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Abstract

A simple  least-square  fitting  –  based  method is  described  for  the  determination  of  strain 

profiles  in  epitaxial  films  using  high-resolution  X-ray  diffraction.  The  method  is  model-

independent, i.e. it does not require any “guess” model for the shape of the strain profile. The 

shape  of  the  vertical  displacement  profile  is  modeled  using  the  versatile  cubic  B-spline 

functions,  which  puts  smoothness  and curvature  constraints  on the  fitting  procedure.  The 

effect of a coherently diffracting substrate is taken into account as well as the effects of film 

thickness fluctuations. The model is applied to the determination of strain profiles in SmNiO3 

films epitaxially grown on (001) SrTiO3 substrates. The shape of the retrieved strain profile is 

discussed in terms of oxygen vacancies.

1. Introduction

Strain profiles, i.e. variations of the lattice parameter with depth, are frequently encountered 

in the processing of functional (e.g. semiconducting, optical, ferroelectric...) materials. In the 

last three decades much effort  has been devoted to recover these strain profiles in a non-

destructive  way,  especially  using  high-resolution  X-ray diffraction  (XRD).  A well  known 
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example  is  the  determination  of  strain  profiles  consecutive  to  ion  implantation  in 

semiconducting single crystals, as for instance Si (Diaz et al., 2007; Klappe & Fewster, 1994; 

Milita & Servidori, 1995; Sousbie et al., 2006; Zaumseil et al., 1987), SiC (Leclerc et al., 

2005) or GaAs (Wierzchowski et al., 2005). Strain profiles also occur in epitaxial films as a 

result of the film substrate lattice mismatch and the associated strain relaxation (Nicola et al., 

2005).  Such  strain  profiles  may  profoundly  affect  the  properties  of  the  films,  e.g.  the 

ferroelectric (Catalan et al., 2005), optical (Siegle et al., 1997) or transport (Conchon et al., 

2008a) properties.

The determination of strain profiles from experimental XRD data is hindered by the so-called 

“phase problem”. Indeed, lattice displacements affect the phase of the diffracted amplitude, E, 

whereas  the  quantity  measured  experimentally  is  the  intensity,  E.E*.  The  phase  of  the 

amplitude is  hence lost  so that  the strain  profile can not be obtained by inversion of the 

diffracted intensity (Nikulin, 1998; Vartanyants et al., 2000). This problem is usually solved 

using a model-dependent approach where a calculated XRD curve is least-square fitted to the 

experimental data. If the defect structure is known then the strain profile can be modeled by a 

physically sound model (Klappe & Fewster, 1994; Milita & Servidori, 1995; Hironaka et al., 

2000).  In these approaches the film is  divided into laminae of constant strain so that  the 

scattering problem can be solved dynamically within the framework of the Takagi (1969) – 

Taupin  (1964)  equations  (see  also  Bartels  et  al.  (1986)  and  Halliwell  et  al.  (1984)). 

Conversely, if the defect structure is unknown, i.e. there is no “guess” model for the strain 

profile, then any arbitrary function can be chosen (Shen & Kycia, 1997; Steinfort et al., 1996). 

In both cases however, even if a good fit is achieved, if the chosen strain profile function does 

not match the actual shape of the strain profile, then the validity of the results is obviously 

questionable. More sophisticated, model-independent approaches, rely on the mathematical 
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properties  of  the  diffracted  amplitude  (in  particular  the  fact  that  within  the  kinematical 

scattering theory, the diffracted amplitude is the Fourier transform of the electron density) to 

recover  the  phase of  the  amplitude using  advanced “phase-retrieval”  algorithms  (Nikulin, 

1998; Vartanyants et al., 2000; van der Veen & Pfeiffer, 2004). The main advantages of these 

methods are that they don't depend on any a priori model, and that the obtained solution is in 

principle unambiguous. The drawback is that they rely on more complicated formalisms.

