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Collaborative localization and formation flying
using distributed stereo-vision

Nathan Piasco, Julien Marzat, Martial Sanfourche

Abstract— This paper considers collaborative stereo-vision as
a mean of localization for a fleet of micro-air vehicles (MAV)
equipped with monocular cameras, inertial measurement units
and sonar sensors. A sensor fusion scheme using an extended
Kalman filter is designed to estimate the positions and orienta-
tions of all the vehicles from these distributed measurements.
The estimation is completed by a formation control to maximize
the overlapping fields of view of the vehicles. Experimental
tests for the complete perception and control loop have been
performed on multiple MAVs with centralized processing on a
ROS ground station.

Index Terms— collaborative localization, formation control,
micro-air vehicles, stereo-vision

I. INTRODUCTION

Vision-based localization is a popular approach in the field
of robotics, particularly when the robots considered are flying
vehicles in GPS-denied cluttered environments. Numerous
SLAM and visual odometry methods have been developed
to localize a single aerial vehicle, based on either monocular
data [1], [2], which suffers from depth uncertainty, or stereo-
vision [3], [4], which uses additional 3D information.

Recent research has focused on fleets of MAVs, whose
main interests are to carry complementary sensors on cheaper
vehicles as well as their ability to cover more field [5]. The
context considered is to localize all MAVs in a fleet by fusing
their distributed embedded measurements. A first approach
of collaborative localization consists in merging individual
maps created by mono-vehicle monocular SLAMs. The
algorithms from [6]–[8] propose efficient fusion strategies,
however this approach suffers from the inherent drawbacks
of monocular SLAMs, i.e. depth uncertainty and drift. As
an alternative approach, the fusion of collaborative stereo-
vision (with a varying baseline, as each vehicle moves) with
IMU data has been investigated in [9] for estimating the
relative pose of two MAVs. In [10], the relative localization
of multiple MAVs was obtained by combining IMU measure-
ments and an homography estimation. The same authors also
proposed a formation control to maintain the fleet in a desired
layout. These papers contain promising results on stereo-
vision for fleet localization, however the entire estimation
process was not tested in the experiments reported since the
vision algorithms were emulated by motion tracking data.

The present work proposes a filtering scheme (Section II)
to localize in a global frame all the MAVs of a fleet, using
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their monocular cameras in a collaborative stereo-vision
process and IMUs but also additional altitude measurements
and linear velocity estimates. A formation control law is
also proposed (Section III) for maximizing the overlap of
the MAV fields of view, in order to enhance cooperative
localization. The complete vision and control loop has been
flight-tested on multiple Parrot R© AR Drones [11] with cen-
tralized processing on a ROS ground station.

II. COLLABORATIVE LOCALIZATION

A. Notations

A vector rxi stands for a variable associated with vehicle
i and expressed in the coordinate frame linked to vehicle r.
The world inertial frame is denoted by w. Rotations are
represented by quaternions according to Hamilton notation:

q =

[
q
q

]
(1)

where q stands for the real part of the quaternion and the
vector q is associated with the imaginary part. Hamilton
product of two quaternions is defined as follows [12]:

q1 ⊗ q2 =

[
q1q2 − q1 · q2

q1q2 + q2q1 + q1 × q2

]
(2)

where · refers to the dot product and × the cross product.
Measurements and variables symbols used afterward are:

p for a position,
ω for an angular velocity,
v for a linear velocity,
R(q) for a rotation matrix associated with q.

B. MAV characteristics and sensors

Multiple Parrot R© AR Drones 2.0 have been used to test
the filter and the control law described in this paper. These
low-cost vehicles are equipped with:
• two monocular cameras: one at the front of the MAV

and the other downward,
• an IMU (3-axis accelerometers and 3-axis gyrometers),
• a sonar sensor directed downward,
• an on-board non-programmable CPU.

The communication between the MAVs and a laptop is
established through a Wi-Fi connection. The MAV driver
provides a pre-filtered information about linear velocity of
the MAV, computed by sensor fusion between optical flow
acquired by the bottom camera and IMU accelerations [11].
The sonar sensor provides an altitude measurement in the
MAV frame, izi. The MAV altitude in world coordinates can
be obtained by projecting this value as wzi = R(wqi)

izi.
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The following measurements are thus available as inputs for
each vehicle in the filtering scheme:
• angular velocity iωi,
• linear velocity ivi,
• ground altitude wzi,
• raw front image (640x360 resolution).

