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ABSTRACT
We present an augmented version of our dual messenger algorithm for spin field reconstruction
on the sphere, while accounting for highly non-trivial and realistic noise models such as
modulated correlated noise. We also describe an optimization method for the estimation of
noise covariance from Monte Carlo simulations. Using simulated Planck polarized cosmic
microwave background (CMB) maps as a showcase, we demonstrate the capabilities of the
algorithm in reconstructing pure E and B maps, guaranteed to be free from ambiguous
modes resulting from the leakage or coupling issue that plagues conventional methods of
E/B separation. Due to its high speed execution, coupled with lenient memory requirements,
the algorithm can be optimized in exact global Bayesian analyses of state-of-the-art CMB
data for a statistically optimal separation of pure E and B modes. Our algorithm, therefore,
has a potentially key role in the data analysis of high-resolution and high-sensitivity CMB
data, especially with the range of upcoming CMB experiments tailored for the detection of the
elusive primordial B-mode signal.

Key words: methods: data analysis – methods: statistical – cosmic background radiation –
cosmology: observations.

1 IN T RO D U C T I O N

Cosmological inference from observations of the cosmic microwave
background (CMB) polarization necessitates the separation of the
contributions of the gradient and curl (or E and B) components
of the polarization signal to the data. These scalar E and pseudo-
scalar B modes correspond to the spin-2 analogues of curl-free and
divergence-free vector fields, respectively, with a polarization map
being represented as the sum of both components (Zaldarriaga &
Seljak 1997; Seljak & Zaldarriaga 1997; Kamionkowski, Kosowsky
& Stebbins 1997a,b). The next generation of CMB experiments is
focused on measuring the polarization of the CMB, with the E-
mode power spectrum providing an independent probe of the scalar
modes measured via the temperature anisotropies (e.g. Abazajian
et al. 2016; Suzuki et al. 2016; Louis et al. 2017; Henning et al.
2018). The B-mode component of the polarization is the focus of
growing interest in the community. First, they are an independent
confirmation of the lensing effect detected in the temperature and E-
mode anisotropies, as B modes are produced from the gravitational
lensing of E modes by the dark matter distribution along the line
of sight (Zaldarriaga & Seljak 1998). These lensing-induced B
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modes have been observed by high-resolution ground-based CMB
experiments (e.g. Hanson et al. 2013; POLARBEAR Collaboration
et al. 2017). Secondly, and most importantly, the detection of larger
angular scale B modes, directly sourced by primordial gravitational
waves, remains a key but elusive objective of modern cosmology
(e.g. Guzzetti et al. 2016).

Observations of CMB polarization have attracted much interest
due to the significance of the cosmological information encoded
(e.g. Hu & White 1997; Hu & Dodelson 2002; Hu 2003). The inclu-
sion of E-mode polarization data in parameter inference pipelines
allows us to derive more stringent constraints (e.g. Galli et al. 2014),
whilst the scientific potential of B-mode anisotropy observations is
extremely promising. A measurement ofB-mode signal on large an-
gular scales (� � 100), after discarding the expected lensed signal,
would be regarded as a direct validation of the inflationary paradigm
as the precursor of this stochastic background of gravitational waves
(Kamionkowski & Kovetz 2016). The amplitude of this background
would directly constrain the energy scale of inflation, thereby ruling
out some inflationary models (e.g. Zaldarriaga, Spergel & Seljak
1997; Kinney 1998; Tegmark et al. 2000), while also constraining
the reionization period (Zaldarriaga 1997). This would dramatically
improve our understanding of the very early Universe.

The decomposition of the E andB modes on a partial sky is highly
non-trivial due to the induced leakage between the two modes.

C© 2019 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/490/1/947/5570619 by C
N

R
S - ISTO

 user on 04 July 2023

http://orcid.org/0000-0002-6029-7163
http://orcid.org/0000-0003-0143-8891
mailto:ramanah@iap.fr


948 D. Kodi Ramanah, G. Lavaux and B. D. Wandelt

Masked regions produce a discontinuity at the edges of the map
and these result in a mixing of E and B modes, yielding ambiguous
modes. Such modes can be sourced by either E or B components
and cannot be uniquely assigned (Zaldarriaga 2001; Bunn 2002a,b;
Lewis, Challinor & Turok 2002; Bunn et al. 2003; Lewis 2003; Bunn
2011). This is a highly prevalent issue due to most observations
being made on an incomplete sky or full-sky maps being subjected
to additional masking to reduce foreground contamination. Since
the E-mode power spectrum is much larger than that of B modes,
the ambiguous modes significantly increase the variance of the B
modes, resulting in a spurious measurement of the B-mode power
spectrum. The detection of the inflationary gravitational waves is
especially challenging due to their relatively small amplitude, and
hence, efficient methods for pure E/B decomposition are essential
for extracting the cosmological information from CMB polarization
data.

Several approaches for pure E/B decomposition are described
in the literature. While some techniques yield real-space maps of
the derivatives of the polarization maps (e.g. Kim & Naselsky 2010;
Zhao & Baskaran 2010; Kim 2011; Bowyer, Jaffe & Novikov 2011),
others are limited to power-spectrum estimation via the construction
of an eigenbasis for the pure-ambiguous decomposition (e.g. Challi-
nor & Chon 2005; Smith 2006a,b; Smith & Zaldarriaga 2007; Grain,
Tristram & Stompor 2009; Alonso et al. 2019). Nevertheless, such
approaches do not result in pure E and B maps in the real space
and are computationally intensive. Ferté et al. (2013) provides a
quantitative comparison of the efficiency of the above techniques
for power-spectrum reconstruction. Wavelet-based techniques have
also been proposed, but they must be carefully adapted for the
problem under investigation (Cao & Fang 2009; Rogers et al. 2016;
Leistedt et al. 2017).

Bunn & Wandelt (2017, hereafter BW17) have recently shown
that the E/B decomposition can be approached from a Wiener
filtering (Wiener 1949) viewpoint, resulting in faster implemen-
tation as compared to the above methods, while providing real-
space maps of the E and B modes. Another key advantage of
such an approach is that it can be naturally extended to treat
more interesting cases such as providing E maps free from the
temperature anisotropy contributions by accounting for temperature
and polarization correlations.

In this work, we present an augmented version of our dual
messenger algorithm (Kodi Ramanah, Lavaux & Wandelt 2017,
2018) for pure E/B decomposition on the sphere, based on the
principle of the Wiener filter. We adapt the algorithm to encode
the BW17 prescription for reconstruction of pure E/B maps and
naturally extend the dual messenger framework to account for
complex and realistic noise models. We demonstrate the application
of this enhanced algorithm, designated as DANTE (DuAl messeNger
filTEr), on a simulated CMB polarization data set that emulates the
features of the actual Planck data.

The remainder of this paper is structured as follows. In Section 2,
we provide a brief description of the dual messenger algorithm
and illustrate a Jacobi relaxation method to account for the non-
orthogonality of spherical harmonic (SH) transforms. We describe
how it can be augmented to deal with non-trivial noise covariance in
Section 3. We subsequently illustrate how the algorithm can encode
the BW17 prescription for pure E/B reconstruction, followed by
an outline of the numerical implementation in Section 4. We
then present a new optimization scheme for the estimation of
noise covariance from Monte Carlo simulations and showcase the
capabilities of DANTE in reconstructing pure E and B maps from
simulated Planck data in Section 5. Finally, we summarize our main

findings in Section 6. In Appendix A, we provide a brief description
of SH transforms, as employed in this work. Appendix B outlines
the main steps in the derivation of the essential dual messenger
equations to account for anisotropic correlated noise.

2 D UA L MESSENGER ALGORI THM

We briefly review the underlying framework of the dual messenger
algorithm for Wiener filtering polarized CMB maps. A complemen-
tary description is provided in Kodi Ramanah et al. (2018).

