A Boulle

J Kieffer

High-performance Python for crystallographic computing

The Python programming language, combined with the numerical computing library NumPy, and the scientific computing library SciPy, has become the de facto standard for scientific computing in a variety of fields. This popularity is mainly due to the ease with which a Python program can be written and executed (easy syntax, dynamical typing, no compilation, etc.) coupled with the existence of a large amount of specialized third-party libraries that aim to lift all the limitations of the raw Python language. NumPy introduces vector programming improving execution speeds, whereas SciPy brings a wealth of highly optimized and reliable scientific functions. There are cases however, where vector programming alone is not sufficient to reach optimal performances. This issue is addressed with dedicated compilers that aim to translate Python code into native and statically typed code with support for the multi-core architectures of modern processors. In the present article we show how these approaches can be efficiently used to tackle different problems, with increasing complexity, that are relevant to crystallography: the 2-dimensional (2D) Laue function, the scattering from a strained 2D crystal, the scattering from three-dimensional nanocrystals and, finally, the diffraction from films and multilayers. For each case we provide detailed implementations and explications on the functioning of the algorithms. Different Python compilers (namely NumExpr, Numba, Pythran and Cython) are presented and used to improve performances and are benchmarked against state-of-the-art NumPy implementations. All examples are also provided as commented and didactic Python (Jupyter) notebooks that can be used as starting points for crystallographers curious to enter the Python ecosystem or willing to accelerate their existing codes.

Introduction

Python is a high-level programming language which is very popular in the scientific community.

Among the various reasons which make Python an attractive platform for scientific computing one can cite (Oliphant, 2007) :

-it is an interpreted (as opposed to compiled) and dynamically typed (i.e. the variable types can change depending on the context) programming language which allows for fast prototyping of scientific applications, -the syntax is clean and simple, hence easily accessible to non-professional programmers, -Python runs on different operating systems (OS), including the three major desktop OSs (Windows, MacOS and Linux), -it is distributed freely with a permissive license which favors an easy distribution of programs and library modules, -Python has a huge amount of libraries (both installed in the standard library or available through third parties) that allows to address almost every task one can possibly imagine. In the field of science and engineering this includes for instance vector programming with NumPy (http://www.numpy.org/), general purpose scientific computing with SciPy (https://www.scipy.org/), symbolic computing with SymPy (https://www.sympy.org), image processing (scikit-image, https://scikit-image.org/), statistical analysis (Pandas, http://pandas.pydata.org/), machine-learning (scikit-learn, http://scikit-learn.org), plotting (Matplotlib, https://matplotlib.org/) and many others. This popularity also concerns the crystallographic community. Fig. 1 shows the percentage of articles published every year by the International Union of Crystallography containing the word "Python" in the title or in the abstract. Between 2012 and 2016 this fraction has been multiplied by a factor ~12.

The dynamically-typed and interpreted nature of Python is also its greatest weakness when it comes to performances: the fact that the interpreter has to determine the type of each variable before running an operation results in increased execution times. Whereas the consequences of this remain limited when working with small data sets (i.e. a small number of operations), the performances dramatically decrease when repeating a large number of operations, i.e. in the case of loops (Oliphant, 2007;Behnel et al., 2011). This behavior is well-known and several improvements (in the form of third party libraries) have been brought to Python to mitigate or even completely suppress this issue. For instance, the NumPy library (Oliphant, 2007;van der Walt, Colbert and Varoquaux, 2011) introduces the so-called n-dimensional array which often permits to replace loops with vectorized operations (i.e. operations implicitly working on all components of a vector) resulting in significantly improved performances. Associated with the SciPy library which provides a wealth of scientific functions (linear algebra, optimization, integration, interpolation, statistics, signal processing, Fourier transformation, etc.) the NumPy module has established itself as the de facto standard for scientific computing within the Python ecosystem.

One of the limit of the vectorized approach implemented in NumPy is the evaluation of complicated mathematical formula on large arrays. When those arrays are too large to fit into the cache system of the processor (few tens of MB), every single operation needs to fetch and store the data from/to the central memory. The performances of NumPy can be improved with the NumExpr library (https://numexpr.readthedocs.io). NumExpr is precisely focused on the evaluation of complicated mathematical expressions and, among other improvements, it allows to take full advantage of the, now common, multi-core central processing units (CPUs).

There are cases however where looping constructs can not be avoided and where vector programming is of no help. This motivated the development of several projects aiming at replacing the critical parts of Python code with compiled code. This is the case of the popular Cython library (https://cython.org/) which translates Python into C code (Behnel et al., 2011) which is then compiled and linked against the standard Python interpreter, which is also referred to as CPython (as it is mainly written in C) in order to avoid confusion with Python language itself. Another project, with a similar purpose, is the Pythran library (https://pythran.readthedocs.io/) which is a compiler to the C++ language (Guelton et al., 2015;Guelton, 2018). The latest contender in this "high-performance Python" game is the Numba project [START_REF] Lam | LLVM 15 Proc[END_REF]. Numba (http://numba.pydata.org/) was first released in 2012 but is fully open-source only since 2017. There are several technical differences between these libraries which will be briefly discussed in the next part, from the viewpoint of the user.

What motivated the writing the present article (and the associated Jupyter notebooks given in the Supporting Information) is that, despite the performance boosts promised by the above-mentioned libraries, finding on-line resources that are relevant to crystallography can sometimes be very difficult.

Most of the times the examples are either too simplistic or, on the contrary, too specialized to a particular field, making the transposition to crystallography not straightforward, especially for scientists who are not necessarily experts in high-performance computing (HPC). Given the importance of the Python programming language in the scientific community, a set of didactic examples of highperformance crystallographic computing, structured around the NumPy standard, was lacking.

In the present article we show how to accelerate Python-based crystallographic computing using NumPy, NumExpr, Numba, Pythran and Cython. For this purpose we present four examples with increasing complexity: the calculation of a simple two-dimensional (2D) Laue function, the scattering from a 2D circular crystal with strain, the scattering from an arbitrary three-dimensional (3D) collection of atoms using the Debye scattering equation [START_REF] Warren | X-ray diffraction[END_REF] and, finally, the scattering from an epitaxial multilayer structure using the recursive solution (Bartels, Hornstra & Lobeek, 1986) to the Takagi-Taupin equations (Takagi, 1969;Taupin, 1964). In all cases the algorithm are explained in details and compared with state of the art Python and NumPy implementations. The performances of each implementation are compared and discussed.

As a side-note we shall specify that the open-source communities evolving in the Python ecosystem are extremely active and it is therefore not possible to review all existing libraries aiming at accelerating Python computing. For instance, we deliberately omitted the intel-python library (https://software.intel.com/en-us/distribution-for-python), which, as the name suggests, is an implementation of the NumPy library developed by Intel corp. and optimized for Intel architectures. As a consequence, it might not operate correctly with chips from different providers (e.g. AMD) or with different architectures (e.g. ARM which is the leading architecture for the mobile market and is now targeting the PC and server markets). Moreover, the performances of intel-python are tightly linked to the exploitation of the multi-core architecture, a feature which is explicitly included in all of the above mentioned libraries. We also omitted the PyPy project (https://pypy.org/) which is a general purpose interpreter, written in Python, aiming at replacing CPython and targeting high performance. However, with the examples presented in this article, we did not observe any performance improvement.