The state vector (pose) of the i-th MAV is

xi =

(
wqi
wpi

)
(3)

and its dynamics are modeled by
˙wqi = 1

2

(
wqi ⊗ iωi

)
˙wpi = R(wqi)vi

, (4)

where iωi =
(
0 iωT

i

)T
. This model assumes that faster

loops regulate the orientation and velocity such that direct
velocity control inputs can be applied (which is allowed by
the ardrone_autonomy ROS driver1).

C. Distributed stereo-vision

The aim of visual pose recognition is to compute the
relative pose between two cameras with known intrinsic
parameters and overlapping fields of view. The estimated
pose contains:
• the relative rotation from camera 2 to camera 1

1q2
v ≡ 1q2, (5)

• the relative position, up to a scale factor λ, of camera
2 to camera 1: 1p2

v ≡ λ1p2. To deal with this scale
factor in the filtering scheme, the estimated translation
is normalized such that

1p2
v

= 1p2‖1p2‖−1. (6)

The usual approach involves to first establish feature corre-
spondences between the two images (features fi from image
1 and f ′i from image 2 correspond to 3D points pi) and then
solve the pose recognition problem.

1) Matching method: The matching process can be di-
vided in two steps: an extraction of features and description
on each image, followed by descriptor pairing. The SIFT [13]
feature points extractor and descriptor was used (OpenCV
implementation). This widely-used algorithm is versatile
and scale-invariant, which is important in the case of large
baseline stereo-vision problems.

2) Relative pose computation: Once the feature cor-
respondences have been established, the five-point algo-
rithm [14] is used to recover the relative pose between
the two cameras (OpenGV [15] implementation). Nistér’s
algorithm computes the essential matrix E that contains the
relative rotation and translation information E = R[t]×,
where [t]× denotes a skew-symmetric matrix of t,

[t]× =

 0 −tx ty
tz 0 −tz
−ty tx 0

 . (7)

1https://github.com/AutonomyLab/ardrone_autonomy

An SVD decomposition of E makes it possible to recover
the relative rotation matrix R and translation vector t. As
the matching part provides most of the time more than five
corresponding features, a RANSAC step was introduced to
minimize the re-projection error of the feature points on the
essential matrix [15]. In the experiments, the computation
time of the pose reconstruction process (synchronized im-
ages) was always lower than 0.5s on a laptop with an Intel R©

i7 processor, while the filter frequency was set to 15Hz.

D. Filtering scheme

This section describes the sensor fusion scheme, which
consists in an Extended Kalman Filter (EKF), to estimate
positions and orientations of all the MAVs.

1) Two-vehicle case: Before considering a complete fleet
of MAVs, the filter design is presented for estimating poses
of two vehicles in the world frame. The state vector consid-
ered contains the poses of the two MAVS as

X =
(
wqT1

wqT2
wpT1

wpT2
)T
. (8)

Unlike [9], the scale factor λ resulting from the stereo-vision
process is not needed here, due to the normalization from
equation (6). The input vector is composed of the variables
collected from the IMUs and embedded velocity filters:

U =
(

1ωT
1

2ωT
2

1vT1
2vT2

)T
. (9)

The measurement vector incorporates the relative pose com-
puted by the stereo-vision process and the absolute ground
altitudes measured by the sonar sensors:

Y =
(

(1p2
v
)T (1q2

v
)T wz1

wz2

)T
. (10)

It is assumed that the distance from the camera to the IMU
is small enough to be negligible. Deriving the state vector
leads to the following formulation:

Ẋ = f(X,U +W )

Ẋ =


˙wq1

˙wq2

˙wp1

˙wp2

 =


1
2

(
wq1 ⊗ (1ω1 + ηω)

)
1
2

(
wq2 ⊗ (2ω2 + ηω)

)
R(wq1)(1v1 + ηv)

R(wq2)(2v2 + ηv)

(11)

where W = (ηT
ω η

T
ω η

T
v η

T
v )T is the zero-mean Gaussian

input noise vector, whose variances are reported on the
diagonal of the input covariance matrix Q. The measurement
vector can be expressed according to the state variables as

Y = h(X) + V (12)

=


R(wq1) (wp1 − wp2)λ12

wq∗1 ⊗ wq2
wp1,z
wp2,z

+


ηpr

ηqr

ηz
ηz


where:
• V =

(
ηT
pr
ηT
qr
ηz ηz

)T
is the zero-mean Gaussian

measurement noise vector, whose variances are placed
on the diagonal of the output covariance matrix R,
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• wpi,z stands for the third component of vector wpi,
• wq∗1 represents conjugate quaternion of wq1 [9],
• the scale factor is taken equal to the inverse of the

distance between the MAVs, λij = ‖wpi−wpj‖−1. The
predicted positions are used and considered as constant
in the filter derivation. This approximation performed
better in preliminary tests than introducing the exact
linearization, which showed numerical stability issues.