2.1 Wiener filter

In linear data analysis, we often encounter the computation of the
so-called Wiener filter on large and complex data sets. The Wiener
filter originates from the following statistical problem. We assume
our observed data set d to be a linear combination of the signal s
with covariance S and noise n with covariance N as follows:

d = Rs + n, (1)

where the signal and noise covariances are given by S = 〈ss†〉 and
N = 〈nn†〉, respectively. R is the complete response operator, with
the inclusion of harmonic transforms, beam and mask effects, that
models the instrument response to incoming signal. It effectively
corresponds to the overall model of how the instrument converts,
on average, an incoming signal s to the observed data d, with the
residual being the noise n, while encoding the relevant physics.

The Wiener filter solution, s WF, is the optimal linear filter when
the signal and noise are both Gaussian random fields. For a particular
realization of the data, s WF therefore maximizes the posterior
probability distribution ∝exp (− χ2/2), or equivalently minimizes

χ2 = (d − Rs)†N−1(d − Rs) + s†S−1s, (2)

leading to the Wiener filter equation,

s WF = (S−1 + R†N−1R)−1R†N−1d. (3)

s WF is the least-square optimal solution: the Wiener filter minimizes
the mean-square deviations 〈ε†ε〉 of the reconstruction errors ε =
s WF − s, averaged over all signal and noise realizations.

The Wiener filter (Wiener 1949) is a particularly important
signal reconstruction technique, with ubiquitous applications in
cosmology and astrophysics (e.g. Elsner & Wandelt 2013, and
references therein). Computing the Wiener filter solution for large
and complex data sets from modern experiments, however, is numer-
ically challenging. Indeed, the first matrix inversion above is dense
in all bases and lives in a high-dimensional space. This space has
typically the size of the number of elements in d, which for Planck
maps is O(109), when accounting for polarization components and
the nine frequency bands. Due to the size of the covariance matrices
scaling as the square of the number of data samples, the storage
and processing of dense systems become numerically intractable.
Traditional approaches of computing the Wiener filter rely on costly
and highly non-trivial numerical schemes, such as preconditioned
conjugate gradient (PCG) methods (Eriksen et al. 2004; Wandelt,
Larson & Lakshminarayanan 2004; Smith, Zahn & Doré 2007;
Seljebotn et al. 2014, 2019; Papež, Grigori & Stompor 2018; Puglisi
et al. 2018), requiring a pre-conditioner to approximate the matrix
inversion involved. These complex techniques suffer from various
numerical limitations, as discussed extensively in Elsner & Wandelt
(2013) and Kodi Ramanah et al. (2017), when dealing with high-
dimensional data sets. Such PCG methods do have some merits,
however, as they are conducive to fast convergence, provided an
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adequate pre-conditioner tailored to the specific problem is avail-
able. A recent work by Horowitz, Seljak & Aslanyan (2018) was
based on recasting the Wiener filtering problem as an optimization
scheme and provides an alternative promising approach for dealing
with complex noise models. Münchmeyer & Smith (2019) recently
proposed another interesting approach where a neural network was
trained to Wiener filter CMB maps.

We recently presented the dual messenger algorithm, an enhanced
variant of the standard messenger technique developed by Elsner &
Wandelt (2013), as a general purpose Wiener filtering tool, which
surpasses its predecessor in execution time (Kodi Ramanah et al.
2017). We have demonstrated the efficiency and unconditional
stability of the dual messenger technique in Wiener filtering
high-resolution polarized CMB data with correlated noise (Kodi
Ramanah et al. 2018, hereafter KLW18). As a preconditioner-free
approach, this method circumvents the limitations of conventional
PCG solvers in dealing with inherently ill-conditioned systems
encountered in typical CMB polarization problems, as illustrated
in KLW18.

The messenger method has been implemented within an effi-
cient Gibbs sampling framework for Bayesian large-scale structure
inference (Jasche & Lavaux 2015), with this Gibbs-messenger
sampling scheme subsequently adapted for CMB gravitational
lensing (Anderes, Wandelt & Lavaux 2015) and cosmic shear
analyses (Alsing et al. 2016; Alsing, Heavens & Jaffe 2017). The
messenger technique is being further developed for data analysis
involving dense noise covariance matrices (Huffenberger 2018) and
has emerged as a promising CMB map-making tool (Huffenberger
& Næss 2018). The dual messenger algorithm has also been
implemented in the field of optical and information engineering.
For instance, it has been adapted for the removal of atmospheric
haze from images (Fu et al. 2018), demonstrating the versatility of
the tool developed. This class of messenger methods can therefore
be tailored to solve a range of Wiener filtering problems and is not
limited to astrophysical and cosmological applications.

2.2 Dual messenger field on the sphere

Conceptually, the essence of the messenger methods lies in the
introduction of an auxiliary field to mediate between the different
bases where the signal and noise covariances, S and N, can be most
conveniently expressed as sparse matrices. The addition of this mes-
senger field allows the Wiener filter equation to be rewritten as a set
of algebraic equations that must be solved iteratively, circumventing
the requirement of matrix inversions or pre-conditioners.

With respect to the standard messenger technique, where a
messenger field t is introduced at the level of the noise, the dual
messenger algorithm incorporates an extra messenger field u, at
the level of the signal, with corresponding covariances T and U,
resulting in the following augmented χ2:

χ2
T ,U = (d − t)†N̄−1(d − t) + (t − YBu)†T−1(t − YBu)

+ (u − s)†U−1(u − s) + s†S̄−1s, (4)

where N̄ = N − T with T = α1, where α ≡ min(diag(N)), and
S̄ = S − U with U = ν1, where ν ≡ min(diag(S)). When dealing
with polarization fields, μ and ν are actually 3 × 3 matrices,
corresponding to the temperature, E and B components. Y and Y†

correspond to the basis operators (synthesis and analysis operators,
respectively) for the SH transforms, as described in Appendix A,
while B indicates convolution with an instrument beam. In terms of
physical significance, t corresponds to a homogeneous portion of

the noise covariance while its counterpart u is associated with the
signal covariance. Optimizing χ2

T ,U yields the following system of
equations to be solved iteratively:

u = (S̄ + U)
[
B†Y†YB(S̄ + U) + T

]−1
B†Y† t (5)

t = (N̄−1 + T−1)−1(T−1YBu + N̄−1d). (6)

Note that this is the reduced system of equations, with one of the
messenger fields made implicit. The general system of equations
is described in more depth in KLW18. To improve convergence,
we implement a similar scheme as in KLW18. We artificially
truncate the signal covariance S to some lower initial value of
�iter, corresponding to a covariance μ. We subsequently vary U
to bring μ → ν, such that in the limit μ = ν, we have u = s and we
recover the usual Wiener filter equation (3) from the above system
of equations (5) and (6). This is formally valid as long as μ and ν

are block matrices over harmonic space. We may therefore exploit
this degree of freedom to solve the temperature and polarization
signals at different rates. The above cooling scheme leads to a
redefinition of S̄ using the Heaviside function as S̄ = �(S − U),
where S corresponds to the eigenvalues of S, i.e. S = R†SR and
S̄ = R†S̄R.

To implement such a hierarchical scheme, we vary U via a cooling
scheme for ξ , where ξ = B†Y†YBU + T. To obtain the appropriate
Wiener filter solution, we need to reduce μ → ν = 0, due to the
continuous mode of the signal, i.e. the zero eigenvalue of S. The
cooling scheme for ξ entails gradually reducing ξ by a constant
factor and iterating until ξ → T, thereby finally attaining μ = 0,
as required. A quantitative description of the rationale underlying
the above cooling scheme is presented in our previous work (Kodi
Ramanah et al. 2017).