Computational details

Broadly speaking, performance bottlenecks may either originate from the power of the CPU, i.e. the amount of instructions it is able to execute over a given time period, or from data (memory) input/output (Alted, 2010). The former issue fueled the race to the maximum CPU clock-speed (now capping around 4GHz) and the subsequent development of the multi-core CPU architectures. The latter led to the so-called hierarchical memory model: since the Random-Access Memory (RAM) effectively operates at a much lower rate than the CPU, processor manufacturers introduced on-chip, smaller but faster, cache memory. Modern CPUs now have up to three levels of memory cache (L1, L2, L3) with, respectively, increasing size and decreasing speed. Below we present the hardware as well the computing libraries used in this work. Their functioning will be briefly discussed in terms of these two concepts.

Library specifications 1

In this work, the 1.13.3 version of the NumPy library is used. As mentioned earlier, NumPy introduces the multi-dimensional array object which, contrarily to the native Python "list" object (which stores other Python objects), is of fixed size at creation and contiguously stores data of the same type and size.

Vectorized operations are performed on all elements of an array without the necessity to loop over the array coordinates from the Python code. As a consequence, as illustrated below, the code is cleaner and closer to mathematical notation. These vectorized operations are implemented in C language which results in significant speed improvements (Oliphant, 2007;van der Walt, Colbert and Varoquaux, 2011). The fact that the data is stored contiguously in the RAM allows to take advantage of vectorized instructions of modern CPUs such as SSE (Streaming SIMD Extensions, with SIMD meaning "Single Instruction Multiple Data") or AVX (Advanced Vector Extensions) which allows to work on several data elements per CPU clock cycle [START_REF] Rossant | IPython Interactive Computing and Visualization Cookbook -2 nd Edition[END_REF]. For instance the AVX2 standard is characterized by 256-bits wide registers, hence containing 4 double precision (64 bits) floating point numbers.

NumPy operates optimally when the calculations are performed on data fitting the cache of the CPU (say, a few tens of MB). For larger data sets, the performances are limited by the bandwidth to access the data stored in the RAM. NumExpr (version 2.6.4 in this work) has been specifically developed to address these issues with NumPy. NumExpr is a "just-in-time" (JIT) compiler2 for mathematical formula (relying on an integrated computing virtual machine) which splits the data into smaller chunks that fits within the L1 cache of the processor (a technique known as "blocking") and avoids allocating memory for intermediate results for optimal cache utilization and reduced memory access. The chunks are seamlessly distributed among the available cores of the CPU which results in highly parallelized code execution.

One important factor limiting Python's performances is the conversion from the Python object ("PyObject" 3) to a native data type. Although NumPy and NumExpr allows to lift this limitation by working with arrays with fixed data types, conversions back and forth from PyObjects to native data types are still required which becomes critical when loops or branching are not avoidable.

The Numba library (version 0.34.0) is a JIT compiler for Python. Numba relies on LLVM (Low Level Virtual Machine, https://llvm.org/) to produce machine code from Python's bytecode that runs at speeds very close to compiled C [START_REF] Lam | LLVM 15 Proc[END_REF]. One of the greatest appeal of Numba is that this increase in performances is reached with very little code modifications as compared to pure Python. Moreover, Numba is compatible with NumPy arrays and supports SIMD vectorized operations and allows for a straightforward parallelization of loops.

Pythran (version 0.9.0) is an ahead-of-time (AOT) compiler for Python which also aims at accelerating scientific computations; it is therefore also fully compatible with NumPy and parallel execution (via the openMP project, https://www.openmp.org/). Pythran not only relies on static typing of variables but also performs various compiler optimizations to produce C++ code which is then compiled into native code (Guelton et al., 2015;Guelton, 2018). Although there are major technical differences between Numba and Pythran, from the point of view of the user, their implementation is quite similar (except the fact that Pythran requires a separate compilation step).

The most well-known compiler for Python is Cython (here used in version 0.26.1). Cython produces statically typed C code which is then executed by the CPython interpreter (Behnel et al., 2011).

Contrarily to Pythran and Numba, which are domain specific (i.e. scientific) languages, Cython is a general purpose AOT compiler. As such, it's syntax is more complex and, contrarily to Numba and Pythran code, (uncompiled) Cython code is not compatible with with the CPython interpreter.

However, this library potentially allows for the highest level of code optimization.

Hardware and operating system

All computations were performed on a Linux workstation equipped with two Intel Xeon E5-2698v4 processors (2×20 cores, operating at 2.2 GHz base frequency and 3.6 GHz maximum frequency) and 194 GB of random access memory (RAM). The operating system is Kubuntu 18.04 with the 3.6.6 version of the Python programming language. The Python language, and all third party libraries were installed from the official software repository of the Linux OS used in this work (except Pythran which has been installed from the Python package index using the package installer pip [https://pypi.org/project/pip/]). Windows and MacOS users might want to use the Anaconda Python distribution (https://www.anaconda.com/) that allows for a simple module management similar to what is found in the Linux ecosystem.

Before going further it is worth mentioning that, in the context of this article, we are not going to consider HPC based on Graphics Processing Units (GPUs). The main reason is that programming such devices requires specific (computer-scientist) skills which are out of the scope of this article. Although high-level Python wrappers have been developed for the two main GPU computing frameworks (CUDA and OpenCL), getting the best possible performances out of a given device in general requires the development of low-level kernels adapted to the device. The second reason is that, contrary to multi-core CPUs, GPUs able to perform HPC are much less widespread and are in general only to be found in desktop workstation (i.e. most laptops are excluded).

Implementation

Two-dimensional Laue function

In this first section we are going to present in details the different implementations of a given problem using the different libraries discussed above. For this purpose we shall use a simple example, namely a two-dimensional Laue function [START_REF] Warren | X-ray diffraction[END_REF]:

(1) This equation describes the scattering from square crystal having N unit-cells in both directions; n and m are the indices of the unit-cell in each direction and H and K are the continuous Miller indices.

Pure Python implementation

A naive Python implementation of this equation into a function is as follows4 :

This function takes four arrays as arguments: two containing the unit-cell coordinates (n and m) and two containing the reciprocal space coordinates (h and k), line 1. Line 2 creates the Python list which will receive the results (the range(x) function generates a list of integers ranging from 0 to x-1, whereas the len(y) function returns the size of the array y). Lines 3-7 are the loops over the reciprocal and real space coordinates: the "for x in y" instruction loops over all x values stored in the y list, whereas the "for i, x in enumerate(y)" instructions loops over all x values stored in the y list and a loop counter is stored in the variable i. Line 8 computes the complex exponential and the sum, and the result is stored in a temporary variable in order to avoid accessing the Python list from inside the loop. When the loops over the real space coordinates are completed the result is stored in one of the cells of the result list, line 9.

In the following, a square crystal with 100 unit-cells in each direction is taken as an example. In addition, a complete reciprocal lattice unit-cell is sampled with a resolution of 1/(100×6), where 6 is the oversampling rate. The oversampling rate can be viewed as the number of points needed to describe a single Laue fringe. With a sampling rate of 1, only the main peak and the minima are sampled [START_REF] Neder | Diffuse Scattering and Defect Structure Simulations. A cook book using the program DISCUS[END_REF]. With a sampling rate of 2, i.e. the Nyquist rate, the main peak, the minima, and all secondary maxima are sampled, and so on. With these values, this implies that the complex exponential has to be computed 3.6×10 9 times. The above implementation of the Laue function requires 37 minutes of computing time (all values are reported in Table 1). The result of the calculation is shown in Fig. 2 (a,b) where the well-known Laue function is easily recognized, and it will be used as a reference to evaluate possible errors induced by the different implementations.