In a previous article (Boulle et al., 2003) we presented a method that combines the simplicity 

of least-square fitting based procedures with the advantage of being model-independent. In 

the present article we further develop this method. In particular we include the effects of the 

dynamical diffraction from the substrate together with thickness fluctuations of the film (§2). 

We then demonstrate that in some circumstances, the proposed approach allows to exactly 

retrieve the strain profile in epitaxial films (§3). Finally, the method is applied to SmNiO3 

films  epitaxially  grown  on  (001)  SrTiO3 substrates  by  metal  organic  –  chemical  vapor 

deposition (§4).

2. Diffraction from a film/substrate system

In  the  following  the  diffraction  from  the  film  is  treated  within  the  framework  of  the 

kinematical theory of diffraction. This assumption is justified for thin films studied at non-

grazing angles (Pietsch et al., 2004) and allows an easier handling of the expression of the 

diffracted amplitude than the dynamical theory. On the other hand, the diffraction from the 

substrate must be treated dynamically. If the film and substrate diffract coherently, then the 

total diffracted amplitude can be written (Holý et al., 1999) (see also Pietsch et al., 2004 ; 

Wie, 1994 ; Kyutt et al., 1980):

E=E s
dynexp i q t i E f (1)
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where Es
dyn and Ef are the amplitudes diffracted by the substrate (dynamically) and the film, 

respectively. t is the film thickness and q is the modulus of the reduced scattering vector, i.e. 

the deviation of the scattering vector  Q from the Bragg position,  including refraction and 

absorption corrections:

q=∣Q−h∣
K 0

2h
1−h

0  (2)

where χ0 is the polarizability, the real part of which accounts for refraction and the imaginary 

part accounts for absorption. h is the reciprocal lattice vector of the reflection considered with 

Bragg angle θ. γ0 and γh are the direction cosines of the incident and diffracted wave vectors 

(K = 2π / λ, λ being the wavelength) with respect to the inwards surface normal, i.e. γ0 = sin(θ 

- φ) and γh = -sin(θ + φ), where φ is the angle between the surface and the investigated lattice 

planes.  Since we are  interested in  strain  profiles  along the surface normal,  we shall  only 

consider symmetrical reflections (φ = 0), so that the last term of equation (2) reduces to K χ0 / 

sin  θ.  The reduced scattering vector can also account for the effects of short range lattice 

spacing fluctuations which can be encountered in thin films.  The modulus of the reduced 

scattering vector then reads (Boulle et al. 2006a; Boulle et al., 2006b)

q=∣Q−h∣
K 0

sin
−i

u
2 h2

2 d
(3)

where d is the lattice spacing of the lattice planes considered and σu corresponds to the root-

mean-squared  (rms)  lattice  displacements.  It  is  worth  mentioning  that  an  alternative 

formulation  of  the  amplitude  diffracted  by  a  film/substrate  system  has  been  given  by 

Zolotoyabko (1998):

E=E s
kinexp i q t E f (4)

where  Es
kin is  the  amplitude  diffracted  by  the  substrate  using  an  advanced  kinematical 

formulation and which perfectly reproduces all dynamical interference effects. Notice that in 
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comparison with equation (1), the amplitude of the film here appears at Ef, and note iEf. In the 

semi-kinematical expression (1) the exact dynamical formulation of the diffraction from the 

substrate is used, whereas in the kinematical expression (4) a kinematical formulation of the 

diffraction from the susbtrate is used. As pointed out by Zolotoyabko (1998), all attempts to 

use the exact dynamical formulation for the susbtrate's scattering amplitude in combination 

with  equation  (4)  failed  because  such  a  'mixture'  does  not  correctly  describe  the  phase 

relations between the wave scattered from the film and from the substrate.

Finally, if the film and the substrate diffract incoherently, the total diffracted intensity is given 

by I = Is + If (5), where Is and If are the intensities diffracted by the the film and the substrate, 

respectively. The contributions of the film and the substrate to the total diffraction amplitude 

are detailed below.