DANTE is implemented in PYTHON and it makes use of the
HEALPIX1 (Górski et al. 2005) library, in particular the PYTHON

wrapper HEALPY, to perform the spherical harmonic transforms
(SHTs). HEALPIX employs an equal area projection scheme, where
the SHTs are quasi-orthogonal, i.e. Y†Y1 ≈ (Npix/4π)1 ≡ β1,
where Npix denotes the number of pixels. We account for this non-
orthogonality of SHTs via efficient Jacobi relaxation schemes, as
described in future sections. If an equidistant cylindrical projection
on a grid is adopted for the SHTs (e.g. Muciaccia, Natoli & Vittorio
1997; Huffenberger & Wandelt 2010; McEwen & Wiaux 2011),
the equations presented in this work are significantly simplified, as
a result of β = 1. DANTE employs the NUMBA2 (Lam, Pitrou &
Seibert 2015) compiler for PYTHON arrays and numerical functions
to yield high-performance functions for all the required matricial
manipulations to boost execution speed. NUMBA generates opti-
mized native code using the LLVM compiler (Lattner & Adve 2004)
infrastructure and is used to parallelize the array operations.

2.3 Non-orthogonality of SH transforms

Unlike in the case of discrete Fourier transforms, the SH synthesis
and analysis operators, i.e. Y and Y†, respectively, are not orthog-
onal and differ by more than a transposition and a scale factor. The
quality of the approximation, Y†Y1 ≈ (Npix/4π )1 ≡ β1, depends
on the �max, Npix and spherical grid considered.

1http://healpix.jpl.nasa.gov
2https://numba.pydata.org
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To account for the non-orthogonality of SH transforms, we
incorporate an internal Jacobi relaxation method (Jacobi 1845;
Saad 2003) in DANTE to refine the solution in harmonic space
(cf. equation 5). To obtain U, we need the eigenvalues of S, i.e.
U = min(S)1, where R†SR = S. Equation (5) can be formulated
as s = Ab, where A is given by

A = R†(S̄ + U)
[
RB†Y†YBR†(S̄ + U) + α1

]−1
R, (7)

after including the basis transformations, and b = B†Y† t .
An approximation to A can be obtained as follows:

Ã = R†(S̄ + U)
[
βRB†BR†(S̄ + U) + α1

]−1
R, (8)

after using the approximate orthogonality relation Y†Y1 ≈ β1.
The application of the operator A is not well-defined but we
nevertheless can apply its inverse A−1 to a vector, by applying
the relevant operators sequentially,

A−1 = R† [RB†Y†YBR† + α(S̄ + U)−1
]
R. (9)

We therefore make use of A−1 and Ã to obtain the solution for
s via the following Jacobi iterations:

sn+1 = sn + Ã(b − A−1sn), (10)

where n denotes the number of Jacobi iterations.
The term (S̄ + U)−1 poses a numerical predicament for the final

truncation in the signal covariance, where S̄ = S − U and U = 0,
and we subsequently require the inversion of S. We circumvent the
corner case due to the zero eigenvalues of the continuous modes in
S by imposing the following constraint on the subspace V where
S = 0: (S̄ + U)−1|V = S+. S+ is the pseudo-inverse, i.e. SS+ =

, where 
 is a projector.

2.4 Incomplete sky coverage

CMB data analysis inevitably requires the treatment of masks, with
many practical applications requiring that parts of the sky be masked
out. For full-sky observations, this is mainly to avoid contamination
from the galactic foreground emissions, thereby preventing spurious
power-spectra measurements. In the case of ground-based or sub-
orbital CMB experiments with partial sky coverage, missing data
are accounted for using masks.

We provide an outline of the general procedure for solving
the messenger equation (6) when dealing with temperature and
polarization masks. Here, we assume correlated noise, such that the
noise covariance N has the following block-diagonal form for every
pixel i:

Ni =
⎛⎝〈II〉 〈IQ〉 〈IU〉

〈QI〉 〈QQ〉 〈QU〉
〈UI〉 〈UQ〉 〈UU〉

⎞⎠, (11)

where I, Q, and U are the Stokes parameters. More complex noise
models will be described in Section 3.

We compute the covariance T of the messenger field t as follows:
T = min(N )1 = α1, where D†ND = N. The noise covariance N
can be written as N = �C� = �P†�P�, following the orthonor-
mal decomposition of C, where � is a diagonal matrix with the
eigenvalues {σ i

I, σ i
Q, σ i

U } corresponding to the noise amplitudes
for the ith pixel, with the orthonormal decomposition of C resulting
in the diagonal matrix �. We then obtain N̄ = N − T as follows:

N̄ = �P†�P� − T

= �P†(� − αP�−2P†)P�, (12)

where α, as stated above, is the smallest eigenvalue of N. To solve
the messenger equation (6), we require the inverse N̄−1,

N̄−1 = �−1P†(� − αP�−2P†)−1P�−1, (13)

such that N̄−1 has a block-diagonal structure in pixel space. We
obtain the solution for the messenger field by simply evaluating
equation (6) in pixel space,

t x = (
N̄−1 + T−1

)−1

x

(
T−1

x YBu� + N̄−1
x dx

)
. (14)

We implement the temperature and polarization masks by
increasing the noise variance to infinity for masked pixels, or
numerically by setting the inverse noise covariance to zero. This
is achieved by setting �−1|mask = 0, subsequently ensuring that
data from masked regions do not contaminate the messenger field.

2.5 Constrained realizations

For full-sky coverage with parts of the sky masked out, we still
seek the Wiener filter solution under the mask, constrained by the
observations on the edges of the mask and determined by the prior
inside the masked region. While this proposed reconstruction does
not correspond to the true solution, it has the correct statistical
properties, i.e. correct signal covariance. The generation of such
constrained realizations is relevant for many practical CMB appli-
cations, such as exact likelihood evaluations via Gibbs sampling. A
complementary conceptual discussion of the rationale underlying
constrained realizations is provided in KLW18.

To draw Gaussian constrained realizations of the CMB sky, we
need to simulate a reference signal ŝ in accordance with the prior
signal covariance assumed for the Wiener filter. We also require a
simulated data set d̂ whose signal and noise properties correspond
to that of the data model. We adapt DANTE to generate constrained
realizations (e.g. using the algorithm of Hoffman & Ribak 1991) in
only one application of the Wiener filter via

s CR = W̃(d − d̂) + ŝ, (15)

where W̃ indicates the application of the dual messenger operator
at a given precision and cooling scheme. We therefore only need to
modify the input data fed to DANTE to draw unbiased constrained
realizations of the signal that are consistent with the observed data,
i.e. having the correct covariance properties.

3 D UA L MESSENGER GENERALI ZATI ONS

The dual messenger approach can be extended to a broader class
of problems, accounting for highly non-trivial noise covariance,
as described in the following sections. In practice, the structure
of the noise covariance, in pixel space, is influenced by the noise
properties of the CMB time-ordered data and the scanning pattern
of the telescope.

3.1 Correlated modulated noise

The first possible generalization for the noise model is the case of
correlated modulated noise. The noise covariance, in pixel space,
can be written as

N = YFY†DYFY†, (16)

where F is a smoothing kernel which is diagonal in the same basis
as S, i.e. harmonic space, while D is the noise variance that can
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be easily diagonalized in some other basis, e.g. pixel space. The
desired Wiener filter from equation (3) is then

s WF = S(S + FY†DYF)−1Y−1d. (17)

It turns out that this can be solved directly by the dual messenger
scheme described above without any modifications. We transform
the data via a simple pre-whitening step as follows:

d̃ = (YFY†)−1d. (18)

The Wiener filter for this model can then be computed via the
following steps:

s̃ WF = (FY†)−1S(YF)−1
[
(FY†)−1S(YF)−1 + D

]−1
d̃

= (FY†)−1S(S + FY†DYF)−1Y−1d

= (YFY†)−1s WF, (19)

after plugging in the effective data vector given by equation (18).
This problem therefore reduces to one that can be solved directly

using the dual messenger algorithm, requiring the same computa-
tional time as in the white noise case. The only additional steps
required are a simple pre-whitening, followed by a post-smoothing
operation with F−1 and F, respectively. For this particular case, we
do not demonstrate the application of DANTE, as the implementation
is straightforward.

