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Abstract
Since Bahdanau et al. [1] first introduced attention for

neural machine translation, most sequence-to-sequence models
made use of attention mechanisms [2, 3, 4]. While they pro-
duce soft-alignment matrices that could be interpreted as align-
ment between target and source languages, we lack metrics to
quantify their quality, being unclear which approach produces
the best alignments. This paper presents an empirical evalu-
ation of 3 of the main sequence-to-sequence models for word
discovery from unsegmented phoneme sequences: CNN, RNN
and Transformer-based. This task consists in aligning word se-
quences in a source language with phoneme sequences in a tar-
get language, inferring from it word segmentation on the target
side [5]. Evaluating word segmentation quality can be seen as
an extrinsic evaluation of the soft-alignment matrices produced
during training. Our experiments in a low-resource scenario on
Mboshi and English languages (both aligned to French) show
that RNNs surprisingly outperform CNNs and Transformer for
this task. Our results are confirmed by an intrinsic evalua-
tion of alignment quality through the use Average Normalized
Entropy (ANE). Lastly, we improve our best word discovery
model by using an alignment entropy confidence measure that
accumulates ANE over all the occurrences of a given alignment
pair in the collection.
Index Terms: sequence-to-sequence models, soft-alignment
matrices, word discovery, low-resource languages, computa-
tional language documentation

1. Introduction
Sequence-to-Sequence (S2S) models can solve many tasks
where source and target sequences have different lengths. For
learning to focus on specific parts of the input at decoding
time, most of these models are equipped with attention mech-
anisms [1, 2, 3, 4, 6]. By-products of the attention are soft-
alignment probability matrices, that can be interpreted as align-
ment between target and source. However, we lack metrics to
quantify their quality. Moreover, while these models perform
very well in a typical use case, it is not clear how they would be
affected by low-resource scenarios.

This paper proposes an empirical evaluation of well-known
S2S models for a particular S2S modeling task. This task con-
sists of aligning word sequences in a source language with
phoneme sequences in a target language, inferring from it word
segmentation on the target side [5]. We concentrate on three
models: Convolutional Neural Networks (CNN) [2], Recurrent
Neural Networks (RNN) [1] and Transformer-based models [3].
While this word segmentation task can be used for the extrinsic
evaluation of the soft-alignment probability matrices produced

during S2S learning, we also introduce Average Normalized
Entropy (ANE), a task-agnostic confidence metric to quantify
the quality of the source-to-target alignments obtained. Experi-
ments performed on a low-resource scenario for two languages
(Mboshi and English) using equivalently sized corpora aligned
to French, are, to our knowledge, the first empirical evaluation
of these well-known S2S models for a word segmentation task.
We also illustrate how our entropy-based metric can be used in
a language documentation scenario, helping a linguist to effi-
ciently discover types, in an unknown language, from an unseg-
mented sequence of phonemes. This work is thus also a contri-
bution to the emerging computational language documentation
domain [7, 8, 9, 10, 11], whose main goal is the creation of au-
tomatic approaches able to help the documentation of the many
languages soon to be extinct [12].

Lastly, studies focused on comprehensive attention mech-
anisms for NMT [13, 14, 15] lack evaluation of the resulting
alignments, and the exceptions [16] do so for the task of word-
to-word alignment in well-resourced languages. Differently,
our work is not only an empirical evaluation of NMT models
focused on alignment quality, but it also tackles data scarcity of
low-resource scenarios.

2. Experimental Settings
2.1. Unsupervised Word Segmentation from Speech

As in language documentation scenarios available corpora usu-
ally contain speech in the language to document aligned with
translations in a well-resourced language, Godard et al. [5] in-
troduced a pipeline for performing Unsupervised Word Seg-
mentation (UWS) from speech. The system outputs time-
stamps delimiting stretches of speech, associated with class
labels, corresponding to real words in the language. The
pipeline consists of first transforming speech into a sequence of
phonemes, either through Automatic Unit Discovery (e.g. [17])
or manual transcription. The phoneme sequences, together
with their translations, are then fed to an attention-based S2S
system that produces soft-alignment probability matrices be-
tween target and source languages. The alignment probability
distributions between the phonemes and the translation words
(as in Figure 1) are used to cluster (segment) together neigh-
bor phonemes whose alignment distribution peaks at the same
word. The final speech segmentation is evaluated using the Zero
Resource Challenge1 (ZRC) 2017 evaluation suite (track 2).2