The Euler discretization of equation (11) yields

Xk+1/k = Xk/k + f(Xk/k,Uk)∆t

= f̃(Xk/k,Uk). (13)

Kalman equations give the evolution of the matrix covariance
error attached to the state vector,

Pk+1/k = FkPk/kF
T
k +LkQL

T
k (14)

where Fk =
∂f̃

∂X

∣∣∣∣∣
Xk/k,Uk

, Lk =
∂f̃

∂U

∣∣∣∣∣
Xk/k,Uk

. (15)

The state vector is updated with the Yk vector:

Kf = Pk+1/kH
T
k (HkPk+1/kH

T
k +R)−1

Xk+1/k+1 = Xk+1/k +Kf

(
Yk − h(Xk+1/k)

)
Pk+1/k+1 = (I −KfHk)Pk+1/k (16)

where Kf is the Kalman gain and Hk =
∂h

∂X

∣∣∣∣
Xk/k

.

2) General case: The EKF can be generalized for a fleet
of N MAVs. The state vector becomes an 7N -long vector,

X =
(
wqT1 . . . wqTN

wpT1 . . . wpTN
)T

(17)

and the input vector can now be written as

U =
(

1ωT
1 . . . NωT

N
1vT1 . . . NvTN

)T
. (18)

The measurement vector now depends on the two MAVs i
and j whose images have been used for computing relative
pose information, as well as all altitude measurements:

Yi,j =
(

(ipj
v
)T (iqj

v
)T wz1 . . . wzN

)T
(19)

The state and output equations are now

Ẋ = f(X,U +W ) =



1
2

(
wq1 ⊗ (1ω1 + ηω)

)
...

1
2

(
wqN ⊗ (NωN + ηω)

)
R(wq1)(1v1 + ηv)

...

R(wqN )(NvN + ηv)


(20)

Yi,j = hi,j(X)+V =



R(wqi)(
wpi − wpj)λij + ηpr

wq∗i ⊗ wqj + ηqr

wp1,z + ηz
...

wpN,z + ηz


(21)

Each update step of the EKF corrects solely the poses of two
different MAVs:

Kf = Pk+1/kH
T
i,j,k

(
Hi,j,kPk+1/kH

T
i,j,k +R

)−1

Xk+1/k+1 = Xk+1/k +Kf

(
Yi,j − hi,j(Xk+1/k)

)
Pk+1/k+1 = (I −KfHi,j,k)Pk+1/k (22)

with Hi,j,k =
∂hi,j
∂X

∣∣∣∣
Xk/k

.

If the pairs of MAVs used in the stereo-vision process are
chosen appropriately at each time step (see Section III-A),
the poses of all vehicles of the fleet can be updated.

E. Experimental results
The proposed filter has been compared with the monocular

AR Drone SLAM described in [2], which is related to the
parallel tracking and mapping method (PTAM) [1]. During
this experiment with two MAVs, one of the vehicles followed
a reference trajectory to draw a one-meter-side square while
the other was hovering. The localization computed by our fil-
ter, with and without stereo-vision correction, was compared
with this monocular method for the moving vehicle (Figure 1,
Table I).The results show that the stereo-vision correction
significantly improves the localization, with a smaller mean-
square error, and the obtained trajectory is consistent with the
monocular SLAM (which is however unable to deal with
multiple vehicles). Successful experiments have also been
conducted for a fleet of three MAVs.

(a) Only-predictive filter (b) Filter with stereo-vision correction

Fig. 1: Comparison of the filter with monocular SLAM [2]

TABLE I: Filter evaluation (MSE)

Method x-axis y-axis

Only-predictive filter 0.01294m2 0.01522m2

Filter with stereo-vision correction 0.00477m2 0.00456m2

An experimental observability analysis has been conducted
by studying the rank of the following (7 +N)(7N)× (7N)
observability matrix during the estimation process:

Obsk =



Hk

HkFk−7N−1

HkFk−7N−1Fk−7N−2

...