3.2 Modulated correlated noise

The second generalization of the noise model corresponds to
modulating the amplitude of spatially correlated noise. This is a
more realistic noise model, typical of CMB experiments such as
Planck, resulting from the scanning strategy of the instrument.
The noise covariance, in pixel space, now takes the following
form:

N = DYCY†D, (20)

where C is the isotropic noise covariance, encoding the inverse
frequency (1/f) noise correlation on the large scales, typically asso-
ciated with atmospheric noise, and therefore diagonal in harmonic
space. The modulation, described by D, is sparse in pixel space.
The power spectrum C� of the non-modulated part of the noise can
be expressed as

C� = σ 2
N

β

[
1 +

(
�knee

�

)αknee
]

, (21)

with the characteristic scale �knee and tilt αknee of the power-law
component, with σ N being the noise amplitude per pixel.

The modulation takes into account the variation of noise am-
plitude due to the amount of integration time spent in any single
pixel. The isotropic noise covariance in the map is expected to
be a good approximation for scan strategies that cross each pixel in
many directions, thereby isotropizing the way the time-ordered data
noise correlations project on to the sky. But even in cases where the
distribution of scan directions per pixel is not entirely isotropic, such
as for the Planck data, this noise model was found to be of sufficient
quality to derive the optimal primordial non-Gaussianity estimators
(Planck Collaboration XVII 2016c; Planck Collaboration IX
2019).

As a result of the above dense noise covariance, equation (6) is
no longer algebraically solvable due to the required inversion of a
fully dense system. But since we are free to choose the covariance
T of the messenger field t , we set T = D(YφY†)D, where φ =

min(diag(C)). This yields the following system of equations:

u = (S̄ + U)
[
B†Y†D−1(YφY†)−1D−1YB(S̄ + U) + 1

]−1

× B†Y†D−1(YφY†)−1D−1 t (22)

t = D
[
(YCY† − YφY†)−1 + (YφY†)−1

]−1

× [
(YφY†)−1D−1YBu + (YCY† − YφY†)−1D−1d

]
, (23)

where the second equation can be simplified to the following form
via straightforward linear algebraic manipulations:

t̃ ≡ D−1 t = Y(C − φ1)Y†(YCY†)−1D−1YBu

+ (YφY†)(YCY†)−1D−1d, (24)

which can now be solved trivially to obtain the messenger field. The
first equation (22), however, cannot be solved directly, but it can
be conveniently expanded using an extra messenger field v, with
covariance V = ω(YφY†)1, where ω ≡ min(diag(D2)), yielding
the following two trivially solvable equations:

v = ωMD−1M−1 t̃ + [
1 − ωMD−1M−1D−1

]
YBu (25)

u = [
φω(S̄ + U)−1 + B†Y†M−1YB

]−1
B†Y†M−1v, (26)

where the coupling matrix M is defined as M ≡ YY†. We
therefore must solve the above system of three equations (24)–(26)
when accounting for modulated correlated noise. Equation (26) can
be written explicitly in terms of the relevant basis transformations
as follows:

u = R†(S̄ + U)
[
RB†Y†M−1YBR†(S̄ + U) + φω1

]−1

×RB†Y†M−1v, (27)

where, as before, S = R†SR. An in-depth derivation of these
equations is laid out in Appendix B. We encode the mask by
doing the decomposition, D = �D̃� = �P†�P�, as described
in Section 2.4, and setting �−1|mask = 0. This prescription corre-
sponds exactly to dropping the contribution of observations that are
considered masked out, which may be deduced from equation (4).
We apply the cooling scheme to ξ = U + φω1, as described in
Section 5.3.

3.3 Nested Jacobi relaxation

As mentioned in Section 2.2, the above equations (24), (25),
and (27) may be simplified significantly using the approximation
Y†Y1 ≈ β1, thereby reducing the required number of SHTs. This
approximation is not exact due to the coupling of the SHTs on the
pixelized sky. In this work, we employ Jacobi relaxation to correct
for the operations M−1 ≡ (YY†)−1 and (YCY†)−1.

We follow a similar rationale and employ the same notation as
in Section 2.3, with the Jacobi iteration given by equation (10),
where b is any arbitrary vector in harmonic space. For the case of
A = (YCY†)−1, the respective operations are as follows:

Ã = (β−1Y)C−1(β−1Y†), A−1 = YCY†. (28)

The correction for M−1 is analogous to the above, with C set to
identity matrix, and must be embedded within the less trivial Jacobi
relaxation for equation (27). The resulting nested relaxation scheme
requires the following operations:

A = R†(S̄ + U)
[
RB†Y†M−1YBR†(S̄ + U) + φω1

]−1
R (29)
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Ã = R†(S̄ + U)
[
RB†BR†(S̄ + U) + φω1

]−1
R, (30)

and the corresponding inverse of operator A given by

A−1 = R† [RB†Y†M−1YBR†(S̄ + U) + φω1
]

(S̄ + U)−1R,

(31)

with the basis operations included, and b = B†Y†M−1v.

4 PU R E E/B DECOMPOSITION V IA WIENER
FILTER ING

In a finite patch of sky, the polarization field cannot be uniquely
decomposed into pure E and pure B modes. Nevertheless, the
polarization map can be uniquely decomposed into three distinct
components, commonly referred to as the ‘pure E’, ‘pure B’, and
‘ambiguous’ modes (Lewis et al. 2002; Bunn et al. 2003). This new
set of ambiguous modes receives contributions from both E and B
modes. In such a framework, the signal vector space is divided into
three orthogonal subspaces. The pure B modes exist on the vector
subspace orthogonal to that of all E modes, and similarly for the pure
E modes. The ambiguous component, however, lies in the subspace
orthogonal to both pure E and B subspaces. This decomposition
ensures that a reconstructed pure B map is not contaminated by E
modes.
E/B separation methods based on this pure-ambiguous decom-

position originally involved the construction of an eigenbasis for the
various orthonormal subspaces, but this is a tedious and numerically
slow procedure. The E/B decomposition is trivial for exact methods
such as Gibbs sampling (Larson et al. 2007), which infer the
posterior statistics of a full-sky signal conditional on the data. Gibbs
sampling requires a complete sky sample, i.e. optimally filtered data
augmented to cover the whole sky via constrained generalizations
(see also KLW18). This is the basis of the motivation behind the
Wiener filtering approach proposed by Bunn & Wandelt (2017).

We briefly review the rationale and the formalism behind this
new method, and describe how it can be incorporated in DANTE. A
more comprehensive description is provided in Bunn & Wandelt
(2017).

4.1 Background and notation

Considering only polarization measurements, the data set can be
described as a 2Npix dimensional vector of the Stokes parameters Q
and U , i.e. d = (dQ, dU ), where Npix corresponds to the dimension
of the pixelized map of a given Stokes parameter. We account for the
contribution from the temperature anisotropy, Stokes I, in a future
section. We assume a data model as given by equation (1), and
Gaussian white noise, although the results presented below would
still be relevant for more complex noise covariance.

The signal can be expressed as a SH expansion,

s = sE + sB =
∑
�,m

[
aE

�mY E
z,�m(r̂j ) + aB

�mYB
z,�m(r̂j )

]
, (32)

where r̂j labels the pixel corresponding to measurement j, while
the index z ∈ {Q,U} denotes the associated Stokes parameter. The
functions Y can be expressed in terms of spin-2 SHs:

Y E
Q,�m = YB

U,�m = −1

2
(2Y�m +−2 Y�m) (33)

YB
Q,�m = −Y E

U,�m = −1

2
(2Y�m −−2 Y�m). (34)

The signal can therefore be written as

s = YE e + YBb, (35)

with the coefficients aE
�m and aB

�m encoded in the vectors e and b,
respectively. The matrices YZ , for Z ∈ {E,B}, consist of the SHs
evaluated at the given pixel locations.

