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Abstract

A novel  non-destructive method to characterize stacking faults (SF) in 3C-SiC crystals  is 

presented. This method is based on fast X-ray diffraction reciprocal space mapping and can be 

used qualitatively for routine analysis of 3C-SiC as SFs give rise to a characteristic star-like 

pattern in reciprocal space whose intensity depends on the SF density. The simulation of the 

diffusely scattered intensity streaks  with an appropriate model  enables one to also obtain 

quantitative results such as  SF densities, mosaic domain size and mosaicity. The model is 

tested with a commercial (001) 3C-SiC crystal from HAST corporation, and then it is used to 

analyse SFs in (111) 3C-SiC crystals grown by continuous feed – physical vapour transport.
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1. Introduction

Among the more than 200 SiC polytypes,  the cubic silicon carbide (3C-SiC) exhibits the 

highest electron mobility and isotropic electrical properties which make it the most desirable 

polytype for active device applications  [1].  Despite decades of studies, expected theoretical 

performances of electronic devices based on 3C-SiC have never been demonstrated to date, 

mainly because of the poor 3C-SiC crystals quality. Even in the best free-standing 3C-SiC 

wafers, the extended defects (mainly stacking faults, SFs) density is still much higher than in 

the high quality commercial 4H or 6H-SiC wafers [2]. Consequently, most devices fabricated 

from this material have average performances [3]. A preliminary for the development of high 

performances  3C-SiC  based  devices  is  thus  the  availability  of  high  quality  bulk  3C-SiC 

crystals.

The need of a non-destructive tool to investigate both qualitatively and quantitatively the SFs 

in 3C-SiC crystals is hence of primary importance on the way of improving the crystalline 

quality of  the  materials.  Recently,  the  power  of  diffuse  X-ray scattering (DXS) has  been 

demonstrated  to  quantitatively analyze  SFs  in  thick  3C-SiC crystals  [4]. Here  we further 

develop this method and make use of it  to characterize SFs in 3C-SiC crystals grown by 

Continuous Feed – Physical Vapor Transport (CF – PVT) coupled with Vapor – Liquid – Solid 

(VLS) heteroepitaxial growth. In this work particular emphasis is led on the versatility of the 

method which can be used, either on a qualitative level for routine analysis, a procedure made 

easy by the speed of the method (less than 20 minutes), or on a highly quantitative level in 

order to extract reliable values of SF densities.
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2. Experimental

2.1 Crystal growth

3C-SiC crystals were deposited on two different substrates: a bare (0001) 4H-SiC substrate 

and a (0001) 6H-SiC covered with a ~1-2 µm thick (111) 3C-SiC buffer layer grown by VLS 

epitaxy We refer to the crystals grown on these substrates as (111)SiC and, (111)bSiC. Both 

samples exhibit a (111) out-of-plane orientation. The thickness of (111)SiC and (111)b SiC are 

400 µm and 850 µm, respectively.

The CF-PVT process [5] combines high temperature chemical vapor deposition (CVD) for the 

in-situ formation of the polycrystalline SiC source, and physical vapor transport for the single 

crystal growth. Briefly, the crucible is divided in two regions (CVD region and sublimation 

region) by a porous graphite foam. The porous foam acts as a support for CVD SiC deposition 

and  thus  as  a  source  for  the  sublimation  step.  The  high  purity  polycrystalline  SiC  was 

fabricated from tetramethylsilane. The whole process has been described in details elsewhere 

[5, 6]. The growth took place at 1980°C with a growth rate of about 120 µm/h.

Concerning VLS epitaxy, starting from a 6H-SiC(0001) on-axis Si face seed, the initial 3C-

SiC layer was grown in a Si-Ge melt. The deposition was carried out at atmospheric pressure 

in a  home-made epitaxy apparatus equipped with a vertical cold wall reactor. Further details 

on the experimental set up have been given in Ref [7]. Briefly, the 6H-SiC seed was placed at 

the bottom of a graphite crucible. Si and Ge pieces were then stacked on top of the seed and 

heated under purified Ar up to 1500°C in order to form a liquid phase containing 25 at% Si. 3 

sccm of  propane was  added when reaching the  temperature plateau in order  to  start  SiC 

growth by VLS mechanism.