NumPy implementation

As mentioned in the introduction, the performance of pure Python dramatically decreases when looping over large data sets. A simpler, and way more efficient, implementation is possible using NumPy: The first striking observation is that the code is much more concise. It is also much clearer since the actual calculation requires one line (line 6) with a syntax similar to Eq. 1. Lines 2-5 add new (empty) dimensions to the input arrays. With this transformation the calculation of h*n + k*m actually returns a 4-dimensional array. This important feature of NumPy is known as "broadcasting". In mathematical notation this is equivalent to e ijkl = a i b j + c k d l . The exponential then operates on all cells of this array, and the sum over the real-space coordinates is performed using the sum() method of the NumPy arrays, line 6 (the "axis=(2,3)" argument designates the fact that the summation has to be performed over the last two dimensions of the array that contain the real space variables). Besides the cleaner syntax, this implementation is also much faster, with an execution time of ~4 mins. Since NumPy is the established standard for scientific computing, all computing times will be compared to this NumPy implementation.

NumExpr implementation

The implicit trade-off that has been made with the NumPy implementation is that, since the arrays are all stored in RAM at creation, this operation requires up to ~107 GB of RAM; the 4-dimensional array of complex numbers (coded over 128 bits) requires 53.6 GB but twice this space is needed to compute the exponential. This issue regarding memory usage is clearly a limitation of NumPy when dealing with very large arrays. This could be avoided by creating only one 2D output array and looping over the real space coordinates (see "NumPy + for loop" in the Supporting Information). However, a more efficient implementation is here to use NumExpr which, as explained above, makes a better use of memory allocation and avoids memory transfers. A very interesting feature of NumExpr is that only little code modification is required as compared to NumPy: There are two differences as compared to NumPy. Firstly, the expression to be evaluated is passed as an argument to a ne.evaluate() function (lines 8-9). Secondly, the sum function of NumExpr does not operate over several dimensions (line 9). Therefore the 4D array has been reshaped into a 3D array, where the last dimension contains the real-space variables (line 8).

9 1 def Laue_numpy(n, m, h, k): 2 h =
When only one thread is used, the acceleration is rather modest (×1.19). The real power of NumExpr is revealed when all cores are used (line 7). In the present case, the computing times drops to 17 sec (instead of 4 min for NumPy) that is a ×13.9 speedup with almost no code modification.

Numba implementation

As mentioned earlier, there are cases where the mathematical problem can not be solved using vector operations (an example will be given in the last section). In such cases, it can be useful to consider replacing the critical parts of the program with compiled, statically typed, code. Below is such an implementation using Numba: This code is almost identical to the pure Python implementation described above. The common way to use Numba consists in "decorating" the function to be compiled with a @nb.jit() statement (line 1).

10 1 def Laue_numexpr_parallel(n, m, h, k): 2 h =
Although this can be sufficient, the following options turn out to be important from the point of view of performances. First of all, the nopython=True statement tells the compiler to compile the code without Because the variables have to be statically typed, the (complex-valued) amplitude can not be stored in the final intensity array (which is real-valued). This is why a temporary complex variable is created on line 6 and used in line 9. Finally, it is important to mention that Numba operates more efficiently when using Python's math and cmath (for complex numbers) libraries rather than NumPy's mathematical functions (see, e.g., line 9).

This function runs in 2 mins 46 secs, which is a ×1.43 acceleration as compared to NumPy (see table 1). The gain, as compared to NumPy, is relatively small, and since significant code rewriting is needed when moving from NumPy to Numba, this option should only be considered if no vectorized solution exists. On the contrary, the gain is significant when compared to pure Python, and considering the little effort needed to compile the code, Numba appears as a straightforward solution to accelerated Pythonbased computing.

The examination of line 9 reveals that the evaluation of the complex exponential can be evaluated independently for each value of h, k, m and n, i.e. the evaluation of one value of the exponential is independent from the others. Therefore, significant improvement in the execution speed can be expected if these values are effectively evaluated in parallel, using the different cores of the CPU.

Instead of using Python's range() function, Numba's prange() function allows to select the loop to be parallelized. Below we have chosen to evaluate in parallel the values corresponding to different h/k values.

For this purpose the loops overs h and k have been condensed in a single loop (line 4) and the corresponding intensity is hence stored in a 1D array with 36×10 4 elements (line 3), which can later be reshaped into a 2D 600×600 array. Additionally, the option parallel=True should be passed to the decorator. With this implementation and the hardware used in this work the computation time drops to 5.04 sec, that is a ×47 acceleration as compared to NumPy. The fastmath=True statement allows to bypass the strict compliance to the IEEE 754 standard regarding floating point number operations [START_REF] Goldberg | [END_REF]. Briefly, this refers to the fact that floating point numbers have a finite precision and can, hence, not exactly represent all real numbers. An important consequence of this is that floating point operations are not associative [START_REF] Goldberg | [END_REF] and compilers usually perform calculations in the strict order defined by the code. The fastmath option allows to lift this condition and the compiler is allowed to re-associate floating-point operations to optimize performances. Without this option the above function is ~25% slower, i.e. the computation time is 6.3 sec instead of 5.04 sec. In the present case, this does not introduces any computing error since the result is strictly equal the pure Python implementation (Table 1). However, in general, relaxing the math standard compliance can introduce significant bias and this should be used conscientiously.

Pythran implementation

Let us know consider the case of Pythran. The corresponding code is the following: 12

Cython implementation

Finally, the Cython implementation of the Laue function is given below:

The first striking observation is that this block of code is significantly less readable than a NumPy or even a Numba/Pythran implementation (30 lines vs. 10-15 lines). Let us briefly review this code:

• Line 1 allows to use Cython within a notebook and specifies that the code has to be compiled using OpenMP parallelization and linked to the OpenMP library.

• Lines 2-4 loads external libraries.

• Lines 5-7 overwrite some Python functions (here the complex exponential and the complex modulus) with native C-functions (improves performances).

14 • Lines 8-9 are decorators which specify that, when using arrays, Cython is not compatible with negative indexing, and doesn't check whether the array indices are in the bounds of the actual array range (improves performances).

• Line 10 is the function definition with its argument types. The syntax double[::1] is called a "typed memory view" and allows an efficient access to memory buffers (with contiguous data storage in RAM), such as those underlying NumPy arrays.

• Finally, lines 11-15 are the declaration of all variable types used in the code (similarly to what is done with other statically typed languages such as C, Fortran, etc.).

• Line 22, similarly to what is done with Numba, Python's range instruction is replaced with

Cython's prange instruction to indicate the loop to be parallelized. This instruction takes the additional option "nogil=True" passed as a parameter, which indicates that Python's global interpreter lock (GIL) has to be deactivated. Briefly, the GIL is a feature of Python's language that prevents several threads to simultaneously use Python objects. Although this feature is useful for Python's memory management, it inherently prevents multi-threading and, contrarily to Numba and Pythran, Cython requires an explicit declaration to deactivate the GIL. The rest of the code is similar to the previous implementations.