2.1 Contribution of the film

Firstly we shall assume that the film does not exhibit compositional gradients, so that the 

structure  factor  can  be  considered  constant  throughout  the  film  thickness.  With  this 

assumption, for a symmetrical reflection with vector h, the amplitude diffracted by the film is

E qz=
K h

2sin
∫
0

∞

dz⋅ z ; t exp [i h u z ] expi qz z  (6)

where z is the coordinate along the surface normal, Ω(z ; t) is the shape factor of the film (i.e. 

Ω(z ; t) = 1 if z ∈ [0, t],  Ω(z ; t) = 0 otherwise), u(z) is the displacement of the lattice from its 

ideal position at coordinate z, and qz is the z-component of the reduced scattering vector. χh is 

the  h-th  Fourier  component  of  the  polarizability  which  relates  to  the  structure  factor  Fh 

through χh = - re λ2 Fh / π V (where re and V are the classical electron radius and the unit cell 

volume) (Authier, 2005).
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Most thin films are not flat  on the atomic scale and therefore exhibit  a certain degree of 

thickness fluctuations. One must therefore consider the average amplitude

〈E qz〉=∫dt⋅pt E qz (7)

where  p(t) is the thickness probability distribution function (PDF). Inserting equation (6) in 

equation (7) and changing the order of integration yields

〈E qz〉=
K h

2sin
∫

0

∞

dz⋅〈 z ; t  〉 exp [ i h u  z  ]exp i qz z  (8a)

and

〈 z ; t 〉=∫
z

∞

dt⋅pt  z ; t  (8b)

is the averaged shape factor. In deriving equation (8) we made the assumption that  u(z) is 

independent of the film thickness, i.e. we don't account for correlations between the strain 

profile and the film thickness. This assumption may be considered as justified for relatively 

small thickness fluctuations. The main interest of this assumption lies in the fact that equation 

(8b)  can  be  analytically  evaluated  for  several  p(t) which,  hence,  avoids  the  numerical 

evaluation of equation (7). Solution of <Ω(z ; t)> are here given for a normal PDF (notice that 

to avoid the occurrence of negative thicknesses, the normal PDF has to be constrained with 

condition σ < µ/3 (Boulle et al., 2006))

p N t =
1

2
exp [−1

2 
t−
 

2

] ,

a lognormal PDF

p LN t =
1

2LN t
exp [−1

2 
ln t−LN

LN


2

]
and general histogram distribution consisting of N classes, each thickness tn occurring with a 

probability  pn. In the above equations  µ (µLN) and  σ2 (σLN
2) are the mean (lognormal mean) 
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and variance (lognormal variance) of the thickness PDF. The parameters  µLN and  σLN
2 are 

related to their normal counterparts by µ = exp ( µLN + σLN
2 /2) and σ2 = µ2 [exp (σLN

2) – 1]. 

With these definitions equation (8b) becomes

〈 z ; t 〉N=
1
2

erfc z−

2  (9a)

for the normal PDF,

〈 z ; t 〉LN=
1
2

erfc  ln z−LN

2LN
 (9b)

for the lognormal PDF and

〈 z ; t 〉H=∑
n=1

N

pn z ; t n [ t n−max  z ,t n−1 ] (9c)

for the histogram PDF. In general the thickness distribution is not known a priori, so that the 

parameters  of  the distribution (µ and  σ)  are  obtained by fitting the calculated profiles to 

experimental data. In this procedure the normal PDF is believed to be applicable in most 

cases1. There are cases however, where the size distribution is known to obey a particular (non 

Gaussian) functional form. This is for instance the case for some nanoparticle systems which 

exhibit a lognormal size distribution (Kiss et al., 1999). Finally, if the thickness PDF is known 

from  an  independent  measurement  (such  as  atomic  force  microscopy  observations  for 

instance) the wisest choice is to use the histogram distribution obtained by this method.