Under the assumption of data sourced by a statistically isotropic
and random Gaussian process, the signal is uniquely described by
the following covariance:

S ≡ 〈ss†〉 = 〈sE sE†〉 + 〈sBsB†〉 ≡ SE + SB. (36)

For a full-sky data set, where d covers the whole sky, the matrices YE
and YB span orthogonal spaces, and hence the E–B coupling issue
does not arise and the decomposition is straightforward. Incomplete
sky coverage, however, results in the ambiguous modes that lie in
both subspaces at the same time. The pure B space can therefore be
described as the orthogonal complement of the space spanned by
YE , with an analogous definition for the pure E space. The signal
vector space can consequently be divided into three orthogonal
subspaces, with the third ambiguous space being orthogonal to both
of the pure subspaces. By projecting the data vector d on the pure
B subspace, the E-mode signal is mapped on to the null space of
YB, ensuring no contamination of E modes in the resulting pure B
map.

4.2 Purification framework

If the signal covariance S employed in the Wiener filter equation (3)
contains covariances of both E and B signals, then the resulting
Wiener-filtered map would have contributions from both the scalar
and pseudo-scalar components, i.e. s WF = sEWF + sBWF. Bunn &
Wandelt (2017) proposed the following approach to isolate them
from each other: Conceptually, the rationale is to treat one com-
ponent as a source of noise. We can obtain the Wiener-filtered B
map, for instance, via the following replacements: S → SB and
N → SE + N, such that the Wiener filter equation (3) becomes

sBWF = [
S−1
B + (SE + N)−1

]−1
(SE + N)−1d

= SB [SB + (SE + N)]−1 d, (37)

with an analogous expression for sEWF. Recall that s WF = sEWF +
sBWF.

However, the above Wiener-filtered maps are contaminated by the
ambiguous modes. Due to our prior signal covariance having a much
higher E-mode power, the theory assigns the ambiguous modes with
high signal-to-noise mostly to theE map. In order to ensure no cross-
contamination, whereby a pure B map should have contributions
strictly from B modes, Bunn & Wandelt (2017) suggested raising
the signal covariance associated to the E component to infinity, and
provided a proof that this gives the same result as doing a costly
eigenmode decomposition and projecting out the ambiguous modes.
We define

S(λ) = SB + λSE (38)

as the signal covariance with the E-mode power amplified by a
factor of λ. Substituting SB + SE → S(λ) in equation (37) yields

sBWF(λ) = SB [S(λ) + N]−1 d

= SBS(λ)−1
[
S(λ)−1 + N−1

]−1
N−1d, (39)
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such that in the limit λ → ∞, only the pure B modes survive in the
null space of SE . A strictly analogous procedure holds for the pure
E component.

4.3 Numerical implementation

To facilitate the numerical evaluation of the expressions above, it
is more convenient to work with a full-sky data set, so that we can
use fast transforms to move back and forth between the pixel and
SH spaces. Masked pixels are assigned infinite noise covariance,
i.e. we set the inverse noise covariance to zero.

Assuming isotropic and Gaussian CMB anisotropies, the signal
covariance S is diagonal in SH basis,

SE = diag(CEE
2 , . . . , CEE

�max
, 0, . . . , 0) (40)

SB = diag(0, . . . , 0, CBB
2 , . . . , CBB

�max
), (41)

with the ordering convention of having the E-mode component first.
Hence, we have

S(λ)−1 = diag
[
(λCEE

2 )−1, . . . , (λCEE
�max

)−1,

(CBB
2 )−1, . . . , (CBB

�max
)−1

]
. (42)

As a result, S(λ)−1|λ→∞ → S+
B, where the pseudo-inverse S+

B is the
inverse of SB within the subspace spanned by YB and is zero in
the orthogonal subspace of E modes. We consequently obtain the
operator that projects on to the pure E subspace as SBS+

B = PB.
Finally, we obtain the Wiener-filtered pure B map as

spB
WF ≡ lim

λ→∞
sBWF(λ) = SBS+

B(S+
B + N−1)−1N−1d. (43)

The above formalism can be generalized to include the correlation
between polarization and temperature anisotropies, where the data,
d = (dI, dQ, dU ), are pixelized maps of the Stokes parameters, I,
Q and U , where I here corresponds to the temperature anisotropy.
The signal covariance matrix now has a block-diagonal structure in
SH space, with a 3 × 3 sub-matrix, for all multipole moments �, as
follows:

S� =
⎛⎝CT T

� CT E
� 0

CT E
� CEE

� 0
0 0 CBB

�

⎞⎠, (44)

with the vanishing cross-spectra,CT B
� and CEB

� ,set to zero.
To find the pureB map, we proceed as before, i.e. SE → λSE with

λ → ∞. In this limit, the temperature and polarization components
decouple, yielding the following signal covariance:

SB ≡
[

lim
λ→∞

S(λ)−1
]+

=

⎛⎜⎝CT T
� − (CT E

�
)2

CEE
�

0 0

0 0 0
0 0 CBB

�

⎞⎟⎠, (45)

such that the above equation (43) for the Wiener-filtered pure B
map still holds.

A similar reasoning results in the following equation for the
Wiener-filtered pure E map:

spE
WF = SES+

T E (S+
T E + N−1)−1N−1d, (46)

where ST E is the signal covariance corresponding to

ST E ≡
[

lim
λ→∞

S(λ)−1
]+

=

⎛⎜⎝0 0 0

0 CEE
� − (CT E

�
)2

CT T
�

0

0 0 0

⎞⎟⎠. (47)

S+
T E is then the pseudo-inverse associated to the subspace contain-

ing the temperature and E modes, i.e. all the B modes lie in the null
space of both ST E and S+

T E .
In this work, we encode this prescription in DANTE for optimal

reconstruction of pure E and B maps via Wiener filtering. The
numerical implementation for the pure B case entails the usual
Wiener filtering procedure, i.e. solving equation (3), but assuming
infinite covariance for the E component, followed by the application
of the relevant projection operator PB to obtain the pure B map. An
analogous procedure yields the pure E map.

The above formalism still holds in the presence of more complex
noise models, such as the anisotropic correlated noise considered
here. Since the signal covariance becomes fully diagonal when
reconstructing the pure E or B map, we solve equation (26) itself
since no basis transformations are required, as follows:

u = (S̄ + U)
[
B†Y†M−1YB(S̄ + U) + φω1

]−1
B†Y†M−1v. (48)

There is, nevertheless, a caveat in the implementation of the above
equation. The signal covariance S, as given by equations (45) and
(47), is actually the pseudo-inverse of the well-defined S(λ)−1

in the limit λ → ∞. The trivial implementation is to set the
relevant components of ST E and SB to a numerically large value.
Alternatively, equation (48) can be expressed in the following
numerically convenient form:

u = [
B†Y†M−1YB + φωS̄−1(S̄−1 + U−1)−1U−1

]−1

·B†Y†M−1v, (49)

which, for the final step of the cooling scheme, i.e. U = 0, reduces
to

u = [
B†Y†M−1YB + φωS−1

]−1
B†Y†M−1v. (50)

We verified that both implementations resulted in identical solu-
tions, within the limit of numerical errors.

5 NUMERI CAL EXPERI MENTS

In this section, we demonstrate the application of DANTE to an
artificially generated but realistic CMB polarization data set. We
present the procedure for the mock generation, followed by a
description of the different steps in the data analysis pipeline.

