010 Russia heat wave, 2011
Texas drought, and 2012 US Corn Belt drought. Figure 11
shows the percentage of average monthly anomalies with re-
spect to mean values, for LE,H , and GPP, in each of the three
cases. The patterns reveal significant anomalies in all fluxes,
which is consistent with reported patterns. In summer 2010,
a historical heat wave occurred over western Russia and re-
sulted in an all-time maximum temperature record in many
locations (Dole et al., 2011). The extent of reduction in LE
and increase in H derived from WECANN retrievals is con-
sistent with estimates reported in the literature (Lau and Kim,
2012), with a 10–15 % increase in H and a 15–20 % reduc-

tion in LE. In early 2011, drought conditions developed in the
southern US, particularly in the states of Texas and Louisiana
(Luo and Zhang, 2012). By April, most of Texas, Oklahoma,
Louisiana, and Arkansas was classified in the D4 drought
condition (exceptional drought), and the situation continued
throughout the summer and fall of 2011 as reported by the
US Drought Monitor (Svoboda et al., 2002). As Fig. 11 re-
veals, the same spatial pattern is pronounced in the monthly
anomalies derived from WECANN retrievals, emphasizing
massive reduction in LE and GPP accompanied by high H
over the region.

Finally, an intense drought in the central US, particularly
in the Corn Belt, occurred in 2012 and reduced maize yields
by about 25 % and increased prices by 17–24 % (Boyer et al.,
2013; USDA, 2013). By mid-September 2012 almost two-
thirds of the continental US was covered by drought, and
different parts of the US Corn Belt were categorized as ei-
ther D3 (extreme drought) or D4 (exceptional drought) con-
ditions. Figure 11 shows similar patterns in LE, H , and GPP,
with a significant positive anomaly in H (∼ 20 %) and re-
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Figure 9. Similar to Fig. 8 but for H instead of LE.

ductions in LE and GPP (∼ 20 %), consistent with crop yield
decrease.

4.5 Basin-scale evaluation

We also assess the accuracy of WECANN ET retrievals us-
ing ET estimates from the independent water budget clo-
sure model introduced in Sect. 2.3.2. The analysis is carried
out for the years 2007 to 2010, which overlap between WE-
CANN retrievals and the water budget closure study. Fig-
ure 12 shows the relative absolute difference in ET estimates
from WECANN compared to the ET estimates from the wa-
ter budget study for each of the five basins (mean value and
1 standard deviation across 48 months). Mean absolute dif-
ferences vary between a low of 5 % in the Amazon and a
larger 24 % value in Colorado, while the other three basins
have mean differences of 9, 17, and 20 %. While the dif-
ferences vary between a low and moderate range, it should
be noted that the coarse spatial resolution of the WECANN
product causes a difference in the spatial averaging to get the
basin-level estimates of ET. Moreover, in the budget closure
estimates only a single runoff (at the outlet of the considered
basin) is used over the entire basin; therefore, large hetero-

geneous basins such as the Colorado and Mississippi have
large uncertainties associated with them, as runoff does not
correctly constrain the flux distribution over the entire basin.
It is over those basins that the WECANN retrieval compares
less favorably with these large-scale estimates. Downscaled
version of those estimates would further help in the evalua-
tion of ET products.

4.6 Uncertainty analysis of WECANN retrievals

One of the advantages of a statistical retrieval algorithm, in
particular of ANNs, is that the run time is extremely fast af-
ter the training step. This enables us to characterize the un-
certainty of the retrievals by propagating the uncertainties in
the input variables through the network. For this purpose, we
set up a 10 000-bootstrap experiment and run the WECANN
retrieval by adding error to input variables. The errors are
normally distributed with a mean of zero and a standard devi-
ation that depends on the input variable. For SIF, air temper-
ature, and soil moisture, we use the error estimates or stan-
dard deviations reported in their associated products. These
errors vary spatially and temporally and we used the associ-
ated value for each time and space data point. For net radi-
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Figure 10. Similar to Fig. 8 but for GPP instead of LE.

ation, we use a constant standard deviation of 34.58 W m−2

based on the analysis by Pan et al. (2015). For precipitation
and SWE estimates, we use a conservative 10 % of the esti-
mates themselves as a standard deviation for error. For each
bootstrap replicate, we sample from the error distribution of
each input variable and add that to the input.