In  the  following we restrict  ourselves  to  the  normal  distribution.  The  effect  of  thickness 

fluctuations is illustrated in the inset figure 1: instead of exhibiting an abrupt variation, the 

shape factor smoothly decreases from 1 to 0. The shape and width of the transition zone 

depends  on  the  chosen  PDF  and  the  associated  variance.  Here  the  calculations  were 

1 Strictly speaking, since the thickness varies in a discrete fashion (i.e. by multiples of the lattice spacing) one 
should use discrete PDFs, for instance the binomial distribution instead of the normal distribution. In the 
present case we shall consider films with a thickness much greater than than the smallest height variation (i.e. 
much greater than the lattice spacing) so that continuous distribution can be safely used (Boulle et al., 2004, 
2006a).
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performed for 50 nm – thick film exhibiting a normal PDF with  σ = 0,  5 % of the film 

thickness (2.5 nm) and 10 % of the film thickness (5 nm). The calculated diffraction curves 

are given in figure 1 for an unstrained film (u(z) = 0). The presence of thickness fluctuations 

has a significant influence on the diffraction curve as it results in a damping of the high order 

fringes: the higher the thickness fluctuations, the less the fringes are visible. In the case of 

very high thickness fluctuations the fringes can be completely smeared out (Boulle et  al., 

2005). We shall however not consider this case here as it is incompatible with the assumption 

detailed earlier, i.e. we restrict ourselves to small σs. Finally, the effect of roughness can be 

easily accounted for by multiplying equation (8a) by Debye-Waller – like factor, exp(-h2σr
2/2), 

where  σr
2 is the rms roughness (Boulle et al., 2006a; Boulle et al., 2006b). This roughness 

term corresponds  to  height  fluctuations  at  the  film/substrate  interface  which  are  entirely 

replicated at the surface, i.e. it does not yield film thickness fluctuations.

2.2 Contribution of the substrate

In the framework of equation (1) the expression of the amplitude diffracted by the substrate is 

given by the dynamical theory of diffraction and can be found for instance in Authier (2005). 

In the framework of equation (4) Zolotoyabko (1998) derived the following equation

E s
kin
=

K h

2sin 

d
1−1−d /e exp iQ d 

where  Λe is  the penetration  depth  due to  extinction,  Λe =  λ sin  θ /  π |χh|.  The  effect  of 

absorption is included in the scattering vector Q. We here perform the same derivation so as to 

express the diffracted amplitude in terms of qz instead of Q. We obtain

E s
kin
=

K h

2sin 

1
1/e−i qz

(10)

We show below that this last expression, when used in equation (4), yields exactly the same 
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results as a full dynamical calculation. Strictly speaking, the only part of the diffraction curve 

that is not perfectly reproduced is the total reflection domain of the substrate peak. However, 

as  pointed  out  by Zolotoyabko (1998)  this  detail  is  unimportant  because  in  practice  this 

narrow region (± 1 Darwin width) is broadened by the finite resolution of the diffractometer.

2.3 The total diffraction profile

In  the  following  all  calculations  are  performed  assuming  50  nm  –  thick  SmNiO3 films 

deposited on (001) SrTiO3 substrates. SrTiO3 is a cubic perovskite (space group Pm-3m) with 

lattice parameter a = 3.905 Å. SmNiO3 is an orthorhombically distorted perovskite (space 

group Pbmn, a = 5.328 Å, b = 5.437 Å, c = 7.568 Å) which can be described in a pseudo-

cubic unit cell with a = 3.798 Å. Previous studies on this material (Conchon et al., 2007a; 

Conchon et al., 2007b) revealed that the lattice parameter is higher than expected, i.e. we have 

a = 3.844 Å (the origin of this discrepancy is discussed in §4). The associated misfit strain is 

1.6%.