Performance-wise, this code runs in 4.98 sec (i.e. a ×47.6 speedup compared to NumPy) which is extremely close to Pythran and Numba (the performances are actually contained within three standard deviations). Considering the complexity of this code, one might wonder why using Cython; actually for such a simple case, Cython is definitively not an interesting option. In the next sections we will show that, in some cases, Cython allows to access optimization levels that are not possible with other options.

Discussion

Fig. 2(a,b) show the 2D and 1D intensity distributions (zoomed at ±0.2 around the Bragg position). As expected, the result equals the exact solution to Eq. 1, namely sin 2 (πNH)sin 2 (πNK) / sin 2 (πH)sin 2 (πK).

Given that an exact solution exists, the previous implementations are of course useless and have only been presented for didactic purposes. It should also be emphasized that for this class of problems, i.e.

computing a Fourier series, if an exact solution can not be worked out, the direct summation approach is, in general, a bad algorithm as the computation time scales as ∝N 4 (where N is the number of unit-cell per direction5). On the contrary, the fast Fourier-transform (FFT) algorithm (Cooley & Tukey, 1965), which is the state of the art algorithm to compute Fourier series, scales as ∝N 2 log(N 2), resulting in orders of magnitude faster computations. In the present case it is ~13 860 times faster than the NumPy implementations and more than 250 times faster than any parallelized implementation (the calculations have been performed using NumPy arrays and the FFT algorithm included in the NumPy library). This illustrates the fact that, when possible, using existing, well-tested and heavily optimized algorithms, is much more important than optimizing a mediocre algorithm.

Another point to take into account is whether or not the increase in speed results in a lowering of the arithmetic precision. To quantify this effect, we evaluate the maximum deviation from the exact calculation normalized to the maximum intensity, i.e.

(

) 2
The results are given in Table 1. All errors are below one part in 10 13 which is several orders of magnitude lower than the dynamic range that can be experimentally achieved on diffractometers, even at synchrotron facilities (~10 8 -10 10). Moreover as soon as lattice disorder is present, the experimental dynamic range rapidly decreases (Favre-Nicolin et al., 2011) so that the present implementations can be used safely without worrying about the numerical precision.

To conclude this first part, it is worth mentioning that the results presented here should in no way be taken as general. The performance of a given library depends on many external parameters (i.e. it does not solely depend on the implementation of the algorithm). For example, the size of the problem is a common factor influencing performances. Fig. 3 shows the evolution of the execution time and speedup as a function of the number of unit-cells in the crystal (all other conditions being identical). All implementations effectively converge to a ∝N 4 behavior for large N 2 values, with more or less pronounced deviations at smaller values (Fig. 3a). Using NumPy as a time reference, it can be observed that the speed-up of all parallel implementation (JIT or AOT) increase with the crystal size (Fig. 3b).

All (single-threaded) compiled codes exhibit an acceleration of a few tens of % as compared to NumPy which mainly illustrates the fact that NumPy is an extremely well optimized library with programs running close to what is observed with compiled languages.

The two JIT compilers (NumExpr and Numba) seem to suffer from an increased overhead when using multi-threading for crystal sizes less than 10×10 unit-cells. However, above this limit, NumExpr allows to accelerate NumPy code by ×6 to ×16 with almost no code rewriting, whereas Numba converges to the values exhibited by the AOT compilers, Pythran and Cython. These two last allow to accelerate Python code by ×8 to ×50 for increasing crystal size.

In the next section we consider a slightly more complicated example, for which no exact solution can be worked out, and where the FFT algorithm might yield incorrect results.

Circular crystal with strain

Implementation

Let us now consider a case where the crystal has not an orthogonal shape and which additionally exhibits strain. The first point implies that the unit-cell coordinates can not be simply represented by a array, and it is necessary to introduce a support function equal to one when the unit-cell coordinate is located inside the crystal, and 0 otherwise. For conciseness a 2D circular crystal is considered, but, as in the previous case, the extension to three dimensions is straightforward. This yields:

(3) where (4)

is the distance from the center of the crystal, and R is the crystal radius. The second point implies that unit-cells are shifted from their regular position according to n' = n + Δn, where Δn is the displacement.

For the case of a circular crystal, a function describing a progressive dilatation when moving from the center towards the periphery can be written:

(5)

where Δr(r) is the displacement of the unit-cell located at a distance r from the crystal center, e 0 is the maximum strain, and w is a parameter describing the width of the displacement profile (for small values of w the strain is confined at the periphery of the crystal, whereas large values also affect the interior of the crystal). The NumPy implementation is as follows:

The radius from the center of the unit-cell is computed line 7 and it is a 2D array (with two additional empty dimensions). The support function is computed line 8 and sets to 0 all values for which the radius is larger than the crystal radius (here chosen as R = N/2). The strain Δr/r is computed line 9 and, similarly to the radius and the support function, it is a 2D array with two additional empty dimensions dedicated to receive the reciprocal space coordinates, line 10. Strictly speaking, it is not necessary to explicitly define the support function (line 8), in the sense that we could limit the evaluation of the tmp variable only in those regions where the condition radius < N/2 is fulfilled. Thereby we would save the corresponding memory space (although without improvement regarding the execution speed). We nonetheless keep this implementation here for didactic purposes; the modified version is implemented in the following versions below. Afterwards, similarly to the Laue function, the summation over the unit-cell coordinates is performed using the sum method of NumPy. As observed in the previous section, the broadcasting and vectorizing properties of NumPy allow for a painless implementation of mathematical equations. 3). The crystal is tensily strained, so that the peak is shifted towards lower K values and, since the distribution of strain is inhomogeneous, the intensity distribution is broadened and asymmetric as compared to the Laue function.

This implementation runs in ~299 sec. which is more than 100 times faster than the pure Python implementation (given in the corresponding notebook). In this case, the acceleration is more than 10 times more important than in the previous section, i.e. the Python implementation required more than 9h instead of 37 min for the Laue function, whereas the NumPy implementation only required ~62 sec 18 more (299 vs. 237 sec). This is due to the fact that the relative efficiency of NumPy increases when the number of floating-point operations within the loops increase.

The NumExpr implementation is similar to the NumPy code, and only differs by calls to the ne.evaluate() function:

Notice that in this implementation we did not explicitly define the support function and merged its definition with the evaluation of the complex exponential (line 11). Among all (single-threaded) implementations, NumExpr exhibit the best performances with ×1.32 speedup, whereas the worst result is obtained with Numba with a ×1.07 speedup as compared to NumPy (see Table 1). As mentioned in the previous section, this again illustrates the efficiency of the NumPy library. In the following of the article we shall hence focus on the results obtained with the parallel versions of the algorithms, since this is when the best performances are obtained. From the descriptions already made earlier, this code is rather straightforward to understand. The only novelty here is the continue statement, line 15. This instruction is used in conjunction with the preceding for instruction and continues to the next iteration of the for loop if the if condition is fulfilled, i.e. this corresponds to the where function used with NumPy. This implementation is the most efficient with a speedup of ×47.7 (very close to the value obtained for the Laue function), whereas

The parallel version of the

Numba and Cython respectively yield speedups of ×37.8 and ×45.6.