Figure 13 shows the results of the bootstrap for each of
the LE, H , and GPP values globally and in different climatic
zones (defined in Sect. 4.3). Each panel in Fig. 13 shows the
uncertainty derived from the bootstrap experiment, relative
to the interannual variability in the retrievals. GPP estimates
are provided in units of petagrams of carbon per year as total
productivity in each region. LE and H are provided in units
of watts per square meter as an average rate of flux in each
region.

On a global scale the GPP ranges between a mini-
mum of 117.15± 2.379 PgC yr−1 in 2015 and a maxi-
mum of 124.82± 2.482 PgC yr−1 in 2007. Similarly, LE has
a minimum of 37.40± 0.54 W m−2 in 2015 and a max-
imum of 38.33± 0.53 W m−2 in 2011. H has a maxi-
mum of 41.00± 0.54 W m−2 in 2015 and a minimum of
39.43± 0.52 W m−2 in 2011.

The interannual variations in surface fluxes and GPP show
distinct patterns. For example, in the year 2015, which was
an El Niño year, LE and GPP decreased notably, and H in-
creased to an extreme value in the 9 years of the WECANN
product. Moreover, from 2011 to 2015 both LE and GPP have
a consistent decreasing trend on a global scale. The interan-
nual variability in GPP and LE is similar on a global scale,
while their regional patterns are different. For example, in
the year 2015, GPP on a global scale and in all regions has
decreased with respect to 2014, while LE in polar and NH
mid-latitudes has increased, and LE on a global scale has de-
creased. As expected, the variability in LE and H is anticor-
related. We note that while WECANN is trained on three in-
dependent estimates of LE, H , and GPP, its interannual vari-
ability is driven by remote sensing observations that are input
into the ANN.

4.7 Impact of SIF on the retrieval of surface fluxes and
GPP

Satellite SIF observations are relatively new and have not
been previously used to estimate LE andH on a global scale.
Therefore, we want to assess the information content of SIF
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Figure 11. Mean monthly anomalies (in percentage with respect to mean value) for three extreme heat wave events.

Figure 12. Relative absolute difference between ET estimates of
WECANN compared to modeled ET from basin-scale water budget
closure. Markers show the mean, and whiskers show 1-standard-
deviation intervals.

observations in the WECANN retrievals by replacing them
with more typical optical and/or near-infrared indices of veg-
etation (normalized difference vegetation index, NDVI, or
enhanced vegetation index, EVI).

To do so, we trained two different ANNs with NDVI and
EVI instead of SIF data on each of the three variables (LE,
H , and GPP) and evaluated the retrievals against the same
FLUXNET tower measurements used in Sect. 4.2 for eval-
uating WECANN retrievals. Tables S5–S7 show the results
of evaluations of these three retrievals against the tower mea-
surements for LE, H , and GPP. In terms of the correlation
coefficient, on average all three retrievals have a relatively
similar performance except in regions such as Spain where
phenology (and incident radiation) is not the main contribu-
tor to the flux variability (ES-LgS). Indeed, in such regions,
changes in canopy structure are more limited and changes in
response to water stress (through changes in light- and water-
use efficiency) are the primary reason for the seasonal vari-
ability. This emphasizes, similar to current thinking on the

SIF signal, that the monthly SIF signal is dominated by inci-
dent radiation and canopy structure but that in some condi-
tions light-use efficiency changes are detected by SIF but not
optical vegetation indices (Lee et al., 2013). We also point
out that current SIF retrievals (such as those from GOME-2
used here) are still noisy as they were not obtained by satel-
lites designed to measure SIF. Future SIF-designated mis-
sions such as Fluorescence Explorer (FLEX) will have higher
accuracy and finer spatial and temporal resolution (Drusch et
al., 2016). We expect they will further enhance the retrievals
of surface fluxes and GPP such as those from WECANN.