The calculated diffraction curve using these parameters is displayed in figure 2a for the (002) 

reflection. The black curve has been calculated assuming that both the film and the substrate 

diffract  dynamically  for  a  film perfectly  lattice-matched  on  the  substrate.  The  red  curve 

labeled (1) has been calculated using equation (4), together with equations (8), (9) and (10) 

without thickness fluctuations (σ = 0). It can be seen that the calculation using equation (4) 

perfectly  matches  the  dynamical  calculation.  Besides,  if  the  film  and  the  substrate  are 

assumed to diffract incoherently, i.e. the total intensity is the sum of the intensities diffracted 

by the film and the substrate, the diffraction exhibit a strongly modified fringes structure. This 

situation is illustrated in figure 2b with the curve labeled (1) (the black curve representing the 

dynamical calculation is also shown for each calculated curve for comparison purposes).
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Let  us  now  consider  the  effects  of  thickness  fluctuations.  In  the  latter  case  (incoherent 

film/substrate diffraction, figure 2b), the fringes structure is affected in the same way as in the 

case of the diffraction from an isolated film (section 1, figure 1), i.e. the fringes are damped. 

This  behavior  is  easily  understood  since  there  are  no  interferences  between  the  waves 

diffracted by the film and the substrate. Conversely, in the case of a coherent film/substrate 

diffraction (figure 2a), the interferences between the waves diffracted by the film and the 

substrate  give  rise  to  significant  modification  of  the  fringes  structure  when  thickness 

fluctuations are considered (curves (2) and (3), figure 2a).

In the light of this analysis, it  appears that the diffraction curve is highly sensitive on the 

presence  thickness  fluctuations  and on  the  presence  of  a  coherently  diffracting  substrate. 

Since strain profiles also affect the fringes structure (Boulle et al., 2003) one must be able to 

distinguish between strain – induced effects and thickness fluctuations – induced effects. This 

can be achieved by analyzing several orders of reflections from the same crystallographic 

planes family, e.g. several (00l) reflections. Indeed, according to equation (8), strain effects 

scale with reciprocal lattice vector  h, whereas effects related to thickness fluctuations affect 

all reflections identically. On the other hand, there is no a priori mean to detect whether the 

waves diffracted by the film and by the substrate couple coherently or not. Both hypothesis 

have therefore to be tested. However, it is more likely in partially relaxed structures (and a 

fortiori  in  strongly relaxed)  that  the coherency between the film and the substrate  is  lost 

because  of  misfit  dislocations  lying  at  the  interface  (Fewster,  1992).  Finally,  it  is  worth 

noticing that, in a similar fashion to what is done with other methods (the laminae method in 

combination with the Takagi-Taupin equations, for instance), since we here only consider the 

coherent  part  of  the  diffracted  intensity,  the  diffuse  scattering  emanating  from defects  is 

neglected.
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3. The strain profile

In  the  following we decompose  the  displacement  profile  into  third  degree  B-spline  basis 

functions:

u  z =∑
i=1

N

wi Bi ,3 z 

where wi is the weight of the i-th B-spline of third degree, Bi,3(z) and N is the number of knots 

chosen to compute u(z) (Boulle et al., 2003). In writing the above equation, the displacement 

is implicitly assumed to be correctly described by a cubic spline function. The advantages of 

this assumption are twofold. Firstly, the cubic spline has two continuous derivatives which 

hence  avoids  abrupt  variations.  Secondly,  for  a  given  number  of  knots,  the  cubic  spline 

interpolates with a minimum curvature which hence avoids unphysical oscillations that can be 

encountered  in  the  inversion  of  experimental  data.  The  obvious  drawback of  the  present 

approach is that it is not suited to systems where abrupt variations of u(z) are indeed expected, 

as in the case of multilayers for instance where the lattice parameter (and hence u(z)) changes 

abruptly at each interface. In such a case another approach must be used (Dilanian et al., 

2006).

