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aMIS Laboratory, Université de Picardie Jules Verne, 33 rue Saint Leu, Amiens 80000, France
bLTSS Laboratory, Université Amar Telidji de Laghouat, BP 37G route de Ghardaia, Laghouat 03000, Algeria

ABSTRACT

Dense image alignment, when the displacement between the frames is large, can be a challenging
task. This paper presents a novel dense image alignment algorithm, the Adaptive Forwards Additive
Lucas-Kanade (AFA-LK) tracking algorithm, which considers the scale-space representation of the
images, parametrized by a scale parameter, to estimate the geometric transformation between an input
image and the corresponding template. The main result in this framework is the optimization of the
scale parameter along with the transformation parameters, which permits to significantly increase
the convergence domain of the proposed algorithm while keeping a high estimation precision. The
performance of the proposed method was tested in various computer-based experiments, which reveal
its interest in comparison with geometric as well as learning-based methods from the litterature, both
in terms of precision and convergence rate.

1. Introduction

The estimation of the parametric transformation between
two images i.e. image alignment, is a key part of various
applications such as: optical flow estimation [9], Visual
Odometry (VO) [15], Visual Simultaneous Localization And
Mapping (V-SLAM) [14], image mosaicing [10], and image
stitching [8]. The ability of the image registration algorithm
to be robust to large displacements and low textured scenes, is
essential for such applications.

In the literature, image alignment algorithms can be mostly
classified into feature-based methods [? ] and pixel-based
(direct) methods [? ]. In feature-based methods, the image
alignment is done by a feature extraction/matching process in
the images, followed by an estimation of the transformation
parameters from points correspondences. This type of image
registration methods has the advantage of being robust to
changes in scale, orientation, and lighting because feature
descriptors [20, 13] of these methods are relatively invariant to
these changes. It is worth noting that the “scale” here refers to
a geometric quantity in contrast to the “scale” used in the rest
of the paper, which refers to the degree of smoothness of the
considered image. Their main drawback is that features have
to be evenly distributed and precisely located in each image in
order to achieve sub-pixel accuracy, which can be challenging

in low-textured scenes.

Direct methods, for their part, use all pixels of the images to
estimate the transformation parameters. This type of methods
permits to achieve better accuracy than feature-based methods
and is more suitable for low-textured scenes. However, these
pixel-based methods are more sensitive to large displacements.

One of the mostly used algorithms for direct image align-
ment is the Lucas-Kanade (LK) algorithm [21], which was
developed in the early eighties. Subsequently, numerous
extensions and variants to this method were developed and
can be found in the literature [5, 24]. [3] proposed a unifying
framework for the variants of the LK algorithm. Recently,
interest grew for combining feature descriptors with the LK
approach [2, 7, 12]. [1] proposed a binary feature descriptor
used with the LK algorithm, for dense image alignment under
drastic illumination changes. Other approaches considered the
use of learning methods combined with the LK algorithm. For
instance, [11] proposed the combination of deep learning with
the LK algorithm, and achieved subpixel accuracy with large
displacements and color variations. Another example is the
approach developed by [17], which learns a linear model to
predict displacement from image appearance.

As stated before, the LK algorithm suffers from sensitivity
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to large displacements, and the image alignment optimization
scheme is highly susceptible of finding local minima in such
conditions. In order to overcome this drawback a coarse-to-fine
approach is generally adopted [6, 25]. This approach permits
the first order Taylor’s expansion, used by the LK algorithm, to
better approximate the cost function and to enlarge the conver-
gence domain (basin of convergence). Alternatively, one can
blur the images with an isotropic Gaussian kernel to make the
higher order terms of the Taylor’s expansion negligible [23].
Such a blurring can be referred to as scale-space smoothing
because smoothing an image with an isotropic Gaussian kernel
permits to build a scale-space representation of the considered
image [19]. [23] in their work, proposed to blur the objective
function instead of the input images in order to remove local
minima. [25] studied the effect of pre-filtering the input
images on the LK optical flow, and concluded that Gaussian
filtering provides the best results. However, they only provided
empirical results for the choice of the standard deviation of the
Gaussian kernel.