1Available at http://zerospeech.com/2017.
2 We increment over [5] by removing silence labels before training,

and using them for segmentation. This results in slightly better scores.

http://zerospeech.com/2017


Figure 1: Soft-alignment probability matrices from the UWS
task. ANE values (from left to right) are 0.11, 0.64 and 0.83.
The gold segmentation is “BAH1T MAA1MAH0 PAA1PAH0
IH0Z AW1T”, which corresponds to the English sentence “But
mama, papa is out”.

2.2. Parallel Speech Corpora

The parallel speech corpora used in this work are the English-
French (EN-FR) [18] and the Mboshi-French (MB-FR) [19]
parallel corpora. EN-FR corpus is a 33,192 sentences mul-
tilingual extension from librispeech [20], with English audio
books automatically aligned to French translations. MB-FR is a
5,130 sentences corpus from the language documentation pro-
cess of Mboshi (Bantu C25), an endangered language spoken
in Congo-Brazzaville. Thus, while the former corpus presents
larger vocabulary and longer sentences, the latter presents a
more tailored environment, with short sentences and simpler
vocabulary. In order to provide a fair comparison, as well as
to study the impact of corpus size, the EN-FR corpus was also
down-sampled to 5K utterances (to the exact same size than the
MB-FR corpus). Sub-sampling was conducted preserving the
average number of tokens per sentence, shown in Table 1.

2.3. Introducing Average Normalized Entropy (ANE)

In this paper, we focus on studying the soft-alignment probabil-
ity matrices resulting from the learning of S2S models for the
UWS task. To assess the overall quality of these matrices with-
out having gold alignment information, we introduce Average
Normalized Entropy (ANE).
Definition: Given the source and target pair (s, t) of lengths |s|
and |t| respectively, for every phone ti, the normalized entropy
(NE) is computed considering all possible words in s (Equa-
tion 1), where P (ti, sj) is the alignment probability between
the phone ti and the word sj (a cell in the matrix). The ANE
for a sentence is then defined by the arithmetic mean over the
resulting NE for every phone from the sequence t (Equation 2).

NE(ti, s) = −
|s|∑
j=1

P (ti, sj) · log|s|(P (ti, sj)) (1)

ANE(t, s) =

∑|t|
i=1NE(ti, s)

|t| (2)

From this definition, we can derive ANE for different granular-
ities (sub or supra-sentential) by accumulating its value for the
full corpus, for a single type or for a single token. Corpus ANE
will be used to summarize the overall performance of a S2S
model on a specific corpus. Token ANE extends ANE to tokens

by averaging NE for all phonemes from a single (discovered)
token. Type ANE results from averaging the ANE for every to-
ken instance of a discovered type. Finally, Alignment ANE is the
result of averaging the ANE for every discovered (type, trans-
lation word) alignment pair. Intuition that lower ANEs corre-
spond to better alignments is exemplified in Figure 1.

3. Empirical Comparison of S2S Models
We compare three NMT models (§3.1, §3.2, §3.3) for UWS,
focusing on their ability of aligning words (French) with
phonemes (English or Mboshi) in medium-low resource set-
tings. The results, an analysis of the impact of data size and
quality, and the correlation between intrinsic (ANE) and extrin-
sic (boundary F-score) metrics are presented in §3.4. The ap-
plication of ANE for type discovery in low-resource settings is
presented in §3.5.

3.1. RNN: Attention-based Encoder-Decoder

The classic RNN encoder-decoder model [1] connects a bidi-
rectional encoder with an unidirectional decoder by the use of
an alignment module. The RNN encoder learns annotations for
every source token, and these are weighted by the alignment
module for the generation of every target token. Weights are
defined as context vectors, since they capture the importance of
every source token for the generation of each target token.
Attention mechanism: a context vector for a decoder step t
is computed using the set of source annotations H and the last
state of the decoder network (translation context). The attention
is the result of the weighted sum of the source annotations H
(with H = h1, ..., hA) and their α probabilities (3) obtained
through a feed-forward network align (4).

ct = Att(H, st−1) =

A∑
i=1

αt
ihi (3)