Another interesting feature of cubic B-spline functions lies in their high versatility: the degree 

of details of the displacement profile that can be rendered entirely depends on the number of 

knots. Increasing the number of knots increases the ability to render tiny features of u(z), but 

at  the  same time  it  increases  the  possibility  for  u(z)  to  exhibit  wild  oscillations.  On the 

contrary,  decreasing  the  number  of  knots  induces  a  smoothing  of  u(z)  but  increases  the 

possibility to wipe-out small details. In practice we have found that around ten knots appears 

as a good compromise. An example of displacement profile (red curve) and the associated 

basis functions (black curves) are depicted in figure 3 (this curve corresponds to the strain 
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profile (3) in figure 4a discussed in the next section). In this case the film is divided into 9 

intervals and 13 knots are required to describe the displacement profile over the whole film 

thickness. As mentioned in the introduction, least square fitting – based methods often rely on 

the choice of a particular guess model for u(z) (either a physically sound or arbitrarily chosen 

model). The method presented here is an alternative to these methods when there is no initial 

guess for u(z), i.e. when the nature of the defect responsible for the strain profile is unknown.

3.2 Strain profile retrieval

In this section we shall test the ability of the method to actually retrieve the strain profile. We 

choose the same conditions as in §2.3 (SmNiO3/SrTiO3, t = 50 nm). We further assume that 

the waves diffracted by the film and the substrate couple coherently and we assume perfectly 

flat  films  (no  thickness  fluctuations).  These  assumptions  have  no  consequences  on  the 

conclusions  drawn  in  this  section.  Diffraction  curves  have  been  calculated  using  three 

different input  u(z) functions. The strain profiles corresponding to these three different  u(z) 

profiles are shown as symbols in figure 4a. The left axis indicates the strain, whereas the right 

axis indicates the degree of strain relaxation:

R z =
a //  z −as

a f −as

where  a//(z) is the in-plane lattice parameter at the coordinate  z,  af and  as are the strain free 

lattice parameters of the film and the substrate, respectively.  R(z) = 0 for a perfect lattice 

matching, whereas  R(z) = 100% for a relaxed film (Pietsch et al., 2004). The strain profile 

labeled (1) correspond to  a smooth strain  relaxation across  the film thickness.  The strain 

profiles (2) and (3) exhibit a strong strain relaxation close to the interface and, for the profile 

(3), surface lattice expansion. The corresponding diffraction curves are shown as thick black 

lines in figure 4b. It can be readily observed that the strain profile has profound incidence of 
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the diffraction curve, and especially on the fringes structure.

These curves have been used as “data” and the model has been fitted to these data. Starting 

from a displacement equal to 0 (u(z) = 0), the parameters entering the model (i.e.  t and the 

different B-spline weights)  are optimized by minimizing the criterion (Klappe & Fewster, 

1994; Milita & Servidori, 1995)

Err=∑
i=1

M

[log  I i
fit −log  I i

obs ]
2

where M is the number of data points and Ii
fit and Ii

obs are the fitted and observed intensities. 

The  parameters  have  been  refined  using  a  Levenberg-Marquardt  minimization  algorithm 

(Press et al., 2002). The fitted intensities are drawn as thin red lines in figure 4b: the fitted 

curve matches the observed curve exactly. The retrieved strain profiles are drawn as full lines 

in figure 4a. These profiles perfectly reproduce the shape of the input strain profile (symbols). 

It  can  be concluded that  the approach presented  here allows to  retrieve strain  profiles  in 

epitaxial  films  from  the  X-ray  diffraction  profile  even  without  an  initial  guess  model, 

provided however that the actual strain profile can be described by cubic spline function. It 

can be expected that in an actual experiment the presence of experimental noise will increase 

the number of possible solutions produced by the least-square fitting procedure (Provencher, 

1982). The use of cubic spline functions is here of particular interest since it implicitly puts 

smoothness  and  curvature  constraints  on  the  possible  solutions,  thereby  limiting  the 

occurrence of unphysical oscillating solutions.