Discussion

Let us briefly consider the FFT algorithm. As shown in Table 1, it again outperforms any of the above implementation with an execution time of 0.046 sec. However, as also shown in Table 1, the FFT implementation now yields an incorrect result with relative error of 0.011. This is due to the fact that, in the presence of lattice strain, replacing the Fourier series with a Fourier transform of exp(2πi H B Δn) (where Δn is the displacement and H B is the reciprocal lattice vector at the Bragg position) is valid only when |(H -H B) Δn| << 1 (Favre-Nicolin et al., 2011). This hypothesis fails for large strains and large deviations from the Bragg position. In such cases, despite its rather poor performances, the direct summation algorithm is the only remaining option. Moreover, the FFT algorithm can only be used when the data to be transformed (i.e. the unit-cell coordinates, atomic coordinates, etc.) can be 20 represented on a regular grid, like an 3D array of (x,y,z) coordinates. This constraint therefore excludes atomistic simulation results for which direct the direct summation algorithm is thus the only remaining option to compute the diffracted intensity. The possibility to accelerate such computations can hence be relevant in such situations.

As mentioned in section 2, in this work we are not considering the implementation on GPUs. However, it is worth mentioning the existence of a Python library called PyNX (Favre-Nicolin et al., 2011) specifically developed (among other tasks) to optimize the direct summation algorithm of the Fourier transform (http://ftp.esrf.fr/pub/scisoft/PyNX/doc/) which, given its highly parallel nature, strongly benefits from the architecture of GPUs and yields far better results than the present implementations.

The Debye scattering equation

For didactic purposes, the two previous section were focused on theoretical 2D crystals. We now consider a slightly more complex example, namely the scattering from actual nanocrystals. Assuming that the crystals exhibit all possible orientations (like in powder sample), the intensity scattered by an ensemble of N atoms is correctly described by the Debye scattering equation [START_REF] Warren | X-ray diffraction[END_REF]:

where (θ being half the scattering angle and λ the radiation wavelength), f i is the atomic scattering factor of the i th atom, and r ij are the distances between all possible pairs of atoms in the crystal. For the sake of simplicity we shall consider a mono-atomic crystal. In such a case, the scattering equation can be simplified to (7)

The extension to polyatomic crystals is straightforwardly obtained by computing Eq. 7 for all possible homo-atomic and hetero-atomic pairs.

An interesting feature of this equation is that it doesn't require the existence of an average crystal lattice so that, contrarily to the previous section, the intensity can be computed even from highly disordered crystals, or even liquids, gases… From a computational point of view, this also implies that one can make use of atomic coordinates obtained by atomic scale calculations (like molecular dynamics for instance) to compute the corresponding intensity and compare it with the diffraction As compared to the previous case, this approximation therefore requires the evaluation of the distance histogram. This implies the generation of a series of bins and counting the number of r ij values falling inside each bin. NumPy has a built-in histogram generation function which turns out to be too slow to be usable in the present case.

A fast histogram algorithm could be as follows:

• loop over all r ij values

• for each r ij value compute the corresponding bin index: (r ij -r 0)/dr (where r 0 is the distance corresponding to the first bin)

• increment the corresponding value of the histogram by 1.

The Cython implementation is given below:

The Cython-specific instructions (explained in section 2) are given in lines 1-7. Lines 8-18 declare and define the variables needed to compute the index of the bins and its value. Lines 19-21 strictly correspond to the fast-histogram algorithm outlined previously. This code runs in 0.052 sec, which adds up to the 0.0119 sec already needed to generate the Euclidean distance matrix (Table 2). However, this additional time will allow us to gain a tremendous speedup in the evaluation of the summation. Before 27 proceeding to this summation, one might wonder whether this fast histogram could be further accelerated using multi-threading.

A straightforward parallelization of the for loop (by replacing the range instruction with a prange instruction, line 18) results in erroneous results since there is no mechanism that prevents the different threads to write in the same memory block at the same time, hence resulting in a wrong numbering of distances in the histogram. This issue can be circumvented by allocating a different histogram to each thread and then combining them together. The corresponding code is as follows:

Lines 22-24 correspond to the same algorithm as previously; the difference lies in the fact that the local histogram (i.e. corresponding to a specific thread) is correctly updated by using the correct thread number (via the threadid() function). Lines 25-27 then simply add up the different local histograms.

28 This type of fine-grained optimization is only possible with Cython and is one the advantages of using this library over Pythran or Numba.

1 %%cython --compile-args=-fopenmp --link-
For the nanocrystal used here, the parallel implementation actually runs slower than the single-threaded implementation (70 ms instead of 52 ms). This is due to the overhead in spawning the different threads as compared to the number of floating point operations performed in each thread. For larger crystals (i.e. with a larger amount of atoms), significant accelerations are obtained. For instance for a 10 times larger crystal (48 500 atoms) , the speedup is ×7.5 (0.219 sec vs. 1.64).

Finally, let us compute the scattered intensity using Eq. 9. For consistency, we stick with the Cython implementation:

This implementation differs from the one presented in section 3.3.2 in lines 21-22: the for loop runs over bins (instead of r ij), and the sum is weighted by the number of atomic pairs within the bin (w), Eq.

10. With a bin width dr = 5×10 -4 Å, this code runs more than 100 times faster than without the histogram approximation, that is a ×9477 acceleration as compared to NumPy. However, as clearly stated earlier, this procedure is an approximation; it is therefore necessary to evaluate the error induced by making use of it. As in section 2, we evaluated the maximum relative error, which here amounts to 9×10 -4 . Although this is several order of magnitude higher than the errors observed without this approximation (10 -16 -10 -11) this remains acceptable, especially in the case of nanocrystals for which the observed dynamic range rarely exceeds 10 4 . An error of 9×10 -4 would therefore be hidden in the background noise. Obviously, the error can be reduced by reducing the bin width at the expense of an increased computing time. A compromise between speed and accuracy has therefore to be made.

Similarly to the Laue equation, the Debye scattering equation belongs to this class of "embarrassingly parallel" problems, i.e. a class of problems for which the parallelization is straightforward and might hence benefit the most from multi-core and other massively parallel architectures. As such, GPUs provide the best results for that type of problems and there have been several successful attempts to compute the Debye scattering equation on that type of devices.

Restricting ourselves to open-source solutions, for which the code can hence be re-used and re-distributed, one can cite for example the PHAISTOS program [START_REF] Antonov | Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms[END_REF] and the XaNSoNS program [START_REF] Neverov | [END_REF], the latter being partly written in Python. Although we did not test these programs in the present work, it can be expected that better results will be obtained because of the massively parallel architecture of GPUs.

However, as outlined earlier, this increase in performances comes with an increased development complexity and a more limited hardware support.

The Takagi-Taupin equation

Another important class of materials are films and multilayers. In the case of high-quality heteroepitaxial materials, the calculation of the diffracted intensity has to be performed in the framework of the dynamical theory of diffraction, rather than within the kinematical theory of diffraction that has implicitly been used so far in the present article. Within the dynamical theory of diffraction, the Takagi-Taupin equations are coupled differential equations which describe the scattering from distorted crystals (Takagi, 1969;Taupin, 1964). In the case epitaxial films and multilayers which are laterally homogeneous and infinite (as compared to the coherence length of the incident radiation) a simple recursive solution to the Takagi-Taupin equations can be derived (Bartels, Honstra & Lobeek, 1986).