5.1 Mock generation

To simulate joint temperature and polarization maps on the sphere,
we make use of HEALPY to generate realizations of aT

� , aE
� , and aB

�

signals with the correct covariance properties (cf. equation 44),
taking into account the correlation between CMB temperature
anisotropy and polarization. We employed CAMB3 (Lewis, Challinor
& Lasenby 2000) to generate the input angular power spectra,
CT T

� , CEE
� , CBB

� and CT E
� , from which the corresponding CMB

signals are drawn. We assume a standard �CDM cosmology with
the set of cosmological parameters (�m = 0.32, �� = 0.69, �b

= 0.05, h = 0.67, σ 8 = 0.83, ns = 0.97) from Planck (Planck
Collaboration XIII 2016b). We can then construct the input Q
and U maps by transforming realizations of E and B signals
(cf. equation A2 in Appendix A) on the sphere, with HEALPIX

resolution of Nside = 128 and �max = 128, such that the total
number of pixels is Npix = 12 × N2

side ≈ 2 × 105. The input Stokes

3http://camb.info
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Figure 1. The temperature and polarization masks employed in the data analysis, corresponding to sky fractions of f T
sky = 0.76 and fP

sky = 0.84, respectively.
Our artificially generated data set emulates the features of polarized Planck CMB maps.

parameters’ maps are subsequently contaminated with modulated
correlated noise, as described by equation (51) below, with a
white noise amplitude of σ N = 40.0μK per pixel, typical of high-
sensitivity CMB experiments tailored for the detection of B modes,
and the corresponding 1/f noise parameters of �knee = 10 and αknee =
1.5 (cf. equation 21). We employ the SMICA Planck temperature and
polarization masks (Planck Collaboration IX 2016a), corresponding
to sky fractions of f T

sky = 0.76 and f P
sky = 0.84, respectively, as

depicted in Fig. 1. While our formalism and code account for the
effect of a beam, we set the beam operator to identity for our present
test cases.

5.2 Estimation of noise covariance

We now present a posterior optimization method to estimate the
noise covariance using Monte Carlo (MC) simulations. For the case
of modulated correlated noise, the data can be modelled as follows:

d = s + DYC1/2Y†n, (51)

following the notation of equation (1), where D is diagonal in pixel
space. We also use liberally the notation C1/2 to indicate the positive
square root matrix of C. As described in Section 3.2, the noise
covariance is now given by

N = DYCY†D, (52)

with C being the isotropic, homogeneous, noise covariance, which
incorporates the inverse frequency (1/f) noise correlation on the
large scales. The overall aim is to estimate D and C using MC
simulations by casting the covariance estimation problem as a two-
level optimization scheme. The noise realizations can be modelled
as the following linear combination:

n = DYC1/2 z + k, (53)

where z and k are Gaussian random fields with covariances,
〈zz†〉 = 1 and 〈kk†〉 = κ21, respectively. The corresponding χ2,
as the negative of the logarithm of the posterior distribution, with
the sum over the contribution of each MC realization, can be written
as

χ2 =
NMC∑
i=1

[
1

κ2

(
ni − DYC1/2 zi

)†(
ni − DYC1/2 zi

)
+ z†i zi

]
. (54)

To obtain the maximum a posteriori estimate of D and C, we must
optimize the above χ2 with respect to zi and D, in the limit κ →

0. The χ2 optimization with respect to zi yields, for a given MC
simulation,

z̃i = (
Y†D2YC1/2 + κ2C−1/2

)−1 Y†Dni , (55)

which, in the limit κ → 0, simplifies to

lim
κ→0

z̃i =
(
Y†D2YC1/2

)−1
Y†Dni

= C−1/2Y−1D−2
̃†Dni , (56)

where 
̃† = (YY−1)† is a projector on to the pixel subspace.
The inversion per matrix is acceptable for the term in parenthesis
because the operation Y† already projects on the subspace of maps
bandwidth limited to �max. Within that space theY operator becomes
invertible, though at some cost. Optimizing the χ2 with respect to
D leads to

D̃ =
[

NMC∑
i=1

(
YC1/2 zi

)†(
YC1/2 zi

)]−1 NMC∑
i=1

(
YC1/2 zi

)†
ni

≡
(

NMC∑
i=1

m†
i mi

)−1 NMC∑
i=1

m†
i ni

≡ E−1
NMC∑
i=1

m†
i ni , (57)

where we defined E ≡ ∑
i m†

i mi , with mi estimated as follows:

mi = YC1/2 zi = 
̃D−2
̃†Dni , (58)

where 
̃ = YY−1 is the projector on to the SH space.
The algorithm for the noise covariance estimator proceeds

according to the following iterative scheme: Compute m̃i using
equation (58), and subsequently E−1 to obtain D̃ using equa-
tion (57), followed by a power spectrum update to obtain C̃
via C̃ = ∑

i〈m̂i m̂
†
i 〉/NMC. In the above, we have defined the

harmonic representation of the map with m̂i = Y−1mi . We solve
equation (57) by implementing fixed point iterations, but this fixed
point is not an attractor. We consequently employ the Babylonian
method (e.g. Fowler & Robson 1998; Friberg 2007) to stabilize the
fixed point and obtain an updated D̃, as follows:

D̃ = 1

2

(
D + E−1

NMC∑
i=1

m†
i ni

)
. (59)

MNRAS 490, 947–961 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/490/1/947/5570619 by C
N

R
S - ISTO

 user on 04 July 2023



Wiener filtering of CMB polarization 955

Figure 2. Top row: The reference modulated noise covariance used as inputs for the generation of the noise simulations. Middle row: The corresponding
components recovered by the noise covariance estimator display the expected modulation patterns, indicating qualitatively the efficacy of our estimator. Bottom
row: The residuals, generated by computing the difference between the reference and estimated noise covariance components, demonstrate the high-fidelity
reconstructions. Note that for the relatively low residuals at the level of ∼ 0.3 per cent to be visible, we employ a different colour bar scale for the residual
maps.

We may verify that the fixed point of the above equation is exactly
the desired D matrix. Note that due to the degeneracy between the
amplitudes of C and D, we need to anchor the amplitude of the
updated C̃ via the required re-scaling.

We therefore solve the above equation (57) iteratively, using
D2 = ∑

i(n
†
i ni)/NMC as an initial guess. We generate 104 MC noise

simulations using as template the modulated noise covariance pro-
vided by the Planck data analysis pipeline,4 as an estimate for the ni

above. The map estimates, after only five iterations, for the diagonal
and off-diagonal components of the noise covariance matrix, along
with their corresponding reference and residual maps, are displayed
in Figs 2 and 3, respectively. Visually, the distinct components of the
covariance matrix are adequately recovered, with residuals at the
level of ∼ 0.3 per cent and ∼ 6 per cent for the diagonal and off-
diagonal components, respectively. As a quantitative diagnostic,
we verify the relative deviation in the angular power spectra
reconstructed from the maps, as a function of scale, with respect
to their reference components:

√
C�(D̂ − Dref )/C�(Dref ), illustrated

in Fig. 4. This demonstrates the accuracy of reconstruction of our
noise covariance estimator across the range of scales considered,
with only five iterations.

4Available from http://pla.esac.esa.int/pla/aio/product-action?MAP.MAP I
D=HFI SkyMap 100 2048 R2.02 full.fits.

5.3 Polarization analysis

In this section, we showcase the application of DANTE in Wiener
filtering polarized CMB maps contaminated with anisotropic cor-
related noise, and also illustrate its efficacy in generating pure E
and B maps, guaranteed to be free from any cross-contamination.
This corresponds to three distinct runs using the same realization of
mock data, generated as described above in Section 5.1, labelled as
‘WF’, ‘pure E’, and ‘pure B’, respectively. The ‘pure B’ run yields
a ‘pure’ temperature map as by-product, which corresponds to the
map of temperature anisotropies without any contribution from the
E modes. We anchor the choice of hyperparameter values, described
below, for all three cases.

We make an initial truncation in the power spectrum at � = 50,
corresponding to a given value of ξ and the algorithm loops through
the iterations until the fractional difference between successive
iterations has reached a sufficiently low value, at which point ξ is
reduced by a constant factor according to a given cooling scheme:
ξ → ξη, where η = 2/3, until ξ → φω1. We implement a ‘weak’
criterion for convergence, ‖si+1 − si‖ / ‖si‖ < ε, where ε = 10−5,
as a cheap proxy for the strong criterion that is verified a posteriori
in Fig. 7.

The reconstructed angular power spectra for the temperature
and polarization components are provided in Fig. 5, with the
WF solution showing suppressed power on the small scales re-
sulting from the noise and masked regions of the sky, which is
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Figure 3. Same as Fig. 2, except for the off-diagonal components of the modulated noise covariance. As for their diagonal counterparts, the cross-correlations
components are adequately recovered, with relatively insignificant residuals (∼ 6 per cent).