In this paper, we present a novel approach to the LK
algorithm, where the optimization is done on a scale-space
domain. This allows to expand the convergence domain of the
algorithm while keeping accuracy. In this scheme, the scale
parameter of the scale-space representation of the input image
[19] is optimized, unlike [25] where the standard deviation
of the Gaussian kernel was set in an empirical manner. By
optimizing the scale parameter, the proposed method is able to
automatically do the image alignment at coarse levels in a first
time, where the input image is strongly blurred (corresponding
to important values of the scale parameter); then, refining the
result of the estimation at fine levels (corresponding to small
values of the scale parameter).
In order to validate our approach, we first compare it to the
original LK algorithm (forwards additive LK) for translation
transformations. After that, we compare our method to the
variants of the LK algorithm [3] and state-of-the-art methods
[17, 5, 27, 16] for homography transformations. We used the
MS-COCO dataset [18] and the Yale face database [4] for the
different validations.

The rest of the paper is organized as follows: A summary of
the contributions of our work is presented in section 2. Sec-
tion 3 describes the derivation of the adaptive forwards addi-
tive Lucas-Kanade tracking algorithm. Section 4 presents the
results of extended experiments for translation and homogra-
phy transformations. Lastly, a conclusion about the results is
presented in section 5.

2. Contributions Summary

The contributions provided by this work can be summarized
in the following points:

1. We consider a scale-space representation of the input im-
age and the template in order to enable the algorithm to au-
tomatically tune the degree of smoothness of the input im-
age according to the needs of the image registration task.

2. We propose a framework for the optimization of the scale
parameter among the transformation parameters.

3. The conducted evaluations present the effect of the differ-
ent parameters on the behavior of the proposed algorithm,
and show its effectiveness in comparison with geometric
and learning-based methods; both in terms of accuracy and
convergence domain.

3. Method Description

The proposed AFA-LK method aims at aligning an input
image I to a template image T by estimating the parameters
of a warping transformation w(x; p) between both images, for
all pixel coordinates x = (x, y)T . p is the parameters vector
for the warping transformation. It is, for instance, a 2-vector
p = (p1, p2)T for a pure translation:

w(x; p) =

(
x + p1
y + p2

)
(1)

or, for another exemple considered farther in this article, a
8-vector p = (p1, p2, ..., p8)T for a homography transformation
M:

M =

p1 p4 p7
p2 p5 p8
p3 p6 1

 (2)

leading to:

w(x; p) =


p1 x+p4y+p7
p3 x+p6y+1

p2 x+p5y+p8
p3 x+p6y+1

 . (3)

Classical LK methods optimize parameters p minimizing the
sum of squared differences between target intensities T (x), for
each pixel x of T , and their corresponding intensities I(w(x; p))
in the image. The proposed alignment method considers the
scale-space representation [19] GI(w(x; p); λ) and GT (x; λre f )
of I(x) and T (x), respectively, according to the scale parameters
λ and λre f :

GI(w(x; p); λ) = I(w(x; p)) ∗ g(x; λ) (4)

and
GT (x; λre f ) = T (x) ∗ g(x; λre f ) (5)

where g(x; λ) is an isotropic Gaussian kernel, and ∗ is the
convolution operator. This alignment is done by solving the
following problem:

P̂ = argmin
P

1
2

∑
x

[
GI(w(x; p); λ) −GT (x; λre f )

]2
(6)

where P = (p, λ)T is a vector containing the parameters vec-
tor and the scale parameter. Eq. (6) is optimized based on
the forwards additive variant of the Lucas-Kanade algorithm,
in such a way that the warping parameters are updated as fol-
lows:

P← P + α∆P (7)
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where α is a damping parameter. Eq. (6) is a nonlinear least
squares problem that can be solved by considering a Gauss-
Newton scheme, similarly to [3]. The expression of the incre-
ment is then:

∆P = H−1
∑

x

[
∂GI

∂P

]T [
GT (x; λre f ) −GI(w(x; p); λ)

]
(8)

where H represents the (Gauss-Newton approximation to
the) Hessian matrix:

H =
∑

x

[
∂GI

∂P

]T [
∂GI

∂P

]
. (9)

The parameters w(x; p) and λ of GI(w(x; p); λ) have been
omitted for compactness in the writing of the Jacobian line
∂GI
∂P =

[
∇x,yGI

∂w
∂p ,∇λGI

]
of a pixel x. Gradients of GI in space

and scale are evaluated at w(x; p) using finite differences:

∇xGI(x, y; λ) ≈
GI(x + lx, y; λ) −GI(x − lx, y; λ)

2lx

∣∣∣∣∣
x=w(x;p)

(10)

∇yGI(x, y; λ) ≈
GI(x, y + ly; λ) −GI(x, y − ly; λ)

2ly

∣∣∣∣∣∣
x=w(x;p)

(11)

∇λGI(x, y; λ) ≈
I ∗ (g(x; λ + lλ) − g(x; λ − lλ))

2lλ

∣∣∣∣∣
x=w(x;p)

(12)

where lx = ly = 1 and lλ = 0.5. The term ∂w
∂p of ∂GI

∂p represents
the Jacobian of the warping function:

∂w
∂p

=


∂wx
∂p1

∂wx
∂p2

... ∂wx
∂pn

∂wy

∂p1

∂wy

∂p2
...

∂wy

∂pn

 . (13)

If w is a translation (Eq. (1)), the following expression can
be used to express the Jacobian of the warp:

∂w
∂p

=

(
1 0
0 1

)
. (14)

If w is a homography (Eq. (3)), the expression of the Jaco-
bian of the warp is:

∂w
∂p

=
1
c

x 0 −x.a y 0 −y.a 1 0

0 x −x.b 0 y −y.b 0 1

 (15)

where

a =
p1x + p4y + p7

c

b =
x
[
p2x + p5y + p8

]
c

c = p3x + p6y + 1.

These expressions permit to compute iteratively the param-
eters P that minimize the cost function. The integration of the
scale parameter to the optimization permits the algorithm to au-
tomatically select the most suitable scale to converge. This key
behavior increases the performances of the method as shown in
the results presented in the next section.

4. Results

4.1. Overview

The proposed method was evaluated for two types of trans-
formations: pure translations and homographies. Concerning
the translations, the Adaptive Forwards Additive LK (AFA-
LK) is compared with the original Forwards Additive LK (FA-
LK) algorithm, and various initialization settings are presented.
This type of transformation is considered because it is usually
used in optical flow estimation applications. When homogra-
phy transformations are considered, the comparison is done be-
tween the AFA-LK and state-of-the-art geometric and learning-
based methods (Supervised Descent Method, Conditional-LK,
ESM, RANSAC+SIFT Homography). The estimation of ho-
mography transformations is used in applications such as plane
tracking and augmented reality. The MS-COCO dataset [18]
and the Yale face database [4] are used for the evaluation pro-
cess of the different methods. It is worth noting that throughout
the validations the intensity values of the images are normal-
ized between 0 and 1. The 110000 images used in the results
part are available as the AFAMIS dataset 1

4.2. Translation Transformation

The algorithms are evaluated using all the images of the
validation set of the MS-COCO dataset [18], which consists
of 5000 images of complex everyday scenes, by following the
subsequent process for the generation of a testing bench (Fig.
1). Every image is used to generate a triplet {I,T,pre f } by first
translating the original image according to pre f , which is the
reference translation applied in the x and y axes of this original
image according to a uniform distribution within the range
[−10, 10] pixels. T is set to be the square region (29x29 pixels)
around a randomly picked point of interest in the translated im-
age and I is the square region of the same size and at the same
location in the image, as shown in Fig. 1. This transformation
range ([−10, 10] pixels) is considered because optical flow
estimation is done for small displacements and consequently

Original ImageOriginal Image Image

Translated Image

Image

Translated Image

Image

Translated Image

Fig. 1: Generation of I(x) and T (x). The original image is translated according
to pre f . T (x) is the square region (29x29) around a randomly picked corner in
the translated image and I(x) is the square region of the same size and at the
same location in the image.