Below, we address the case of irradiated single crystals where radiation damage (consisting in lattice strain and random lattice displacement) is confined in a thin sub-surface layer. Such materials can be described as arbitrary multilayers where each individual layer exhibit a distinct level of strain and disorder.

It is not in the scope of this article to provide the details of these equations. We here only provide the minimum amount of equations needed to understand the algorithms. The solution of Bartels et al. (1986) allows to compute the X-ray amplitude ratio at the interface n+1, knowing the ratio at the interface n:

(11) where (12)

The amplitude ratio X is a function of the electric field amplitude ratio, the structure factor and the geometry of the measurement. η is dynamical theory's deviation parameter, i.e. the deviation from the center of the Bragg peak, corrected for refraction and absorption, and T is the function of the individual layer thickness, the structure factor and the geometry of the measurement (Bartels, Honstra & Lobeek, 1986). In order not to overload the notebooks several quantities have been pre-computed and are loaded from text files (the strain and disorder depth-profiles as well as the instrumental resolution function) or hard-coded in the notebook (the structure factors). A more detailed description can be found elsewhere (Boulle & Debelle, 2010;[START_REF] Souilah | [END_REF].

The NumPy implementation is as follows:

Lines 2-3 compute the amplitude scattered by the perfect (unirradiated) crystal. Lines 5-15 compute the scattering from the strained and disordered region above the perfect crystal. This is achieved by dividing this region into layers with thickness t_l, and the scattering from a given layer is computed with the knowledge of the scattering from the previous layer. The information concerning strain and disorder are contained in the thB (Bragg angle) and DW (Debye-Waller factor) arrays, respectively, whereas FH, FmH and wl are the structure factors of the hkl and hkl reflections, and X-ray wavelength, respectively. The quantity "(eta*eta-1)**0.5" is stored in a separate variable (line 11) to avoid multiple evaluations.

Starting from the interface with the perfect crystal, the scattering from the whole "crystal + damaged region" system is progressively computed for a given angle. The recursive nature of this algorithm makes it impossible to vectorize. However, as can be observed in line 1, this function takes an array of angles (th) as an argument indicating that the computation for the different scattering angles can still be vectorized which shall result in acceptable performances. Indeed, typical computation times are around 0.01 to 0.1 sec depending on the size of the crystal. Fig. 5 shows the 400 diffraction profile of (100)-oriented ZrO 2 single crystal irradiated with 300 keV Cs ions (Boulle & Debelle, 2010). The computed curve in Fig. 5 has been generated in 18.5 ms (see Table 3). This data set comprises 501 intensity values; the strained region is divided into 200 slices, i.e. the recursive loop runs over 200 elements for each intensity point. Although the recursive loop can not be parallelized, the loop over the different scattering angle should in principle benefit from parallelization. Although it might seem useless to accelerate a program that already runs in 18.5 ms, it must be borne in mind that such type of calculations are in general part of a least-square fitting procedure, in order to extract the structural characteristic of the films/multilayers, which implies several hundreds to several thousands of function evaluations.

Somewhat unexpectedly, NumExpr runs slower than NumPy (×0.45), whereas Numba provides a modest ×4.51 acceleration (Table 3). The most likely reason for these negative and modest accelerations is that, as shown in Fig. 3 The only significant difference with the previous NumPy implementation is the explicit loop over the angles (line 9). The execution time drops down to 1 and 0.87 ms for Pythran and Cython, respectively, which correspond to an acceleration of ×18.5 and ×21.2, the difference between both being negligible (smaller than 3 standard deviations). In all cases, the error induced by the acceleration are negligibly small (Table 3).

Conclusion

Within the Python ecosystem, the NumPy library is the de facto standard when it comes to scientific computing. As long as the algorithms are properly vectorized and the memory is large enough to store the arrays, it allows to reach high computational performances while keeping a clean and simple code, close to mathematical notation. Used in combination with the NumExpr library, simple NumPy code can benefit from multi-core CPUs as well as optimized memory management, with very little code modification.

In the case where it is not possible to vectorize the algorithms, or when increased performances are critical, one must make use of compilers that translate Python code into statically-typed code that also provide an improved support of multi-core architectures. We have shown that Pythran and Cython in general exhibit very close performances and, given the heavier syntax of Cython, Pythran is easier to implement. Cython, on the other hand, allows to access more advanced options regarding thread and memory management. Within the examples examined in this article and with the present hardware, accelerations ranging between 1 and 2 orders of magnitude (as compared to NumPy) can be obtained while staying in the Python ecosystem. Finally, the performances of Numba seem to be less predictable than those of Pythran and Cython. However, Numba is relatively recent project with very interesting features, such as the compatibility with GPUs, and it should therefore not be excluded when looking for high-performance Python programming.

Finally, the ability of Python to get interfaced with other languages such as C, C++ or Fortran makes it a prominent language for the development of libraries combining an easy syntax with the performances of compiled languages. In the field of crystallography this is for instance the case of the Computational Crystallographic Toolbox project, cctbx (Grosse-Kunstleve, et al. 2002; https://cctbx.github.io/). The cctbx library is developed as a set of C++ classes that can be accessed via a Python interface. As such, cctbx can be used in combination with the libraries presented above. This library is also a component of several crystallographic software. cctbx is for instance used to compute scattering factors in the PyNX library mentioned earlier (Favre-Nicolin et al., 2011). In the field of macromolecular crystallography, it is the key component of the PHENIX program (Adams et al., 2010 ; https://www.phenix-online.org/)

which is also written in Python. Besides cctbx, large scale facilities are particularly active in the development of X-ray or neutron scattering data manipulation and visualization software based on Python ; one can cite DIALS (Winter et al., 2017; https://dials.github.io/), Mantid [START_REF] Arnold | [END_REF] https://www.mantidproject.org/), DAWN (Basham et al., 2015; https://dawnsci.org/about/) or Silx (https://www.silx.org/).

Figure captions

 x in range(len(h))] for y in range(len(k))] 3 for i_h, v_h in enumerate(h): #loop over the reciprocal space coordinates 4 for i_k, v_k in enumerate(k.exp(2j*np.pi*(v_h*i_n + v_k*i_m)) 9 result[i_h][i_k] = abs(tmp)**2 10 return result

Fig. 2

 2 Fig. 2(b) shows a section along the K direction (performed at H = 0 and around K = 4) with e 0 = 0.01 and w = 20 and Fig. 2(c) shows a portion of the 2D intensity distribution. Fig. 2(d) shows the distribution of Δr/r within the crystal computed with Eq. (3). The crystal is tensily strained, so that the

 b_S*(th-thB_S)*np.sin(2*thB_S)-0.5*G*F0*(1-b_S))/ ((abs(b_S)**0.5)*G*(FH*FmH)**0.5) 3 res = (eta -np.sign(eta.real)*((eta*eta -1)**0.5)) * (FH / FmH)**0.pi * G * ((FH*FmH)**0.5) * t_l * DW[n]/ (wl * (abs(g0*gH)**0.5)) 10 eta = (-b*(th-thB[n])*np.sin(2*thB_S)-0.5*G*F0*(1-b))/ ((abs(b)**0.5)*G*DW[n]*(FH*FmH)**0.5) 11 sqrt_eta2 = (eta*eta-1)**0.5 12 S1 = (res -eta + sqrt_eta2)*np.exp(-1j*T*sqrt_eta2) 13 S2 = (res -eta -sqrt_eta2)*np.exp(1j*T*sqrt_eta2) 14 res = (eta + sqrt_eta2*((S1+S2)/(S1-S2))) * (FH / FmH)**0.5 15 n += 1 16 return np.abs(res)**2