For comparison purposes, we also analyzed a commercially available (001) 3C-SiC crystal 
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from HAST corporation.

2.2 X-ray diffraction

The crystals were characterized by high-resolution DXS. A laboratory diffractometer with a 

rotating Cu anode, a four-reflection monochromator and a curved position sensitive detector 

was used to record reciprocal space maps (RSMs). A five-movement sample holder allows 

precise sample positioning. The X-ray beam impinging on the sample is monochromatic (Cu 

Kα1,  ∆λ/λ=1.4×10-4)  and  parallel  in  the  detector  plane  (∆θ=12  arcsec)  with  dimensions 

10×0.09 mm² so that a large volume of the sample is analyzed which provides statistically 

significant averaged values. A detailed description of the set-up has been given elsewhere [8, 

9, 10]. A RSM represents the scattered intensity in a particular (Qx, Qz) plane, where Qx and 

Qz are the components of the scattering vector Q (Q = 4π sinθ /  λ) in the crystal plane and 

perpendicular to it, respectively. For (001) oriented 3C-SiC, RSMs are plotted in the (Q[hk0], 

Q[00l]) plane, where Q[hkl] is the component of the scattering vector Q parallel to a given [hkl] 

direction. For (111) oriented 3C-SiC the RSMs are plotted in the (Q[hkl]⊥, Q[111]) plane, where 

[hkl]⊥ is an in-plane direction perpendicular to [111].

3. Theoretical background

We shall start with the expression of the distribution of the diffracted intensity in the vicinity 

of a reciprocal lattice point (RLP) with reciprocal lattice vector h [11] :

I q =∫dr Rr V r Gr expiqr 
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where r is the correlation vector, i.e. the distance between two points in the crystal. q is the 

deviation of the scattering vector from the Bragg position (q =  Q –  h).  R(r) is the Fourier 

transform of the resolution function of the diffractometer. This term can be exactly evaluated 

[9] and will not be detailed here. V(r) is correlation volume [11] which describes the effects of 

the shape and size of the coherently diffracting domains (mosaic domains), as well as their 

size fluctuations.  G(r) is the pair correlation function which describes the effects of lattice 

disorder and can be written:

Gr =〈exp{ih [ur −u0 ]}〉 (1)

where  u(r)  is  the  displacement  of  the  crystal  lattice  from  its  ideal  position  at  point  r. 

Assuming that the different defects don't interact (which can be reasonably assumed for low 

defect densities) then the displacement at point r, is simply the sum of all displacements due 

to different defects, u(r) = uSF(r) + uε(r) + ..., where the subscript ε stands for 'heterogeneous 

strain'  (this point is detailed below). If we further assume that the defects are statistically 

independent (i.e. the probability of finding a defect at point r is independent of the probability 

of finding another defect at point r') then G(r) can be written:

Gr =GSF r ×Gr ×...

Let  us  consider  the  term due  to  SFs.  A stacking  fault  occurs  when  the  regular  stacking 

arrangement along the <111> direction, ABCABC, is violated, as in ABCA|C, for instance 

(the bar indicates the fault). The lattice displacement associated with such a fault is uAC = (ah – 

bh)/3,  instead  of  (-ah +  bh)/3  in  the  regular  stacking  arrangement  [11].  In  the  previous 

equations we made use of the pseudo-hexagonal lattice parameters, ah = (b – a)/2, bh = (c – 

b)/2 and  ch =  a +  b +c. In the following we shall also make use of the pseudo-hexagonal 

indices, H = (k – h)/2, K = (l – k)/2 and L = h + k + l. The pair correlation function can hence 

be simply written in terms of the probabilities of finding an A (PAA), B (PAB) or C (PAC) layer at 
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a distance r00L from a starting A-layer:

GSF r =[P AAr00LP ABr00LexpiABP AC r00LexpiAC]×Q−hHK0 (2)

where φAB and φAC are the phase shifts due to uAB and uAC when moving from A to B, or A to C 

layer [12] ( φAB = - φAC = -2 π (H – K)/3 ). The delta function in (2) shows that the intensity 

distribution is confined along the <00L> directions (i.e. the <hhh> directions) ; there is no 

intensity due to SFs in the {HK0} planes. This is simply a consequence of (1) which shows 

that when  u is normal to  h, the pair correlation function is equal to 1. In terms of  hkl, this 

extinction  condition  can  be  stated  as  follows:  for  a  fault  lying  in  a  (111)  plane,  those 

reflections with h + k + l = 3N (N being an integer) are unaffected. In a previous work [4] we 

made  use  of  the  difference-equation  method  [12]  to  derive  the  probabilities  Pij.  These 

probabilities are simple functions of the stacking fault density (ρSF) and twin fault density. In 

the following we shall only consider ρSF.

Using the previous description,  a  schematic  representation of  a  (00l)  and a  (hhh)  RLP is 

displayed in figure  1.  Figure 1a  corresponds to  a  (00l)  RLP of  (001)  oriented crystal.  It 

exhibits streaks of diffuse scattering intensity along the different <111> directions because of 

faults lying in different {111} planes. There is an additional streak along [001] which is due to 

the truncation of the crystal lattice at the surface (the crystal truncation rod, CTR [13]). For 

the  (111)  oriented  crystal,  the  (hhh)  RLP (figure  1b)  exhibits  streaks  along  the  <111> 

directions, excepted along [111] because of the above mentioned extinction condition. The 

small streak along [111] is the CTR. The data recorded in practice correspond to a partial 

projection of the RLP on the detection plane (the extent of this projection depends on the 

resolution perpendicular to detection plane). Therefore, features that are not contained in the 

detection plane may nonetheless appear. In both cases it can be seen that the measured RLP 

will exhibit a peculiar star-like pattern if the crystal contains SFs.
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We now briefly  discuss  the  Gε(r)  and  V(r)  terms.  In  addition  to  SFs,  other  defects  may 

contribute to the diffracted intensity distribution. However, if these defects are not clearly 

identified,  i.e. the u(r) can not be obtained, then it can be useful to describe the disorder in 

terms of the components of the homogeneous and heterogeneous strain tensor.  A detailed 

expression of Gε(r) has been given elsewhere (see e.g. [11, 14]). In particular, the mosaicity σ 

gives rise to a broadening of the RLP in the direction perpendicular to Q. Finally the shape of 

the mosaic domains influence the scattered intensity distribution,  via the  V(r) term. In the 

present case, the mosaic domains were found to be very large (> 1µm) so that an accurate 

description of their shape is useless. We modeled the mosaic block size with cubes parallel to 

the surface, with a lognormal ditribution of their dimension, D. The corresponding expression 

of V(r) can be found in [11].

4. Applications

In this  section we use the previously detailed approach to analyze  thick 3C-SiC crystals, 

starting with a well-characterized [15], commercially available, (001) crystal.

4.1. Commercial (001) 3C – SiC

The 3C-SiC crystals from HAST corporation are grown by CVD on undulant Si substrates, 

the ridges of the surface being parallel to the [1-10] direction. RSMs were recorded with the 

crystal  oriented  along  [110]  and  [1-10]  for  both  possible  orientations  of  the  crystal,  e.g. 

upwards (the X-rays impinge on the free SiC surface) or downwards (the X-rays impinge on 

the SiC surface initially located at the SiC/Si interface), figure 2. All RSMs exhibit common 

features.  The intense streak lying along the Ewald sphere and denoted PSD is due to the 

transmittance  function  of  the  PSD  .  Secondly,  the  streak  parallel  to  the  surface  normal 
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(marked by a vertical arrow) is the CTR. In agreement with figure 1, the remaining streaks 

(marked by inclined arrows) can be attributed to SFs. The measured angle between the two 

remaining streaks and the surface normal is  ψ = 55° which indeed corresponds to the angle 

between the {111} planes and the crystal surface (ψ(111),(001) = 54.74°).