1http://mis.u-picardie.fr/~g-caron/pub/data/AFAMIS_

dataset.zip

http://mis.u-picardie.fr/~g-caron/pub/data/AFAMIS_dataset.zip
http://mis.u-picardie.fr/~g-caron/pub/data/AFAMIS_dataset.zip
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Fig. 2: Cost functions for different values of the scale parameter λ.

the used images sizes are small (29x29 pixels). Each algorithm
is provided with the input and the template images I and T , and
the initial parameters values (pinit = [0, 0]T ).

A 3D visualization of the cost function (Eq. 6), at different
scales, where the proposed algorithm was able to converge
towards the correct value is presented in Fig. 2. The red marker
corresponds to the location of the reference translation (pre f ).
It shows the effect of the scale parameter on the shape of the
cost function. When the value of the scale parameter is high,
the cost function is smoothed (typically in the begining of
the optimization), which permits to avoid the local minima.
Whereas when the value of the scale parameter is small
(typically in the end of the optimization) the cost function
is sharp, which permits to reach a high estimation precision.
This results in a coarse-to-fine approach, where the scale
parameter is automatically tuned according to the needs of the
optimization process, and not empirically as usually done [25].

The results of the tests on the validation set of the MS-COCO
dataset are presented in Fig. 3 and Fig. 4, which represent
the Error Cumulative Distribution (ECD) of the AFA-LK and
FA-LK algorithms for different values of α and λinit (the ini-
tial value of λ for the input image). The metric error used for
computing the ECD is:

ec = ||p − pre f ||2 (16)

where ||.||2 represents the L2 norm of the error vector (p −
pre f ). This metric permits to evaluate the ability of each algo-
rithm to converge under important displacements, which gives

us insights about the basin of convergence of the AFA-LK and
the FA-LK, the effect of the values of α and λinit, and the ad-
vantage of considering the optimization of the parameters in
the scale-space domain. The maximum number of iterations is
fixed to 30 iterations and the value of the scale parameter of the
target image λre f = 0.5. The value of λre f is set to a small value
in order to keep enough details in the scale-space representa-
tion of the target image, and hence allows a high precision of
the final estimate. λinit = 4 for the tests on the value of α (Fig.
3), and α = 0.3 for the tests on the value of λinit (Fig. 4).

Fig. 3: ECD of the FA-LK and AFA-LK for different values of α.
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(a)

(b)

Fig. 4: (a) ECD of the FA-LK and AFA-LK for different values of λinit .
(b) is a zoom of (a) around the error of 1 pixel.

The proposed algorithm permits to increase the convergence
domain in comparison to the original Lucas-Kanade algorithm
without loss in estimation precision. Concerning the effect of
the value of α presented in Fig. 3, we can see that values infe-
rior or equal to 0.6 allows to have a convergence rate superior
to 85%, and the values of α equal to 0.2 and 0.3 provide the
best results. In fact this parameter represents the step size in
each iteration. When its value is too large, the algorithm tends
to be unstable and diverge. Conversely, when the value of α
is too small the speed of convergence becomes too slow. The
value α = 0.3 will be used in the following validations. Accord-
ing to Fig. 4, we can see that the AFA-LK performs similarly
for the values of λinit ∈ [3; 6]; because when the value of the
scale parameter is too large, the algorithm needs a greater num-
ber of iterations to converge, and when the value of the latter
is too small, there is not enough smoothing and the algorithm
is unable to deal with challenging cases (large motions, local
minima).

4.3. Homography Transformation
In this part, the various algorithms are tested and compared

for the task of 2D homography estimation.