 , the number of floating point operations is too small as compared to the overhead associated with JIT compilation and multi-threading initialization. Here again, the best results are obtained with Pythran and Cython. Below is the Pythran code: 33 1 %%pythran -fopenmp 2 #pythran export TakagiTaupin_pythran(float[],float[],float[],float,int, float,float,complex,complex,complex,float,float,float) 3 import numpy as np 4 def TakagiTaupin_pythran(th,thB,DW,thB_S,N,t_l,G,F0,FH,FmH,b_S,phi,wl): 5 res = np.zeros(len(th), dtype = np.complex128) 6 eta = np.zeros(len(th), dtype = np.complex128) 7 sqrt_eta2 = np.zeros(len(th), dtype = np.complex128) #loop over diffraction angles(parallelized] = (-b_S*(th[i]-thB_S)*np.sin(2*thB_S)-0.5*G*F0*(1-b_S))/ (np.sqrt(abs(b_S))*G*np.sqrt(FH*FmH)) 11 res[i] = (eta[i]-np.sign(eta[i].real)*(np.sqrt(eta[i]*eta[i]-1.sin(thB[n] -phi) 15 gH = -np.sin(thB[n] + phi) 16 b = g0 / gH 17 T = np.pi*G*(np.sqrt(FH*FmH))*t_l*DW[n]/(wl*np.sqrt(abs(g0*gH))) 18 eta[i] = (-b*(th[i]-thB[n])*np.sin(2*thB_S)-0.5*G*F0*(1-b))/ (np.sqrt(abs(b))*G*DW[n]*np.sqrt(FH*FmH)) 19 sqrt_eta2[i] = np.sqrt(eta[i]*eta[i] -1) 20 S1 = (res[i] -eta[i] + sqrt_eta2[i])*np.exp(-1j*T*sqrt_eta2[i]) 21 S2 = (res[i] -eta[i] -sqrt_eta2[i])*np.exp(1j*T*sqrt_eta2[i]) 22 res[i] = (eta[i]+(sqrt_eta2[i])*((S1+S2)/(S1-S2)))*np.sqrt(FH /

Fig. 1 .

 1 Fig. 1. Fraction of articles published every year by the International Union of Crystallography containing the word "Python" in the title or in the abstract.

Fig. 2 .

 2 Fig. 2. (a) computed 2D Laue function. (b) section through H = 0 of the Laue function (grey curve) and of the 2D intensity distribution corresponding to the circular crystal (black curve). (c) 2D intensity distribution from a circular crystal with a radial strain profile. In all cases, only 2/5 of the actual data is shown (actual data ranges extend ± 0.5 around the Bragg peak). (d) distribution of Δr/r within the circular crystal. High strain values are confined ~ 20 unit-cells below the surface.

Fig. 4 .

 4 Fig. 4. Diffraction curves corresponding to Au nanocrystals with increasing size. From bottom to top, the cluster contain 675, 4753, 15371 and 48495 atoms (which correspond to size ranging from ~2.4 to ~10.9 nm). The computing times correspond to the Cython implementation together with the histogram approximation.

Fig. 5 .

 5 Fig. 5. (a) 400 reflection from an irradiated yttria-stabilized zirconia single crystal with (100) orientation (circles: experimental data; line: calculation). (b) corresponding strain and Debye-Waller distribution below the surface. 200 slices were used to describe the 200 nm thick strained region, which gives a 1 nm depth resolution.

 Figure 1

 h[:, np.newaxis, np.newaxis, np.newaxis] 3 k = k[np.newaxis, :, np.newaxis, np.newaxis] 4 n = n[np.newaxis, np.newaxis, :, np.newaxis] 5 m = m[np.newaxis, np.newaxis, np.newaxis, :]

	6	j2pi = np.pi*2j #Set the number of threads	
	7	#By default NumExpr uses 8, or less if less are available on the CPU ne.set_num_threads(n_cpu)
	8 9	tmp = ne.evaluate("exp(j2pi*(h*n + k*m))").reshape((h.size, k.size, -1)) tmp = ne.evaluate("sum(tmp,2)")
	10	return np.abs(tmp)**2	
	6	tmp = 0j	variable
	7 8	for i_n in n: #loop and sum over unit-cells for i_m in m:	
	9 10	tmp += cmath.exp(2j*cmath.pi*(v_h*i_n +v_k*i_m)) result[i_h, i_k] = abs(tmp)**2
	11	return result	

1 @nb.jit

(nb.float64[:,:]

(nb.int64[:], nb.int64[:], nb.float64[:], nb.float64[:]), nopython=True) 2 def Laue_numba(n, m, h, k): 3 result = np.zeros((len(h), len(k)), dtype=nb.float64) 4 for i_h, v_h in enumerate(h): #loop over the reciprocal space coordinates 5 for i_k, v_k in enumerate(k): #the result of the sum is stored in a temporary complex

 any remaining Python objects. If this condition is not fulfilled an error is raised. If this option is omitted, the code will execute normally, but all parts of the program containing data types incompatible with Numba or data type inconsistencies will be treated as PyObjects resulting in significantly degraded performances. Another performance improvement is gained by explicitly stating the data types that are produced (here a 2D array of floating point numbers, nb.float64[:,:]) and those that are given as arguments (two 1D integer arrays, nb.int64[:], and two 1D floating point arrays, nb.float64[:]).

 NumExpr algorithm is obtained by modifying the n_cpu variable. The resulting speedup is 12.4. The Pythran parallel implementation is given below (Numba and Cython are similar and can be found in the corresponding notebook in the Supporting Information):

	1 def Circ_numexpr(n, m, h, k, e0, w):
	2 3	N = len(n) h = h[:, np.newaxis, np.newaxis, np.newaxis]
	4 5	k = k[np.newaxis, :, np.newaxis, np.newaxis] n = n[np.newaxis, np.newaxis, :, np.newaxis]
	6 7	m = m[np.newaxis, np.newaxis, np.newaxis, :] ne.set_num_threads(n_cpu)
	8 9	radius = ne.evaluate("sqrt((n -N/2)**2 + (m -N/2)**2)") strain = ne.evaluate("e0 * (1 + tanh((radius-N/2) / w))")
	10 11	j2pi = np.pi*2j tmp = ne.evaluate("where(radius > N/2, 0, exp(j2pi*(h*(n+strain*(n-N/2)) +
	12	k*(m+strain*(m-N/2)))))") tmp.shape = k.size, h.size, -1
	13 14	result = abs(tmp.sum(axis=-1))**2 return result
		19

Different versions of those libraries can produce slightly different timings, but it should not change the conclusions.

A JIT compiler compiles the code when it is first called, contrary to ahead-of-time (AOT) compilers which require a separate compilation step.

Any Python object (variable, list, dictionary, class, etc.) is implement as a PyObject in C. It contains the object type and the references to this object by other objects.