4. Application

The method exposed above has been applied to the determination of strain profiles in SmNiO3 

films  grown  on  (001)  SrTiO3 substrates  by  metal  organic  –  chemical  vapor  deposition 

(Conchon et al., 2007a). In order to achieve the highest dynamic range and hence to maximize 
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the fringes contrast, the experiments were carried out at the BM2 beamline at the European 

Synchrotron Radiation Facility  (ESRF, Grenoble, France). The beam energy was set to 20 

keV. The incident beam is monochromated by a (111) Si two-crystal monochromator. A (111) 

Si crystal has been used as an analyzing crystal (Ferrer et al., 1998). The (002) and (004) 

reflections  have  been  recorded and analyzed (only the  (002)  is  shown here).  In  order  to 

account for the finite resolution of the instrument, the calculated curve has been convoluted 

with Gaussian function whose width has been fixed to the value of the peak width of the 

substrate reflection. Finally a constant background has been added to the calculated curve in 

order to account for the actual background level.

Three  different  models  have  been  fitted  to  the  data.  The  first  one  assumes  a  coherent 

film/substrate  diffraction  and  neglects  thickness  fluctuations.  This  case  correspond to  the 

usual  model  and  is  valid  for  perfect  structures.  The  second  model  includes  thickness 

fluctuations  (we  here  used  the  normal  PDF).  The  third  model  assumes  incoherent 

film/substrate  diffraction  and  also  includes  thickness  fluctuations.  The  three  simulations, 

(labeled from 1 to 3) are displayed in figure 5. Enlarged views of the left and right tails of the 

peaks are given in the inset (a) and (b). All three models fit the central part of the peak fairly 

well, the main differences are visible in the profile tails. Model (1) clearly fails to reproduce 

the fringe structure,  in  particular  the  fringes  are  out  of  phase  on the left  hand side.  The 

addition of  thickness  fluctuations  slightly improves  the agreement  on the  right  hand side 

(although the fringes are slightly dephased) but the simulation is clearly not acceptable. The 

best agreement is obtained with the last model. The fringes structure is fairly well reproduced 

over the whole angular range. The obtained film thickness is 84 nm and the rms thickness 

fluctuation is 1 nm. In the present case the loss of coherency between the waves diffracted by 

the film and the substrate can be easily understood. The analysis of asymmetrical reciprocal 
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space maps indeed revealed that  the  film exhibit  a  7% strain relaxation (Conchon et  al., 

2007a,  2008b).  It  can  hence  be  expected  that  the  strain  fields  induced  by  the  misfit 

dislocations lying at the interface disrupt the wavefield in the film/substrate strucure leading 

to an incoherent  coupling of the waves diffracted by the film and the substrate (Fewster, 

1992).

The strain  profiles obtained from the simulation procedure are displayed in  figure 6.  The 

strain profiles exhibit marked differences, especially close to the interface where model (2) 

and (3) predict an abrupt decrease of the strain from 1.5% to 0 in the 5 first nanometers. This 

behaviour  is  not predicted by model  (1) which is  the only one that  does not account for 

thickness fluctuations. The inclusion of film thickness fluctuations in the model hence appears 

as a critical parameter to retrieve the strain profile. For all models the strain oscillates between 

0.5% and -0.5% with a similar shape for three models.

At first sight the high tensile strain close to the interface seems to be paradoxical. Indeed, 

since the film is  tensily strained in  the interface plane,  one would  expect  the film to  be 

compressively strained in the vertical direction. A detailed inspection of the SmNiO3/SrTiO3 

system (Conchon et al., 2007c) revealed that the in-plane strain destabilizes the Ni3+, which 

then transforms into Ni2+ (this  is  accompanied  by the formation  of  oxygen vacancies  for 

charge conservation). Ni2+ having a larger ionic radius, the SmNiO3 unit cell volume increases 

upon the Ni3+ → Ni2+ transformation.  This is  why we observe a dilatation in the vertical 

direction instead of the expected contraction (Conchon et al., 2007c). The strain profile hence 

suggests that the oxygen vacancies are mainly located at the interface (between 0 and 5 nm). 