First, the comparison is done between the AFA-LK and geomet-
ric approaches (similarly to [11]): the variants of the LK algo-
rithm (forwards additive, inverse compositional, forwards com-
positional) [3] and the ESM [5] as pixel-based methods, and
SIFT+RANSAC Homography [16] (we used the implementa-
tion given in the vlfeat 2 library) as a feature-based method. We
used the validation set of the MS-COCO dataset [18] for this
comparison.
Second, the AFA-LK is compared to learning methods: the
Conditional-LK [17], and the SDM (Supervised Descent
Method) [27] in a set of images from the Yale face database
[4] (sample images are shown in Fig. 9).

4.3.1. Comparison with Geometric Methods
A similar procedure to the one of [11] for the validation of

the algorithms has been used. Every image of the validation set
of the MS-COCO dataset was used to generate a template and
an input image. The image was first down-sampled so that the
shorter side was equal to 240 pixels. Then, a square was ran-
domly cropped in the resized image and set to be the input im-
age I (192x192 pixels). Next, in order to generate the template
T , we manually selected a 128x128 square region centered in
I and perturbed the four corners of the square using a uniform
distribution within the range [−42,+42] pixels (represented by
the red quadrilateral in Fig. 5). After that, warp w(x; pre f ) was
defined by the homography that maps the template corners to
the perturbed ones, and T was generated by applying the ref-
erence warp to the input image I(w(x; pre f )). The initial warp
w(x; pinit) is the translation that maps the template domain to
the image domain.

I

T

W(x;pref)

W(x;pinit)

Fig. 5: Generation of the template image T from the input image I.
w(x; pinit) represents the translation that maps the template domain (the dark
square) to the image domain (blue square), w(x; pre f ) represents the homogra-
phy that maps the template corners (in black) to the perturbed corners (in red).

In order to avoid unrealistic shape distortions resulting from
the homography transformation, every angle of the quadrilat-
eral was restricted to be less than 3

4π. Fig. 6 shows examples of

2http://www.vlfeat.org/
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the pairs {I, T }. A Gaussian noise of standard deviation 0.02 3

was added to both the intensity values of {I and T } to make the
dataset more challenging. Based on [[11]], we used the corner
error as the metric for the tests, which is defined as follows:

ec(p,pre f ) =
1
4

4∑
j=1

||w(e j; p) − w(e j; pre f )||2 (17)

where e j represents the jth corner coordinates. Fig. 7 shows
the corner error cumulative distribution of the following algo-
rithms:

1. AFA-LK: The different parameters are set to the follow-
ing values α = 0.3, λre f = 0.5, and λinit = 12 because
we noticed in our experiments that a large value of the ini-
tial scale parameter is needed when the considered images
are large (128x128 pixels) in comparison with the ones of
the validations presented in Sec. 4.2 (29x29 pixels). The
number of iterations is equal to 30.

2. LK variants: We considered the forwards additive, in-
verse compositional, and forwards compositional variants
of the LK algorithms and used the code provided by [3].
The integration of a pyramid approach to the forwards ad-
ditive LK (3 levels) is also presented. The number of iter-
ations is fixed to 30.

3. ESM: We used the code provided by [22] and set the num-
ber of iterations to 30.

T

T

I

I

Fig. 6: Samples of the input images from the MS-COCO dataset and the
corresponding templates used for testing the algorithms.

4. SIFT + RANSAC: A feature-based homography estima-
tion algorithm implemented in the VLFeat library [26].

3 corresponding to 2% of pixel intensities since they belong to [0, 1] (see
Sec. 4.1)

Fig. 7: Corner error cumulative distribution for the different algorithms.