In all code snippets, line numbers are only given to facilitate the description of the algorithm. They are not part of the code. The complete Python files are provided as Jupyter notebooks in the Supporting Information.

Usually the performances are expressed in terms of the total number of elements in the starting array, so that the asymptotic behavior are N 2 and Nlog(N) for the direct summation and FFT algorithms, respectively. In order to remain consistent with the notation used in the Laue equation, we keep N as being the number of unit-cell in a given direction, hence the difference in the expressions of the asymptotic behaviors.

Acknowledgments

All figures have been generated with the scientific plotting program Veusz (https://veusz.github.io/). AB is thankful to D. André for the fruitful discussions about the performances of various languages.

pattern from actual nanostructured materials. The examination of Eq. 7 reveals that the calculation actually requires two distinct steps:

• the calculation of all pairwise distances, r ij , from a given collection of (x, y, z) coordinates

• the calculation of the double sum.

Calculation of the pairwise distances

Computing all pairwise distances actually consists in computing the Euclidean distance matrix with component r ij :

(8) where ||...|| is the Euclidean norm. All diagonal elements are zero (r ii = 0) and the matrix is symmetrical (r ij = r ji) so that only a triangular part needs to be computed. A naive Python implementation is as follows:

For a collection of N = 4753 atoms (with coordinates stored in the 2D [N×3] array coords) this algorithm runs in 24.2 sec (Table 2). As usual, far better results are to be expected with a proper NumPy implementation. For instance, developing Eq. 8 yields (9)

The corresponding NumPy code reads (Bauckhage, 2014): Line 2 computes the dot product; line 3 creates the matrix by extracting the diagonal of the dot product computed in line 2 and repeating (tile) it over N columns, whereas line 4 computes Eq. 9.

Finally, line 5 sets to 0 all elements of the lower triangular matrix (triu) and only the non-zero elements are returned. This implementation runs in 1.374 sec.

The NumExpr code is quite similar (see notebooks) and only differs from the previous NumPy implementation in lines 4-5 by calls to the ne.evalute() function. The corresponding implementation runs in 814 ms, which is a ×1.68 speedup as compared to NumPy.

Before proceeding to the parallelized implementations it is worth mentioning that the SciPy library has collection of functions devoted to analysis of data structures representing spatial properties (scipy.spatial). Using this library, the Euclidean matrix can be computed in a single line of code:

where pdist is the function that computes all pairwise distances within the list of coordinates coords.

Interestingly this function runs at the same speed as a compiled implementation, 71.5 ms (×19.2) which outperforms both NumPy and NumExpr. This result, again, illustrates the importance of using third party libraries that contain efficient and well tested code rather than reinventing the wheel.

The inspection of the Python implementation reveals that the algorithm could benefit from further acceleration by parallelizing the first for loops. The Pythran implementation is shown below: "omp parallel for" 8 for i in range(N): 9 for j in range(i+1,N):

Apart from the Pythran-specific instructions (lines 1-3, 7) the code differs from the Python implementation only at line 10. Whereas in the Python implementation the coordinate, l, of the distance array, r, was evaluated by incrementing its value for each iteration of the for loop over j, this is not possible here since these iterations are here distributed among different threads. Although it is in principle possible to communicate between threads, the simplest solution here consist in evaluating the index l on the basis of the corresponding i and j values. The Numba and Cython implementations are similar (see notebook). The Pythran implementation yields the best results with a ×115.5 speedup (11.9 ms). Cython and Numba run in respectively 12.9 and 16.5 ms, with corresponding speedups of ×106.5 and ×83.3. The Pythran and Cython only differ by 1 ms execution time, which is within three standard deviations, while Numba appears to be effectively slower.

At this point it is also interesting to briefly consider the performances of other languages. Python is often referred to as a glue language in the sense that it can be easily interfaced with other programming languages. For instance, the Fortran programming language has long been the favorite development tool of scientists and remains a very important language in the scientific community. The notebook Pairs_Fortran provides the detailed implementation. When a single thread is used, Fortran is ~27% faster than Cython (65.0 vs. 82.5 ms). When multiple threads are used, Fortran is still slightly faster than Cython (10.4 vs. 12.9 ms) and very close to Pythran (11.9 ms). This result mainly illustrates the fact that a high-level programming language such as Python, when combined with appropriate libraries, is able to reach performances equivalent to the most efficient compiled languages. Moreover, the fact that Python is easily interfaced with other languages allows to advantageously re-use existing code without having to rewrite a single line.

Summation over r ij

The double sum in Eq. 7 can actually be condensed in a single loop over all indices of the Euclidean distance matrix r. The naive Python implementation is straightforward: The first for loops runs over the values of the reciprocal lattice vector Q, whereas the second for loop performs the summation over all r ij values. The variable f_at is the atomic scattering factor which is evaluated using the [START_REF] Waasmaier | [END_REF] method (see notebook). As for the Laue function, a tmp variable is used to store the result of the summation in order to avoid accessing the array from inside the loop. 53 minutes are required to evaluate this function for 850 values of Q (corresponding to a 2θ range of 170° with a 0.2° step) and a gold nanocrystal containing 4753 atoms, see Table 2. This corresponds to a crystal with a ~2.4 nm diameter exhibiting {100}, {110} and {111} facets (Fig. 4).

The corresponding intensity distribution is labeled (2) in Fig. 4. The gold clusters have been generated

using the ase (atomic simulation environment) Python library [START_REF] Larsen | [END_REF]. The atomic structures have been rendered with the VESTA program (Momma & Izumi, 2011).

The NumPy implementation is also straightforward to write:

The elegance of NumPy can here really be appreciated, with a calculation requiring a single line of code and a strong similarity with the mathematical formulation. The computing requires 7 min and 15 sec (Table 2).

The NumExpr implementation requires some tweaking in order to benefit from multiprocessing: the sin(Qr)/Qr array should be evaluated independently from the summation, otherwise the workload is not dispatched over different threads, resulting poor performances. The speedup is appreciable, ×16.7, with a 26 sec computing time. Finally, let us consider the compiled implementations. For conciseness, only the Pythran implementation is shown (the others can be found in the notebook):

Apart from the now-familiar Pythran-specific instructions (lines 1-3, 6) this code is rigorously identical to the Python implementation and runs in 5.73 sec, that is a ×75.9 speedup. Cython performs similarly

(5.71 sec), whereas here clearly fails to operate optimally (18.3 sec) although no clear reason could be identified. This illustrates the fact, already mentioned in section 2, that the performances of different libraries should not be taken as granted on the basis of a single example, and the performances of different implementations should always be critically compared.

The histogram approximation

The examination of Table 2 reveals that most of the computation time is spent in the evaluation of the sum over r ij . This is easily understandable since this implies the evaluation of a transcendental function (i.e. a function that can not be described by a sequence of simple algebraic operations, here the sine function) for a huge amount (N×(N-1) / 2) of r ij values. A widespread method to reduce the number of floating point operations is to cast the r ij values into a histogram which enumerates all atomic pairs being separated by distances between r i and r i + dr, where dr is the bin width [START_REF] Glatter | Small Angle X-ray Scattering[END_REF].

With this approximation the Debye scattering equation can be rewritten:

where n i is the number of atomic pairs in the bin corresponding to the distance r i .