HkFk−7N−1Fk−7N−2 · · · Fk


(23)



The results showed that the rank of Obsk is always 2
degrees below its number of columns. Indeed, the lateral
translations are not fully observable due to relative pose
correction (unlike the vertical axis thanks to the altitude
sensor). The filter thus behaves as an odometry on these axes,
which requires a good initialization to remain accurate.

III. FORMATION CONTROL

In this section, a formation control is proposed to si-
multaneously (i) maximize the overlapping fields of view
of MAV pairs to guarantee stereo-vision feasibility and (ii)
ensure collision avoidance between MAVs. Each MAV has
four control inputs: three linear velocities and a yaw angular
velocity. To simplify the problem, the control law is divided
into three independent parts (see Figure 2):

1) align the MAVs on the same reference yaw,
2) constrain the vehicles in a common reference vertical

plane P ,
3) maximize the area of overlapping fields of view by

pairs of MAVs and avoid collisions.
The first two parts are achieved by simple proportional
controllers (for fleet motion, the yaw and vertical plane
references can be modified or associated with a MAV leader).
The third objective requires a more complex control law,
detailed in what follows, to compute the linear velocities
ui = (uy uz)T where the y and z axes form an orthogonal
basis in the reference plane P .

Fig. 2: MAVs are headed in the same direction, in a common
vertical plane. The control law aims at maximizing pairs of
overlapping fields of view FOV1, FOV2 and FOV3.

A. Maximizing overlapping fields of view

A camera field of view (FOV) can be described as shown
in Figure 3, with its width and height parameterized by the
depth of field d and the camera angles of view α and β,

w = 2d tan
(α

2

)
h = 2d tan

(
β

2

) . (24)

With this parameterization, the area of overlapping FOVs
for MAV pairs can be computed as a function of the MAV
positions in the vertical plane, and maximized locally thanks
to a gradient ascent algorithm. An algorithm is proposed to

compute this area AΣ, which is basically the sum of the areas
of hatched rectangles in Figure 4.

Fig. 3: Field of view of a camera

Fig. 4: Area of overlapping fields of view, to be maximized

The area Ai,j of the overlap of two MAV FOVs i and j is
equal to

Ai,j = (min(xi,y, xj,y)−max(xi,y, xj,y) + w)

· (min(xi,z, xj,z)−max(xi,z, xj,z) + h) (25)

where xi is the position of MAV i in P ,

xi =

(
xi,y
xi,z

)
. (26)

This quantity exists only if the following conditions are true:{
‖xi,y − xj,y‖ < w
‖xi,z − xj,z‖ < h

, (27)

otherwise Ai,j is set to 0. The area function AΣ can be
computed using Algorithm 1, which chooses the minimum
number of MAV pairs to have a maximum area of FOV
overlaps, while ensuring that all vehicles are taken into
account (see Figure 5). This also provides the minimal
number of image pairs on which the stereo-vision should
be computed, while preserving the connectivity of the fleet.

Fig. 5: Algorithm 1 output: last configuration is forbidden



Algorithm 1: Computation of overlapping area function
AΣ(x)

Input : all vehicle positions xi, i ∈ [1, N ]
Output: AΣ

Data: L initially empty list
Areas for all possible pairs with overlapping FOVs
for i← 1 to N − 1 do

for j ← i+ 1 to N do
if ‖xi,y − xj,y‖ < w and ‖xi,z − xj,z‖ < h then

add Ai,j to L;
end

end
end
AΣ ← 0;
AΣ is the sum of the N − 1 largest Ai,j

such that each MAV is included
for i← 1 to N − 1 do

AΣ ← AΣ + maxL;
remove maxL from L;

end

B. Collision avoidance

The following repulsive term, described in [16], was used
to prevent inter-vehicles collisions:

ucol
i = 2k

N∑
j=1

(xi − xj)
gij
q
, (28)

where k is a positive control gain, gij = exp
(
−δTijδij/q

)
,

with δij = (xi − xj) and q a positive constant determining
the repulsion distance.

C. Complete control law

The resulting control input in the vertical plane is obtained
by summing the attractive term represented by the maximiza-
tion of the overlapping FOVs and the repulsive term:

ui = 2k

N∑
j=1

(xi − xj)
gij
q

+ k′
(
∂AΣ(x)

∂xi

)T

(29)

where
k′ is a positive constant,
x =

(
xT

1 xT
2 . . . xT

N

)T
,

∂AΣ(x)

∂xi
=

(
∂AΣ(x)

∂xi,y

∂AΣ(x)

∂xi,z

)
.