αt
i = softmax(align(hi, st)) (4)

3.2. Transformer

Transformer [3] is a fully attentional S2S architecture, which
has obtained state-of-the-art results for several NMT shared
tasks. It replaces the use of sequential cell units (such as LSTM)
by Multi-Head Attention (MHA) operations, which make the
architecture considerably faster. Both encoder and decoder net-
works are stacked layers sets that receive source and target se-
quences, embedded and concatenated with positional encoding.
An encoder layer is made of two sub-layers: a Self-Attention
MHA and a feed-forward. A decoder layer is made of three
sub-layers: a masked Self-Attention MHA (no access to sub-
sequent positions); an Encoder-Decoder MHA (operation over
the encoder stack’s final output and the decoder self-attention
output); and a feed-forward sub-layer. Dropout and residual
connections are applied between all sub-layers. Final output
probabilities are generated by applying a linear projection over
the decoder stack’s output, followed by a softmax operation.
Multi-head attention mechanism: attention is seen as a map-
ping problem: given a pair of key-value vectors and a query
vector, the task is the computation of the weighted sum of the
given values (output). In this setup, weights are learned by com-
patibility functions between key-query pairs (of dimension dk).
For a given query (Q), keys (K) and values (V) set, the Scaled



Table 1: Statistics of the three source-target data sets.

#types #tokens average( token length) average( #tokens / sentence)
corpus source target source target source target source target

EN-FR (33k) 21,083 33,135 381,044 467,475 4.37 4.57 11.48 14.08
EN-FR (5k) 8,740 12,226 59,090 72,670 4.38 4.57 11.52 14.17
MB-FR (5k) 6,633 5,162 30,556 42,715 4.18 4.39 5.96 8.33

Dot-Product (SDP) Attention function is computed as:

Att(V,K,Q) = softmax(
QKT

√
dk

)V (5)

In practice, several attentions are computed for a given QKV
set. The QKV set is first projected into h different spaces (mul-
tiple heads), where the SDP attention is computed in parallel.
Resulting values for all heads are then concatenated and once
again projected, yielding the layer’s output. (6) and (7) illustrate
the process, in which H is the set of h heads (H = h1, ..., hh)
and f is a linear projection. Self-Attention defines the case
where query and values come from same source (learning com-
patibility functions within the same sequence of elements).

MultiHead(V,K,Q) = f(Concat(H)) (6)

hi = Att(fi(V ), fi(K), fi(Q)) (7)

3.3. CNN: Pervasive Attention

Different from the previous models, which are based on
encoder-decoder structures interfaced by attention mechanisms,
this approach relies on a single 2D CNN across both sequences
(no separate coding stages) [2]. Using masked convolutions,
an auto-regressive model predicts the next output symbol based
on a joint representation of both input and partial output se-
quences. Given a source-target pair (s, t) of lengths |s| and |t|
respectively, tokens are first embed in ds and dt dimensional
spaces via look-up tables. Token embeddings {x1, . . . , x|s|}
and {y1, . . . , y|t|} are then concatenated to form a 3D tensor
X ∈ R|t|×|s|×f0 , with f0 = dt + ds, where:

Xij = [yi xj ] (8)

Each convolutional layer l ∈ {1, . . . , L} of the model produces
a tensor Hl of size |t| × |s| × fl, where fl is the number of
output channels for that layer. To compute a distribution over
the tokens in the output vocabulary, the second dimension of the
tensor is used. This dimension is of variable length (given by the
input sequence) and it is collapsed by max or average pooling to
obtain the tensorHPool

L of size |t|×fL. Finally, 1×1 convolution
followed by a softmax operation are applied, resulting in the
distribution over the target vocabulary for the next output token.
Attention mechanism: joint encoding acts as an attention-like
mechanism, since individual source elements are re-encoded as
the output is generated. The self-attention approach of [21] is
applied. It computes the attention weight tensor α, of size |t| ×
|s|, from the last activation tensor HL, to pool the elements of
the same tensor along the source dimension, as follows:

α = softmax (W1 tanh (HLW2)) (9)

HAtt
L = αHL. (10)

where W1 ∈ Rfa and W2 ∈ Rfa×fL are weight tensors that
map the fL dimensional features in HL to the attention weights
via an fa dimensional intermediate representation.