Comparing figure 2a and 2c, it immediately appears that the streak intensity is higher along 

[1-10] than along [110], i.e. the SF density is weaker along [110]. This behavior has already 

been observed in these crystals [15] and is due to SF annihilation in the (-1-11) and (111) 

planes [15, 16]. Comparing figure 2a and 2b (or 2c and 2d) it is observed that an additional 

diffuse intensity appears around the Bragg peak for the downwards orientation. This can be 

attributed to a higher defect density at the highly mismatched SiC/Si interface as compared to 

the SiC surface [15]. It is interesting to notice that the streak intensity is equivalent along [1-

10] and [110] for the downwards orientation (figure 2b and 2d), i.e. the SF density is isotropic 

at the interface. This can be easily understood considering that SF annihilation takes place 

during crystal growth.

In order to obtain quantitative information from the RSMs, we extracted and analyzed line 

scans, namely line scans along qx (which are insensitive to faulting and allow to determine the 

mosaicity and mosaic domain size) and line scans along the <111> streaks (which allow to 

determine the SF density). The results are shown in figure 3. Let us first discuss the qx-scans. 

The difference between the upwards and downwards orientation is striking: D = 6 µm and σ = 

0.012°  for  the  upwards  orientation  and  D =  1.5  µm and  σ =  0.02°  for  the  downwards 

orientation. The presence of crystalline defects at the interface yields a mosaic structure with 

much smaller crystalline domains and a significantly increased mosaicity. Concerning SFs, we 

obtained  ρSF = 6.4×103 cm-1 along [1-10] and  ρSF = 1.4×103 cm-1 along [110], in excellent 

quantitative agreement with the values deduced from TEM for similar samples [15]. It must 
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be emphasized that the model nicely fits the data over almost 4 orders of magnitude with only 

2 fitting parameters for the  qx-scans (D and  σ) and 1 fitting parameter for the <111>-scans 

(ρSF). The excellent agreement with TEM observations validates the model which can be used 

reliably to analyze SFs in different 3C-SiC crystals.

4.2. (111) 3C-SiC

This crystal has been grown on 4H-SiC substrate. It is known that when cubic SiC is grown 

on a hexagonal polytype, two equiprobable epitaxial variants related to each other by a 60° 

rotation can occur. This comes from the two possible orientations of the trigonal (111) plane 

on the hexagonal (0001) plane. The boundary between the two variants is a special type of 

twin  boundary  known  as  double  positioning  boundary  (DPB).  For  the  present  sample, 

optimized CF-PVT growth conditions allowed to select only one variant. However, we shall 

discuss this point further for the next sample. The RSM shown in figure 4a exhibit two diffuse 

streaks. The one with angle relative to the surface ψ ≈ 70° is due to SFs lying in the (-111) 

planes (ψ(111),(-111)=70.53°), whereas the streak with angle  ψ ≈ 55° is due to SFs lying in the 

(11-1) and (1-11) planes. According to figure 1 these streaks are not contained in the detection 

plane but they nonetheless appears because of the lack of resolution perpendicular  to  the 

detection plane . The same conclusions hold for figure 4b with SFs lying in the (11-1) plane 

on the one hand, and SFs lying in the (-111) and (1-11)  planes on the other hand. We shall 

therefore only consider the [-111] and [11-1] streaks.

The simulation of the (111) qx-scan is shown in figure 5a. The observed discontinuities in the 

central part of the peak are very likely due to large misoriented mosaic domains. Apart from 

the  central  part  of  the  peak  the  model  fits  the  data  nicely  over  almost  four  orders  of 

magnitude, especially in the profile tails, which allows to deduce a mosaic domain size of D = 

6 µm. The mosaicity is found to be σ = 0.018°, although because of the deviations observed in 

9



the central part of the peak, this latter parameter can not be used quantitatively and, hence, 

only serves as qualitative indicator of the crystalline quality. The fit of the <111> streaks is 

shown in figure 5b. It can be observed that the model perfectly fits the data over four orders of 

magnitude. The resulting SF density is  ρSF = 2.2×104 cm-1 in both directions, in excellent 

agreement with TEM observations.

