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FIRST-ORDER OPTIMIZATION ALGORITHMS VIA INERTIAL SYSTEMS WITH

HESSIAN DRIVEN DAMPING

HEDY ATTOUCH, ZAKI CHBANI, JALAL FADILI, AND HASSAN RIAHI

Abstract. In a Hilbert space setting, for convex optimization, we analyze the convergence rate of a class

of first-order algorithms involving inertial features. They can be interpreted as discrete time versions of
inertial dynamics involving both viscous and Hessian-driven dampings. The geometrical damping driven

by the Hessian intervenes in the dynamics in the form ∇2f(x(t))ẋ(t). By treating this term as the time

derivative of ∇f(x(t)), this gives, in discretized form, first-order algorithms in time and space. In addition
to the convergence properties attached to Nesterov-type accelerated gradient methods, the algorithms thus

obtained are new and show a rapid convergence towards zero of the gradients. On the basis of a regulariza-

tion technique using the Moreau envelope, we extend these methods to non-smooth convex functions with
extended real values. The introduction of time scale factors makes it possible to further accelerate these

algorithms. We also report numerical results on structured problems to support our theoretical findings.

Key words: Hessian driven damping; inertial optimization algorithms; Nesterov accelerated gradient method;
Ravine method; time rescaling.

AMS subject classification. 37N40, 46N10, 49M30, 65B99, 65K05, 65K10, 90B50, 90C25.

1. Introduction

Unless specified, throughout the paper we make the following assumptions
H is a real Hilbert space;

f : H → R is a convex function of class C2, S = argmin f 6= ∅;
γ, β, b : [t0,+∞[→ R+ are non-negative continuous functions, t0 > 0.

As a guide in our study, we will rely on the asymptotic behavior, when t→ +∞, of the trajectories of the
inertial system with Hessian-driven damping

ẍ(t) + γ(t)ẋ(t) + β(t)∇2f(x(t))ẋ(t) + b(t)∇f(x(t)) = 0.

γ(t) and β(t) are damping parameters, and b(t) is a time scale parameter.
The time discretization of this system will provide a rich family of first-order methods for minimizing f .

At first glance, the presence of the Hessian may seem to entail numerical difficulties. However, this is not
the case as the Hessian intervenes in the above ODE in the form ∇2f(x(t))ẋ(t), which is nothing but the
derivative wrt time ∇f(x(t)). This explains why the time discretization of this dynamic provides first-order
algorithms. Thus, the Nesterov extrapolation scheme [25, 26] is modified by the introduction of the difference
of the gradients at consecutive iterates. This gives algorithms of the form{

yk = xk + αk(xk − xk−1)− βk (∇f(xk)−∇f(xk−1))

xk+1 = T (yk),

where T , to be specified later, is an operator involving the gradient or the proximal operator of f .
Coming back to the continuous dynamic, we will pay particular attention to the following two cases,

specifically adapted to the properties of f :

• For a general convex function f , taking γ(t) = α
t , gives

(DIN-AVD)α,β,b ẍ(t) +
α

t
ẋ(t) + β(t)∇2f(x(t))ẋ(t) + b(t)∇f(x(t)) = 0.
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In the case β ≡ 0, α = 3, b(t) ≡ 1, it can be interpreted as a continuous version of the Nesterov
accelerated gradient method [31]. According to this, in this case, we will obtain O

(
t−2
)

convergence
rates for the objective values.

• For a µ-strongly convex function f , we will rely on the autonomous inertial system with Hessian
driven damping

(DIN)2√µ,β ẍ(t) + 2
√
µẋ(t) + β∇2f(x(t))ẋ(t) +∇f(x(t)) = 0,

and show exponential (linear) convergence rate for both objective values and gradients.

For an appropriate setting of the parameters, the time discretization of these dynamics provides first-order
algorithms with fast convergence properties. Notably, we will show a rapid convergence towards zero of the
gradients.