Figure 4. Relative deviation, as a function of scale, of the estimated
components of the covariance matrix, with respect to their reference values.
This diagnostic quantitatively demonstrates the performance of our noise
covariance estimator with only five iterations.

a characteristic feature of Wiener filtering. For the temperature
anisotropies, depicted in the left-hand panel, the pure B run yields
the temperature power spectra that has been purified with respect to
the E modes, and as such, corresponds to the prediction solely from
the temperature data, with no contribution from the polarization

component. This pure temperature power spectrum does not display
any significant difference compared to the Wiener-filtered one, as
expected, due to the relatively small E-mode contribution. The
corresponding reconstructed power spectra for the E modes are
depicted in the middle panel of Fig. 5. The pure E-mode power
spectrum displays a smooth functional behaviour that matches
the shape of the input power spectrum, although substantially
suppressed because of the noisy and masked regions and since
the discarded temperature contribution is significant. The right-
hand panel displays the corresponding reconstructions for the B-
mode power spectrum. The pure reconstruction, as in the WF case,
suppresses the modes in the low signal-to-noise regime, while also
discarding the ambiguous modes, and shows a notable difference
on the largest scales.

The real-space maps of the Wiener-filtered, pure E and B modes,
together with their corresponding simulated maps, are illustrated
in the middle and bottom rows of Fig. 6, respectively. The corre-
sponding temperature maps are also displayed in the top row, for
completeness. Note that the simulated maps are the generated signal
realizations that were subsequently contaminated with anisotropic
correlated noise and masked according to Fig. 1. The Wiener-filtered
map, as the maximum a posteriori reconstruction, represents the
CMB signal content of the data, with the reconstruction of the
large-scale modes in the masked areas, based on the information
content of the observed sky regions, being a natural consequence
of Wiener filtering. Both the Wiener-filtered and pure temperature
maps are similar in appearance, as expected from their reconstructed
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Wiener filtering of CMB polarization 957

Figure 5. Reconstructed temperature, E- and B-mode angular power spectra from the WF and pure E/B runs. The simulated realizations, depicted using
dash–dotted lines, were drawn from the reference power spectra, denoted by dashed lines, and were subsequently contaminated with anisotropic correlated
noise and masked. For indicative purpose, we also show the power spectra of the respective noise realizations for our specific test case, taking into account the
isotropic and modulated components of the noise covariance, using a thick solid line. We note that these power spectra correspond to a non-trivial averaging of
the non-modulated part of our noise model specified in equation (21). Left-hand panel: The Wiener-filtered CT T

� is slightly suppressed on the small scales, as
expected, due to the noise and masked regions. With the discarded E-mode contribution being relatively low, the pure CT T

� matches the Wiener-filtered version.
Middle panel: The pure CEE

� is substantially different from its Wiener-filtered counterpart, as the contribution of temperature anisotropies, by virtue of their
larger power, is especially significant. Right-hand panel: The contrast between the Wiener-filtered and pure CBB

� is more significant on the largest scales, as
can be seen from their real-space maps displayed in the bottom row of Fig. 6.

Figure 6. Simulated and reconstructed real-space maps of temperature anisotropies, E and B modes, from top to bottom, from the WF and pure E/B runs.
The Wiener-filtered maps for all three components exhibit the characteristic feature, whereby the signal is extrapolated into the masked regions. The level of
anisotropic correlated noise smooths out the small-scale features for the E and B modes, with the suppression of the small-scale power being more significant
for the latter due to its low amplitude. The pure E and B maps, after the removal of ambiguous modes, display a reduced signal content. This difference is
more striking for the E map since the contribution from the temperature and E-mode correlations is also discarded. The pure B map has lower power close to
the masked regions, relative to the Wiener-filtered one, as expected, since ambiguous modes are known to have support primarily near the mask.

MNRAS 490, 947–961 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/490/1/947/5570619 by C
N

R
S - ISTO

 user on 04 July 2023



958 D. Kodi Ramanah, G. Lavaux and B. D. Wandelt

Figure 7. Convergence diagnostics for the reconstructions from the three runs. Left-hand panel: Variation of residual error, given by ‖Ax − y‖ / ‖ y‖, as a
function of iterations. This residual error is reduced monotonically as the iterations proceed, demonstrating the unconditional stability of the dual messenger
algorithm in performing the three reconstructions. Middle panel: Variation of residual error as a function of angular scale for the final solutions. This error
is sufficiently low for the range of scales considered, indicating the quality of the respective solutions. Right-hand panel: Variation of χ2 with number of
iterations for the WF and pure E/B solutions. Their respective χ2 drop to a final value which is consistent with 〈χ2

d.o.f.〉 corresponding to the expectation value
of the χ2, given by the number of degrees of freedom (d.o.f.), for the final solutions.

power spectra (cf. the left-hand panel of Fig. 5). This is not the case,
however, for the reconstructed E maps, purified with respect to the
temperature anisotropies and ambiguous modes. The pure E map,
as a result, has a lower signal amplitude. Both the Wiener-filtered
and pure B maps show the clear reconstruction of the large-scale
modes with extremely low amplitude. The striking contrast between
the two maps is on the largest scales near the mask, where the pure
B map has lower power. This is consistent with previous work (e.g.
Bunn & Wandelt 2017), where it was found that ambiguous modes
have support primarily near the masked regions.

We illustrate the convergence behaviour of the three solutions
via the corresponding variations of their residual error given by
‖Ax − y‖ / ‖ y‖, for a linear system of equations given byAx = y,
in Fig. 7. This residual error adequately characterizes the accuracy
of the final solution, with the relevant equations as follows:

y = S1/2RY†D−1(YCY†)−1D−1d (60)

and

A = 1 + S1/2RY†D−1(YCY†)−1D−1YR†S1/2, (61)

with x = S−1/2Rs, following the notation from Section 3.2. The
coupling matrix (YCY†)−1 requires Jacobi iterations for accurate
evaluation of the above residual error. For the pure E/B runs, this is
non-trivial as the signal covariance S should have infinite values, as
mentioned at the end of Section 4.3. To simplify the residual error
evaluations in these cases, we simply set the relevant components
of S to a numerically large value.

As we demonstrated in our previous work, a characteristic feature
of the dual messenger algorithm is the monotonic decrease in the
residual error as the iterations proceed, as illustrated in the left-hand
panel of Fig. 7, thereby demonstrating the unconditional stability of
our method. This residual error, as a function of angular scale, for the
final solutions from the three runs, are depicted in the middle panel.
The Jacobi relaxation schemes employed is required to reduce this
error to extremely low values across the range of scales considered.

The χ2 is computed as follows:

χ2 = (d − YBs)†D−1(YCY†)−1D−1(d − YBs) + s†S−1s, (62)

where, as for the residual error evaluations above, we employ
Jacobi relaxation for the composite operation (YCY†)−1. The

corresponding χ2 variation for the three different solutions is
displayed in the right-hand panel of Fig. 7. In all three cases, the
respective χ2 of the dual messenger solutions drop to a final value
which matches 〈χ2

d.o.f〉, the expectation value of the χ2, given by the
number of degrees of freedom (d.o.f), for the final solution. In the
absence of masks, 〈χ2

d.o.f〉 is given by the total number of harmonic
modes of the temperature, E and B components. The computation
of 〈χ2

d.o.f〉 is, however, non-trivial when masks are involved. We
estimated 〈χ2

d.o.f〉 via Monte Carlo simulations. The convergence
diagnostics discussed above, therefore, quantitatively demonstrate
the efficacy of DANTE in performing the three distinct tasks.