3.4. Comparing S2S Architectures

For each S2S architecture, and each of the three corpora, we
train five models (runs) with different initialization seeds.3 Be-
fore segmenting, we average the produced matrices from the
five different runs as in [5]. Evaluation is done in a bilingual
segmentation condition that corresponds to the real UWS task.
In addition, we also perform segmentation in a monolingual
condition, where a phoneme sequence is segmented with re-
gards to the corresponding word sequence (transcription) in the
same language (hence monolingual).4 Our networks are opti-
mized for the monolingual task. Across all architectures, we
use embeddings of size 64 and batch size of 32 (5K data set),
or embeddings of size 128 and batch size of 64 (33K data set).
Dropout of 0.5 and early-stopping procedure are applied in all
cases. RNN models have only one layer, a bi-directional en-
coder, and cell size equal to the embedding size, as in [5]. CNN
models use the hyper-parameters from [2] with only 3 layers
(5K data set), or 6 (33K data set), and kernel size of 3. Trans-
former models were optimized starting from the original hyper-
parameters of [3]. Best results (among 50 setups) were achieved
using 2 heads, 3 layers (encoder and decoder), warm-up of 5K
steps, and using cross-entropy loss without label-smoothing.
Finally, for selecting which head to use for UWS, we exper-
imented using the last layer’s averaged heads, or by selecting
the head with minimum corpus ANE. While the results were
not significantly different, we kept the ANE selection.

3.4.1. Unsupervised Word Segmentation Results

The word boundary F-scores5 for the task of UWS from
phoneme sequence (in Mboshi or English) are presented in Ta-
ble 2, with monolingual results shown for information only
(topline). Surprisingly, RNN models outperform the more re-
cent (CNN and Transformer) approaches. One possible expla-
nation is the lower number of parameters (for a 5K setup, in
average 700K parameters are trained, while CNN needs an ad-
ditional 30.79% and Transformer 5.31%). However, for 33K
setups, CNNs actually need 30% less parameters than RNNs,
but still perform worse. Transformer’s low performance could
be due to the use of several heads “distributing” alignment in-
formation across different matrices. Nonetheless, we evaluated
averaged heads and single-head models, and these resulted in
significant decreases in performance. This suggests that this ar-
chitecture may not need to learn explicit alignment to translate,
but instead it could be capturing different kinds of linguistic
information, as discussed in the original paper and in its exam-
ples [3]. Also, on the decoder side, the behavior of the self-
attention mechanism on phoneme units is unclear and under-

3RNN, CNN and Transformer implementations from [22, 2, 23] re-
spectively.

4This task can be seen as an automatic extraction of a pronunciation
lexicon from parallel words/phonemes sequences.

5For CNN and RNN, average standard deviation for the bilingual
task is of less than 0.8%. For Transformer, it is almost 4%.



Table 2: Boundary F-scores for the UWS task.

Bilingual Monolingual

EN 33K
RNN 77.10 99.80
CNN 71.30 98.60
Transformer 52.70 94.90

EN 5K
RNN 70.40 99.30
CNN 55.90 98.80
Transformer 52.50 80.90

MB 5K
RNN 74.00 92.50
CNN 68.20 89.80
Transformer 66.40 83.50

studied so far. For the encoder, Voita et al. [15] performed after-
training encoder head removal based on head confidence, show-
ing that after initial training, most heads were not necessary
for maintaining translation performance. Hence, we find the
Multi-head mechanism interpretation challenging, and maybe
not suitable for a direct word segmentation application, such as
our method.

As in [24], our best UWS method (RNN) for the bilingual
task does not reach the performance level of a strong Bayesian
baseline [25] with F-scores of 89.80 (EN33K), 87.93 (EN5K),
and 77.00 (MB5K). However, even if we only evaluate word
segmentation performance, our neural approaches learn to seg-
ment and align, whereas this baseline only learns to segment.
Section 3.5 will leverage those alignments for a type discovery
task useful in language documentation.

The Pearson’s ρ correlation coefficients between ANE and
boundary F-scores for all mono and bilingual runs of all cor-
pora (N = 30) are −0.98 (RNN), −0.97 (CNN), and −0, 66
(Transformer), with p-values smaller than 10−5. These strong
negative correlations confirm our hypothesis that lower ANEs
correspond to sharper and better alignments.