We now turn to the second (111) SiC sample.  Before CF-PVT growth the 6H-SiC substrate 

has been buffered with a 3C-SiC layer grown by VLS epitaxy.  The XRD analysis  of this 

buffer layer (not shown here) revealed that it is free of SFs or at least below the detection 

limit  of  our  method,  and  that  it  exhibits  both  epitaxial  variants,  one  variant  being  more 

abundant than the other. (Note that the VLS process has recently proven its ability to grow 

DPB free 3C-SiC layers [17]. Unfortunately, such sample has not been investigated by DXS 

yet.) This analysis allows to clarify the interpretation of the RSM figure. 4c. This RSM simply 

results from the superposition of two RSMs identical to those shown in figure 4a and 4b 

related to each other by a 60° rotation. The intensity of the second set of streaks (marked by 

dashed arrows and labeled DPB) is weaker as this epitaxial variant is less abundant than the 

other. (In figure 4d only one streak appears in the DPB set; this point is to date not clarified).

The simulation of the  qx-scan,  figure 5c,  yields a mosaic domain size  D = 2.5 µm and a 

mosaicity σ = 0.015°. It appears that the presence of DPBs does not affect the mosaicity, but it 

clearly reduces the mosaic domain size. The simulation of the diffuse streaks provides a SF 

density  ρSF = 4×104 cm-1 which is significantly higher than for (111) SiC. These two latter 

features can be understood as follows: the DPB is an incoherent twin boundary whose energy 

is  relaxed by the formation of  SFs.  Moreover,  since coherence is  lost  from one epitaxial 

variant to the other, the overall mosaic domain size is reduced. Another important result is that 

SF are generated during CF-PVT growth (since the buffer was free of SFs) and that neither 
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the SFs nor the DPBs affect the mosaicity. This point will be the subject of further studies.

5. Conclusions

A method to study SFs in 3C-SiC crystal has been presented. This method is based on fast 

reciprocal space mapping and the simulation of the diffuse intensity streaks. Parameters of 

primary  importance  such  as  the  SF  density,  the  mosaic  domain  size  and  mosaicity  can 

obtained. The method can be used qualitatively for routine analysis or quantitatively for in-

depth studies of SFs in SiC.
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Figure caption

Figure 1: schematic representation of an (00l) RLP of an (001) oriented crystal (a), and of an 

(hhh) RLP of a (111) oriented crystal (b). In both cases, streaks of diffusely scattered intensity 

extend along the <111> directions, except for (b) where the [111] streak is extinguished.

Figure 2: RSMs of the (002) RLP of (001) oriented 3C-SiC: (a) upwards along [110], (b) 

downwards along [110], (c) upwards along [1-10], (d) downwards along [1-10].

Figure  3:  (a)  qx-scans  performed  through  the  centre  of  the  (002)  RLP for  the  upwards 

orientation  (lower  curve)  and  the  downwards  orientation  (upper  curve).  (b)  line  scans 

performed along [111] (lower curve) and [1-11] (upper curve). Notice that the logarithm of the 

intensity  is  plotted  and  that  the  curves  are  shifted  vertically  for  clarity  (grey  dots: 

experimental; line: simulation).

Figure 4: RSMs of the (111) RLP of (111) oriented 3C-SiC crystals: (a) along [2-1-1] for the 

first crystal, (b) along [11-2] for the first crystal, (c) along [2-1-1] for the second crystal, (d) 

along [11-2] for the second crystal.

Figure 5: (a) qx-scan performed through the centre of the (111) RLP of the first crystal. (b) line 

scans performed along [-111] (lower curve) and [11-1] (upper curve) for the first crystal. (c) 

qx-scan performed through the centre of the (111) RLP of the second crystal. (d) line scans 

performed along [-111] (lower curve) and [11-1] (upper curve) for the second crystal. Notice 
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that the logarithm of the intensity is plotted and that the curves are shifted vertically for clarity 

(grey dots: experimental; line: simulation).
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Figure 1
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