Concerning the execution times for the WF, pure E and pure B
runs, for the specific test case investigated, the algorithm runs to
completion on four cores of a standard workstation, Intel Core i5-
4690 CPU (3.50 GHz), in around 3 h. Note that a conjugate gradient
method can, in principle, deal with such anisotropic noise models,
provided that an adequate pre-conditioner can be found and this is
the major stumbling block. Devising an appropriate pre-conditioner
for such a complex problem is an extremely challenging task. For
instance, the multi-grid pre-conditioner developed by Smith et al.
(2007) at WMAP resolution and sensitivity is already highly non-
trivial. The pre-conditioner-free approach of the dual messenger
algorithm, therefore, is the key advantage.

6 C O N C L U S I O N S A N D O U T L O O K

We present a numerically robust and fast code, DANTE, for pure
E/B decomposition of CMB polarization maps. It accounts for
complex and realistic noise models such as anisotropic correlated
noise, encountered in typical CMB experiments such as Planck.
DANTE is an augmented version of our dual messenger algorithm,
adapted for the reconstruction of pure full-sky E and B maps on
the sphere. The algorithm encodes a new method for the pure-
ambiguous decomposition, based on a Wiener filtering approach,
recently proposed by Bunn & Wandelt (2017), that guarantees no
cross-contamination between the two maps. We also developed
a noise covariance estimator to reconstruct the components of
anisotropic noise covariance from Monte Carlo simulations, as
required by the dual messenger algorithm.
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We have demonstrated the capabilities of DANTE in dealing with
large data sets and the associated high-dimensional covariance
matrices. Moreover, as a pre-conditioner-free method, it is not
hindered by ill-conditioned systems of equations inherent in CMB
polarization problems, unlike standard PCG solvers, as demon-
strated in KLW18. DANTE also has an in-built option for drawing
constrained Gaussian realizations of the CMB sky, for applications
requiring homogeneous coverage of the field of observations. We
have not illustrated this particular feature in this work as this was
shown previously in KLW18. DANTE will be rendered public in the
near future.

The pure E/B decomposition framework implemented in this
work, as a maximum a posteriori probability approach, has several
advantages over traditional methods. It exploits the sparsity of the
E/B decomposition in the SH basis, rendering the implementation
extremely efficient. It is therefore much faster and straightforward
than methods relying on the construction of orthonormal bases
or wavelet methods that require a certain degree of fine-tuning.
Moreover,E/B purification in the context of pseudo-C� estimators is
only feasible when the mask is differentiable up to at least its second
derivatives, which is usually achieved via an appropriate apodization
(Alonso et al. 2019). An interesting aspect of our approach is that
it is not hindered by such limitations.

We have showcased the performance of DANTE on a realistic mock
data set, emulating the features of polarized Planck CMB maps.
The next step in this series of investigations is to further augment
DANTE with an adaptive upgrade. Despite the improvements made
to render the analysis of high-resolution CMB polarization data
sets numerically feasible, the statistically optimal approach for the
separation of E and B modes requires exact global analyses such as
Gibbs sampling. This would, however, require several applications
of the Wiener filter to obtain one signal realization conditional on
the polarization data (e.g. Larson et al. 2007). The algorithm would
therefore benefit from a further level of sophistication. A particularly
interesting upgrade is to exploit the hierarchical framework of
the dual messenger algorithm by adapting the working resolution
progressively during execution, thereby substantially reducing the
computation time. We also intend to explore the possibility of
employing the dual messenger as a pre-conditioner in a standard
PCG approach, in an attempt to drastically improve the convergence
rate. Our algorithm could also be used to provide better examples
of Wiener-filtered maps for a filtering based on machine learning,
as in Münchmeyer & Smith (2019) with the J1 loss function.
These examples would be much more expensive than the purely
simulation-based approach of the J2 loss function, but would also
provide a solid validation step.

Ultimately, the underlying objective is to employ this efficient
tool in exact global Bayesian analyses of high-resolution and high-
sensitivity CMB observations from the latest release of Planck to
yield scientific products of significant value and interest. The result-
ing reconstructed maps may potentially be employed for various
applications such as power-spectrum reconstruction, estimation of
lensing potential, tests for foreground contamination and searches
for non-Gaussianity and statistical anisotropy such as hemispherical
power anisotropy. Another key aspect is that the features of the real-
space pure B maps allow the characterization of lensing-induced B
modes that go beyond the power spectrum.

DANTE can be easily applied to other CMB data sets in straight-
forward fashion without major modifications of the source code,
making it a potentially powerful and robust tool for other current
and future high-resolution CMB missions such as South Pole
Telescope, Advanced ACTPol, Simons Observatory and CMB-S4.

The flexibility of the code can nevertheless be exploited in other
cosmological contexts, due to the ubiquitous use of the Wiener
filter, and even in more general scenarios involving spin field
reconstruction.
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APPENDI X A : SH TRANSFORMS

We provide a brief description of the transformation between pixel
and SH domain in order to be precise about the notation employed
in this work.

Assuming the primary CMB fluctuations to be an isotropic
Gaussian random field, the CMB signal can be described as a vector
of SH coefficients, with the associated signal covariance S given by

S�m,�′m′ = 〈a�ma�′m′ 〉 = δ��′δmm′C�, (A1)

where C� is the CMB power spectrum. The proper basis to represent
isotropic Gaussian random fields on the sphere is described by SHs.
Given a grid on the sphere, i.e. a set of pixel positions n̂p , we can
transform a field expressed in SH basis, with coefficients s�m, to one
sampled on the sphere via SH synthesis, as follows:

s(n̂p) =
�max∑
�=0

�∑
m=−�

a�mY�m(n̂p) =
�max∑
�=0

�∑
m=−�

Y�m
p a�m. (A2)

Formally, the SH synthesis may be expressed as a matrix product,
s(p) = Ya(�m), where Y is the synthesis operator that encodes the
value of the SHs evaluated at each n̂p of the grid.

Conversely, the transformation from pixel to harmonic basis is
referred to as SH analysis, with the analysis operator being an
integral related to the synthesis operator:

a(�m) �
∑

p

Y ∗
�m(n̂p)s(n̂p)δ�p = Y−1s(p)

=
∑

p

4π

Npix
Y†,�m

p s(n̂p) = 4π

Npix
Y†s(p). (A3)

It is important to emphasize the scaling operation above and note
that the last equalities are valid only for an equal-area pixelization
such as HEALPIX (Górski et al. 2005). These SH transforms are the
spherical analogue of Fourier transforms.

APPENDI X B: MODULATED CORRELATE D
N O I S E C OVA R I A N C E

We provide a more in-depth derivation of the two dual messenger
equations (25) and (26) required for the treatment of modulated
correlated noise covariance. The third equation (24) can be derived
from equation (23) in straightforward fashion via linear algebraic
simplifications.

Equation (5) can be written in its explicit form as

u = [
B†Y†T−1YB + (S̄ + U)−1

]−1
B†Y†T−1 t, (B1)

with the covariance of the messenger field t being T = D(YφY†)D.
This equation bears a striking resemblance to the standard Wiener
filter equation (3) and can therefore be solved via the introduction of
an extra messenger field v with covariance V = ω(YφY†)1, where
ω ≡ min(diag(D2)), resulting in the following χ2:

χ2
V = (t − v)†

[
D(YφY†)D − V

]
(t − v)

+ (v − Ybu)†V−1(v − Ybu) + u†(S̄ + U)−1u. (B2)

Minimizing the above χ2 with respect to v and u yields the following
set of equations:

v = ω(YφY†)D−1(YφY†)−1D−1

× [
t + ω−1D(YφY†)D(YφY†)−1 − 1

]
YBu (B3)

u = [
φω(S̄ + U)−1 + B†B

]−1
B†Y†M−1v, (B4)
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where, as before, we employ the definition of the coupling matrix
M ≡ YY†. It is more convenient to work with t̃ ≡ D−1 t , such that
we can rewrite equation (B3) as

v = ωMD−1M−1 t̃ + [
1 − ωMD−1M−1D−1

]
YBu. (B5)

The preference for the above form is that masked regions do not pose
any numerical issue, as D−1|mask = 0, such that v|mask → YBu.
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