Fig. 7 shows that among the various algorithms, the variants
of the LK (FA, IC, FC) exhibit the lowest convergence rate be-
cause they are unable to cope with huge displacements (up to
42 pixels, as a remembering). The ESM, for its part, provides
better results and we can notice its good accuracy when con-
verging. The SIFT + RANSAC algorithm exhibits a compara-
ble convergence domain but is less precise than the pixel-based
methods. Because it is a feature-based algorithm, the SIFT +

RANSAC fails to deal with low textured images (Fig. 8). Our
method outperforms largely the other algorithms in terms of
precision and convergence domain, even when comparing it to
a pyramidal approach (3 levels pyramid), which appears unable
to handle cases where the motion is too large (Fig. 8 shows an
example where the algorithm increases the value of λ to remove
local minima then converges). We can clearly see that the AFA-
LK is able to deal with important displacements and because it
is a pixel-based method, it is able to provide accurate results
even with low textured images.

(a) (b)

(c)

Fig. 8: (a, b) example where the SIFT+RANSAC algorithm was unable to con-
verge ((a) represents I and (b) represents T ). (c) example where the AFA-LK
was the only algorithm to converge. The value of λ increases, permitting to
suppress local minima then converges to λre f

4.3.2. Comparison with Learning Methods
In this last evaluation, we followed the methodology of [17]

in order to compare our algorithm to their method. Every input
image I is used to generate a template T in the following man-
ner. A manually selected square region is first defined in the
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Fig. 9: Samples of the subjects of the Yale face database.

image. The four square corners are then individually perturbed
using independent and identically distributed Gaussian noise of
standard deviation σ in addition to a single translational noise
of the same distribution applied to every corner. Finally, tem-
plate T is generated from the perturbed corners similarly to Sec.
4.3.1. We followed the procedure described in [17] in order
to train the different regressors of the Conditional-LK and the
SDM.

We state that the convergence is achieved when the point
RMS error, defined in Eq. (18), is less than 1 pixel, and plot
the convergence rates of the considered algorithms for different
values of σ (the convergence rates of each subject are computed
from a total of 1000 tests for each value of σ), as shown in Fig.
10. We used a subset of the Yale face database (Fig. 9). The
learning methods were trained using a value of σ = 1.2 pixel
(represented by a vertical dashed line in the figure) in accor-
dance to [17].

PRMS E =

√√√
1
4

4∑
j=1

(
w(e j; p) − w(e j; pre f )

)2
(18)

We can see in Fig 10 that the AFA-LK shows superior con-
vergence properties in comparison to both the Conditional-LK
and the SDM. In addition to that, the proposed method has the
advantage of requiring no training and consequently permits to
considerably save time.

5. Conclusion

In this paper, we proposed the AFA-LK, a novel scale-space
image alignment method based on the Lucas-Kanade tracker.
It shows its effectiveness in the many evaluations conducted
in this article. The Adaptive Forwards Additive Lucas-Kanade
(AFA-LK) permits to increase the performances of the original
FA-LK in terms of estimation precision and the basin of conver-
gence. The presented comparisons show that the proposed algo-
rithm outperforms state-of-the-art algorithms whether they are
geometric-based or learning-based. This can be explained by
the fact that integrating the scale parameter, directly affecting
the smoothness of the cost function, to the optimization enables
the method to automatically tune the value of the scale param-
eter according to its needs, resulting in an increase of the basin
of convergence. When the algorithm tends to convergence, the
value of the scale parameter decreases resulting in a fine esti-
mation, which explains the precision of the final estimates.
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Horn/Schunck: Combining local and global optic flow methods. Inter-
national Journal of Computer Vision, 2005.

[10] D. Capel. Image Mosaicing. In Image Mosaicing and Super-resolution.
Springer, London, 2004.

[11] C.-H. Chang, C.-N. Chou, and E. Y. Chang. CLKN: Cascaded Lucas-
Kanade Networks for Image Alignment. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 3777–3785.
IEEE, jul 2017.

[12] A. Crivellaro and V. Lepetit. Robust 3D Tracking with Descriptor Fields.
In 2014 IEEE Conference on Computer Vision and Pattern Recognition,
pages 3414–3421. IEEE, jun 2014.

[13] N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human
Detection. In 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), volume 1, pages 886–893.
IEEE, 2005.
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