This  can  be  understood  considering  that  this  is  the  region  where  the  influence  of  the 

interfacial strain is maximum. Between 5 and 20 nm the strain is compressive indicating that 

there are no oxygen vacancies,  i.e.  this  compressive strain is the response to the in-plane 
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tensile strain. The following oscillations are somewhat fussy to interpret. However, since the 

three profiles have similar shape these oscillations can hardly be attributed to random errors in 

the simulation procedure.  Since the oxygen content is critical  in the formation of oxygen 

vacancies and hence on the Ni3+ → Ni2+ transformation, the observed oscillations could be due 

to instabilities of oxygen pressure during deposition.

5. Conclusions

We have presented a least-square fitting – based method that allows to retrieve strain profiles 

in epitaxial films using XRD. The method is model-independent in the sense that it does not 

require any guess model for the shape of the strain profile. For that purpose the displacement 

profile across the film thickness is modeled using cubic B-spline functions. These functions 

are  extremely  versatile  since  they  can  adopt  almost  any  shape  while  avoiding  abrupt 

discontinuities and wild oscillations. The coherent or incoherent diffraction from the substrate 

is easily taken into account. In the case of a coherent contribution from the substrate, the 

present model yields the same results  as the dynamical theory.  Thickness fluctuations are 

explicitly included in the model and have been described with a normal, a lognormal and a 

histogram thickness probability distribution function. These thickness fluctuations were found 

to have a profound influence on the diffraction profile. Provided that the actual strain profile 

can be described by a cubic spline function,  it  has been shown from simulations that the 

present model allows to exactly retrieve the strain profile in epitaxial films. Finally, the model 

has been applied to the determination of strain profiles in SmNiO3 films epitaxially grown on 

(001) SrTiO3. In this case it has been found that the film/substrate coherence is broken by the 

presence of misfit dislocations and the shape of the retrieved strain profile has been discussed 

in terms of oxygen vacancies.
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Figure caption

Figure 1: influence of thickness fluctuations on the diffraction curve of a 50 nm – thick film. 

(1): σ = 0 (black curve); (2):σ = 5 % of the film thickness (2.5 nm) (blue curve); (3): σ = 10 

% of the film thickness (5 nm) (red curve).  Increasing thickness  fluctuations results  in  a 

damping of  the fringes.  The  curves  are  shifted  vertically for  clarity.  Inset:  corresponding 

averaged shape factors. For σ > 0 the shape factor decreases smoothly from 1 to 0.

Figure  2: influence  of  thickness  fluctuations  on  the  diffraction  curve  of  a  film/substrate 

system with film thickness t = 50 nm (thin red curves). (a): the film and substrate diffract 

coherently. (b): the film and substrate diffract incoherently. In each figure, (1): σ = 0; (2): σ = 

5 % of the film thickness (2.5 nm); (3):  σ = 10 % of the film thickness (5 nm). The thick 

black curve corresponds to the dynamical calculation. The curves are shifted vertically for 

clarity.

Figure 3: example plot the cubic B-spline basis functions (black curves) and the associated 

displacement profile (red curve). The displacement profile is a cubic spline function.

Figure 4: (a): input (symbols) and retrieved (lines) strain profiles for a 50 nm – thick film. 

The retrieved curves exactly reproduce the input curves. (b): diffraction curves corresponding 

to  each  of  the  strain  profiles  (labeled  (1),  (2)  and  (3)).  The  thick  black  curves  are  the 

diffraction profiles calculated using the input strain profiles. The thin red lines correspond to 

the least-square fitted curves. The fitted curves match the calculated curves perfectly.
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Figure 5: (002) diffraction curve of SmNiO3 epitaxially grown on SrTiO3. The curves labeled 

from (1) to (3) correspond to simulations performed with models (1), (2) and (3), respectively 

(see text for details). Black curve: experimental data; red curve: fitted curve. The best fit is 

achieved with model (3). The curves are shifted vertically for clarity. Inset (a): enlarged view 

of the left tail. Inset (b): enlarged view of the right tail.

Figure 6: experimental strain profiles retrieved with model (1) (squares, black line), model 

(2) (circles, blue line) and model (3) (triangles, red line). Inset: enlarged view of the 0-20 nm 

region.
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