5 Conclusions

This study introduces a new statistical approach to retrieving
global surface latent and sensible heat fluxes as well as gross
primary productivity using remotely sensed observations on
a monthly timescale. The methodology is developed based
on an artificial neural network that uses six input datasets
including solar-induced fluorescence, precipitation, net radi-
ation, soil moisture, snow water equivalent, and air tempera-
ture. Moreover, a Bayesian approach is implemented to op-
timally integrate information from three target datasets for
training the ANN, using triple collocation to calculate a pri-
ori probabilities for each of the three target datasets based on
their uncertainty estimates.

The new global product, referred to as WECANN,
is evaluated using target datasets as well as FLUXNET
tower observations. The evaluation results compared
with training datasets show that our retrieval has sim-
ilar correlation with the three products, while it has
the smallest RMSD with FLUXNET-MTE for LE
(RMSD= 6.42 W m−2), H (RMSD= 7.84 W m−2), and
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Figure 13. Annual mean estimates and uncertainty bounds of LE (top row), H (middle row), and GPP (bottom row) retrievals on global (left
column) and regional (four right columns) scales between 2007 and 2015. The central line in each box indicates the mean, the edges of the
box are the 25th and 75th percentiles, and the whiskers show the most extreme values.

Biogeosciences, 14, 4101–4124, 2017 www.biogeosciences.net/14/4101/2017/



S. H. Alemohammad et al.: Water, Energy, and Carbon with Artificial Neural Networks 4119

GPP (RMSD= 0.88 gC m−2 day−1), which is believed to be
one of the most realistic global datasets. It also has the lowest
RMSE based on our TC error estimates (Fig. S4–S6), despite
its reported underestimated interannual variability due to
the use of climatological values for several meteorological
drivers (Miralles et al., 2014a, 2016). Such a tendency can
also be summarized from the global difference maps, which
show that FLUXNET-MTE has the best agreement with
WECANN retrievals. The WECANN and FLUXNET-MTE
approaches are both based on machine learning, although
the FLUXNET-MTE retrievals use a regression tree rather
than an ANN. Nevertheless, this commonality of methods
may also contribute to the greater correspondence between
these two datasets.

The retrieval maps indicate that LE, H , and GPP have
similar seasonal variability and distribution, which are de-
termined by the annual phenological cycle in energy-limited
northern latitude regions, dryness in Mediterranean and mon-
soonal climates, and by light availability in rainforests. Sea-
sonal radiation has a great impact for all three variables on
some regions, such as the eastern US, Europe, and East Asia,
which have wet conditions, are highly vegetated and located
in midlatitudes. Conversely, the seasonal variability in LE,
H , and GPP in some low-latitude and wet condition regions,
such as Amazon rainforest, southern Africa, and Southeast
Asia, as well as some low-latitude arid regions, such as the
southwestern US, Western Australia, North Africa, and west-
ern Asia, are not significant, as there is less seasonal so-
lar radiation variability in the aforementioned regions. Com-
parison between the LE, H , and GPP, shows that they all
demonstrate generally similar patterns of seasonal variability
through time.

We also assessed the impact of SIF on retrieval quality. In
comparison to optical-based vegetation indices, SIF has bet-
ter performance in regions where phenology and incident ra-
diation are not the main contributors to flux variability, while
it has similar performance in other regions.

From the evaluation results compared with FLUXNET
tower observations, it is noted that WECANN has better per-
formance compared to other global products. LE and H es-
timates from WECANN are more consistent with tower ob-
servations compared to GPP. WECANN retrievals have bet-
ter correlation with tower observations at 76 % of sites for
LE, 58 % of sites forH , and 55 % of sites for GPP compared
to other products. Moreover, retrievals from WECANN out-
perform other global products in capturing the seasonality of
surface fluxes and GPP across a wide range of sites with dif-
ferent climatic and biome conditions.

We also assessed the performance of WECANN in cap-
turing extreme heat wave and drought events and showed
that in the case of the 2010 Russia heat wave, 2011 Texas
drought, and 2012 US Corn Belt drought, WECANN prop-
erly captures the extent of the anomalies in LE, H , and GPP.
Moreover, an independent ET estimate from a water budget
closure model was used to evaluate WECANN ET estimates

across five large basins, and it showed small to moderate er-
rors for WECANN retrievals.
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