1.1. A historical perspective. B. Polyak initiated the use of inertial dynamics to accelerate the gradient
method in optimization. In [27, 28], based on the inertial system with a fixed viscous damping coefficient
γ > 0

(HBF) ẍ(t) + γẋ(t) +∇f(x(t)) = 0,

he introduced the Heavy Ball with Friction method. For a strongly convex function f , (HBF) provides con-
vergence at exponential rate of f(x(t)) to minH f . For general convex functions, the asymptotic convergence
rate of (HBF) is O( 1

t ) (in the worst case). This is however not better than the steepest descent. A decisive
step to improve (HBF) was taken by Alvarez-Attouch-Bolte-Redont [2] by introducing the Hessian-driven
damping term β∇2f(x(t))ẋ(t), that is (DIN)0,β . The next important step was accomplished by Su-Boyd-
Candès [31] with the introduction of a vanishing viscous damping coefficient γ(t) = α

t , that is (AVD)α (see
Section 1.1.2). The system (DIN-AVD)α,β,1 (see Section 2) has emerged as a combination of (DIN)0,β and
(AVD)α . Let us review some basic facts concerning these systems.

1.1.1. The (DIN)γ,β dynamic. The inertial system

(DIN)γ,β ẍ(t) + γẋ(t) + β∇2f(x(t))ẋ(t) +∇f(x(t)) = 0,

was introduced in [2]. In line with (HBF), it contains a fixed positive friction coefficient γ. The introduction
of the Hessian-driven damping makes it possible to neutralize the transversal oscillations likely to occur with
(HBF), as observed in [2] in the case of the Rosenbrook function. The need to take a geometric damping
adapted to f had already been observed by Alvarez [1] who considered

ẍ(t) + Γẋ(t) +∇f(x(t)) = 0,

where Γ : H → H is a linear positive anisotropic operator. But still this damping operator is fixed. For a
general convex function, the Hessian-driven damping in (DIN)γ,β performs a similar operation in a closed-
loop adaptive way. The terminology (DIN) stands shortly for Dynamical Inertial Newton. It refers to the
natural link between this dynamic and the continuous Newton method.

1.1.2. The (AVD)α dynamic. The inertial system

(AVD)α ẍ(t) +
α

t
ẋ(t) +∇f(x(t)) = 0,

was introduced in the context of convex optimization in [31]. For general convex functions it provides a
continuous version of the accelerated gradient method of Nesterov. For α ≥ 3, each trajectory x(·) of
(AVD)α satisfies the asymptotic rate of convergence of the values f(x(t))− infH f = O

(
1/t2

)
. As a specific

feature, the viscous damping coefficient α
t vanishes (tends to zero) as time t goes to infinity, hence the

terminology. The convergence properties of the dynamic (AVD)α have been the subject of many recent
studies, see [3, 4, 5, 6, 8, 9, 10, 14, 15, 24, 31]. They helped to explain why α

t is a wise choise of the damping
coefficient.

In [20], the authors showed that a vanishing damping coefficient γ(·) dissipates the energy, and hence

makes the dynamic interesting for optimization, as long as
∫ +∞
t0

γ(t)dt = +∞. The damping coefficient can

go to zero asymptotically but not too fast. The smallest which is admissible is of order 1
t . It enforces the

inertial effect with respect to the friction effect.
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The tuning of the parameter α in front of 1
t comes from the Lyapunov analysis and the optimality of the

convergence rates obtained. The case α = 3, which corresponds to Nesterov’s historical algorithm, is critical.
In the case α = 3, the question of the convergence of the trajectories remains an open problem (except in one
dimension where convergence holds [9]). As a remarkable property, for α > 3, it has been shown by Attouch-
Chbani-Peypouquet-Redont [8] that each trajectory converges weakly to a minimizer. The corresponding
algorithmic result has been obtained by Chambolle-Dossal [21]. For α > 3, it is shown in [10] and [24]
that the asymptotic convergence rate of the values is actually o(1/t2). The subcritical case α ≤ 3 has been
examined by Apidopoulos-Aujol-Dossal[3] and Attouch-Chbani-Riahi [9], with the convergence rate of the

objective values O
(
t−

2α
3

)
. These rates are optimal, that is, they can be reached, or approached arbitrarily

close:
• α ≥ 3: the optimal rate O

(
t−2
)

is achieved by taking f(x) = ‖x‖r with r → +∞ (f become very flat
around its minimum), see [8].

• α < 3: the optimal rate O
(
t−

2α
3

)
is achieved by taking f(x) = ‖x‖, see [3].

The inertial system with a general damping coefficient γ(·) was recently studied by Attouch-Cabot in [4, 5],
and Attouch-Cabot-Chbani-Riahi in [6].