3.4.2. Impact of Data Size and Quality

EN33K and EN5K results of Table 2 allow us to analyze the
impact of data size on the S2S models. For the bilingual task,
RNN performance drops by 7% on average, whereas perfor-
mance drop is bigger for CNN (14-15%). Transformer performs
poorly in both cases, and increasing data size from 5K to 33K
seems to help only for a trivial task (see monolingual results).

The EN5K and MB5K results of Table 2 reflect the impact
of language pairs on the S2S models. We know from [26, 27]
that English should be easier to segment than Mboshi, and this
was confirmed by both dpseg and monolingual results. How-
ever, this trend is not confirmed in the bilingual task, where
the quality of the (sentence aligned) parallel corpus seems to
have more impact (higher boundary F-scores for MB5K than for
EN5K for all S2S models). As shown in Table 1, MB-FR corpus
has shorter sentences and smaller lexicon diversity, while EN-
FR is made of automatically aligned books (noisy alignments),
what may explain our experimental results.

3.5. Type Discovery in Low-Resource Settings

We investigate the use of Alignment ANE as a confidence mea-
sure. From the RNN models, we extract and rank the discovered
types by their ANE, and examine if it can be used to separate
true words in the discovered vocabulary from the rest. The
results for low-resource scenarios (only 5K) in Table 3 sug-
gest that low ANE corresponds to the portion of the discov-

Table 3: Type retrieval results (RNN) using ANE for keeping
most confident (type, translation) pairs (for ex: ANE=0.4 means
we keep only pairs whose ANE is below 0.4).

EN 5K MB 5K
ANE P R F P R F

0.1 70.97 0.50 1.00 72.13 0.57 1.12
0.2 55.43 3.85 7.20 49.02 2.89 5.46
0.3 44.99 12.51 19.58 38.18 8.14 13.41
0.4 32.81 21.76 26.17 32.63 16.61 22.01
0.5 23.37 28.17 25.54 27.93 23.44 25.49
0.6 18.54 32.41 23.59 24.73 27.61 26.09
0.7 16.23 34.34 22.04 23.00 30.12 26.08
0.8 15.21 35.16 21.23 22.17 30.95 25.84
0.9 15.01 35.31 21.06 22.06 31.05 25.80
all 15.01 35.34 21.07 22.06 31.05 25.80

Table 4: Top 5 low and high ANE ranking for the discovered
types (EN5K), with gold transcription and aligned information
between parentheses (respectively). “INV” means incorrect
type.

Top Low ANE Top High ANE

1 SER1 (sir, EOS token) AH0 (a, convenable)
2 HHAH1SH (hush, chut) IH1 (INV, ah)
3 FIH1SHER0 (fisher, fisher) D (INV, riant)
4 KLER1K (clerk, clerc) N (INV, obit)
5 KIH1S (kiss, embrasse) YUW1 (you, diable)

ered vocabulary the network is confident about, and these are,
in most of the cases, true discovered lexical items (first row,
P ≥ 70%).6 As we keep higher Alignment ANE values, we
increase recall but loose precision. This suggests that, in a doc-
umentation scenario, ANE could be used as a confidence mea-
sure by a linguist to extract a list of types with higher precision,
without having to pass through all the discovered vocabulary.
Moreover, as exemplified for EN5K in Table 4, we also retrieve
aligned information (translation candidates) for the generated
lexicon.

4. Conclusions
We presented an empirical evaluation of different architectures
(RNN, CNN and Transformer) with respect to their capacity to
align word sequences in a source language with phoneme se-
quences in a target language, inferring from it word segmen-
tation on the target side (UWS task).7 Although RNNs have
been outperformed by CNN and Transformer-based models for
machine translation, for UWS these architectures are still more
robust in low-resource scenarios, and present the best segmen-
tation results. We also introduced ANE, an intrinsic measure of
alignment quality of S2S models. Accumulating it over the dis-
covered alignments, we showed it can be used as a confidence
measure to select true words, increasing Type F-scores.

6Type ANE for the retrieval task was also investigated, and results
were positive, but slightly worse than the ones from Alignment ANE.

7Pointers for corpora, parameters and implementations available at
https://gitlab.com/mzboito/attention_study

https://gitlab.com/mzboito/attention_study
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