To analyze the stability of this control law, consider the
following Lyapunov function:

V =
1

2

N∑
i=1

k

N∑
j=1

gij + k′(K −AΣ(x)), (30)

with K a positive constant such as K > max
x

(AΣ(x)) to

ensure that V is positive. V̇ can be expressed as

V̇ = −k
N∑
i=1

N∑
j=1

δ̇Tijδij
gij
q
− k′∇AΣ(x)ẋ (31)

with ∇AΣ(x) =

(
∂AΣ(x)

∂x1

∂AΣ(x)

∂x2
. . .

∂AΣ(x)

∂xN

)
.

Following [17], the double sum can be rewritten as

N∑
i=1

N∑
j=1

δ̇Tijδij
gij
q

= 2

N∑
i=1

N∑
j=1

(ẋi)
T (xi − xj)

gij
q

(32)

Replacing in equation (31) yields

V̇ = −2k

N∑
i=1

N∑
j=1

(ẋi)
T (xi − xj)

gij
q
− k′∇AΣ(x)ẋ

V̇ = −2k

N∑
i=1

(ẋi)
T

N∑
j=1

(xi − xj)
gij
q

−k′
N∑
i=1

(ẋi)
T

(
∂AΣ(x)

∂xi

)T

V̇ =

N∑
i=1

(ẋi)
T

−2k

N∑
j=1

(xi − xj)
gij
q

−k′
(
∂AΣ(x)

∂xi

)T
)

(33)

Since ẋi = ui, it follows with equation (29) that

V̇ =

N∑
i=1

uT
i

−2k

N∑
j=1

(xi − xj)
gij
q
− k′

(
∂AΣ(x)

∂xi

)T


V̇ =

N∑
i=1

2k

N∑
j=1

(xi − xj)
gij
q

+ k′
(
∂AΣ(x)

∂xi

)T
T

·

−2k

N∑
j=1

(xi − xj)
gij
q
− k′

(
∂AΣ(x)

∂xi

)T


V̇ = −
N∑
i=1

uT
i ui ≤ 0

The derivative V̇ of the Lyapunov function V is thus negative
semi-definite for the designed control law, which guarantees
that the MAVs converge locally to an equilibrium. This
corresponds to the situation where V̇ = 0, i.e. the attraction
toward the local maximum of AΣ is exactly compensated by
the repulsion force (28) resulting in a null velocity ui = 0.

D. Results

1) Simulation: Simulations have been performed to an-
alyze the behavior of a larger fleet (see Figure 6). As the
maximization is gradient-based, the final layout of the fleet
depends on the initial positions of the MAVs.

2) Experiment: An experiment has been made with two
MAVs running the entire localization and control loop.
Results of this test are presented in Figure 7 and 8. It can
be seen that the vehicles converge to a stable formation
that maximizes the overlap of their FOVs and respects the
collision avoidance distance, which was set to 3 m via
parameter q.



Fig. 6: Simulation with 4 MAVs: positions (dots) and asso-
ciated FOVs (rectangles) at t = 0s (left) and t = 10s (right).

Fig. 7: View of the AR Drones (top) and of the estimated
poses (bottom) at t = 0s (left) and t = 8s (right). Red and
blue planes represent the MAV FOVs.

Fig. 8: Experimental MAV trajectories in the y-z plan

IV. CONCLUSIONS AND PERSPECTIVES

In this paper, a sensor fusion scheme including collabora-
tive stereo-vision, IMU, sonar and linear velocity data within
an EKF has been proposed to estimate the poses of all the
vehicles of a fleet. This algorithm is associated with a control
law that maximizes the overlapping fields of view of MAVs
in order to improve the stereo-vision process. Experimental
results with Parrot R© AR Drones show the interest of the
complete vision-based estimation and control loop. Stereo-
vision was run in real time, which is promising regarding the
applicability of this technique for localizing fleets of MAVs
in GPS-denied environments.

The localization and control algorithms are designed to
incorporate much more than two or three MAVs, which
remains to be confirmed by future experimental results.
With more MAVs, it could also be interesting to exploit the

redundancy of visual sensors to extend the stereo-vision to
trifocal (or more) relative pose estimation [18]. Finally, the
control law could be extended to perform more elaborate
fleet tasks, and the computation load could be distributed if
more advanced MAVs are used.
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