1.1.3. The (DIN-AVD)α,β dynamic. The inertial system

(DIN-AVD)α,β ẍ(t) +
α

t
ẋ(t) + β∇2f(x(t))ẋ(t) +∇f(x(t)) = 0,

was introduced in [11]. It combines the two types of damping considered above. Its formulation looks at a first
glance more complicated than (AVD)α . In [12], Attouch-Peypouquet-Redont showed that (DIN-AVD)α,β is
equivalent to the first-order system in time and space ẋ(t) + β∇f(x(t))−

(
1
β −

α
t

)
x(t) + 1

β y(t) = 0;

ẏ(t)−
(

1
β −

α
t + αβ

t2

)
x(t) + 1

β y(t) = 0.

This provides a natural extension to f : H → R ∪ {+∞} proper lower semicontinuous and convex, just
replacing the gradient by the subdifferential.

To get better insight, let us compare the two dynamics (AVD)α and (DIN-AVD)α,β on a simple qua-
dratic minimization problem, in which case the trajectories can be computed in closed form as explained in
Appendix A.3. Take H = R2 and f(x1, x2) = 1

2 (x21 + 1000x22), which is ill-conditioned. We take parameters
α = 3.1, β = 1, so as to obey the condition α > 3. Starting with initial conditions: (x1(1), x2(1)) = (1, 1),
(ẋ1(1), ẋ2(1)) = (0, 0), we have the trajectories displayed in Figure 1. This illustrates the typical situation
of an ill-conditioned minimization problem, where the wild oscillations of (AVD)α are neutralized by the
Hessian damping in (DIN-AVD)α,β (see Appendix A.3 for further details).

1.2. Main algorithmic results. Let us describe our main convergence rates for the gradient type algo-
rithms. Corresponding results for the proximal algorithms are also obtained.
General convex function. Let f : H → R be a convex function whose gradient is L-Lipschitz continuous.
Based on the discretization of (DIN-AVD)α,β,1+ β

t
, we consider{

yk = xk +
(
1− α

k

)
(xk − xk−1)− β

√
s (∇f(xk)−∇f(xk−1))− β

√
s

k ∇f(xk−1)

xk+1 = yk − s∇f(yk).

Suppose that α ≥ 3, 0 < β < 2
√
s, sL ≤ 1. In Theorem 3.3, we show that

i) f(xk)−min
H

f = O
(

1

k2

)
as k → +∞;

ii)
∑
k

k2‖∇f(yk)‖2 < +∞ and
∑
k

k2‖∇f(xk)‖2 < +∞.
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Figure 1. Evolution of the objective (left) and trajectories (right) for (AVD)α (α = 3.1)
and (DIN-AVD)α,β (α = 3.1, β = 1) on an ill-conditioned quadratic problem in R2.

Strongly convex function. When f : H → R is µ-strongly convex for some µ > 0, our analysis relies on the
autonomous dynamic (DIN)γ,β with γ = 2

√
µ. Based on its time discretization, we obtain linear convergence

results for the values (hence the trajectory) and the gradients terms. Explicit discretization gives the inertial
gradient algorithm

xk+1 = xk +
1−√µs
1 +
√
µs

(xk − xk−1)− β
√
s

1 +
√
µs

(∇f(xk)−∇f(xk−1))− s

1 +
√
µs
∇f(xk).

Assuming that ∇f is L-lipschitz continuous, L sufficiently small and β ≤ 1
√
µ

, it is shown in Theorem 5.4

that, with q =
1

1 + 1
2

√
µs

( 0 < q < 1)

f(xk)−min
H

f = O
(
qk
)

and ‖xk − x?‖ = O
(
qk/2

)
as k → +∞,

Moreover, the gradients converge exponentially fast to zero.

1.3. Contents. The paper is organized as follows. Sections 2 and 3 deal with the case of general convex
functions, respectively in the continuous case and the algorithmic cases. We improve the Nesterov conver-
gence rates by showing in addition fast convergence of the gradients. Sections 4 and 5 deal with the same
questions in the case of strongly convex functions, in which case, linear convergence results are obtained.
Section 6 is devoted to numerical illustrations. We conclude with some perspectives.

2. Inertial dynamics for general convex functions

Our analysis deals with the inertial system with Hessian-driven damping

(DIN-AVD)α,β,b ẍ(t) +
α

t
ẋ(t) + β(t)∇2f(x(t))ẋ(t) + b(t)∇f(x(t)) = 0.

2.1. Convergence rates. By specializing the functions β and b, the convergence rates obtained in the
following theorem make it possible to find most of the related results existing in the literature. The following
quantities play a central role in our analysis:

(1) w(t) := b(t)− β̇(t)− β(t)

t
and δ(t) := t2w(t).
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Theorem 2.1. Take α ≥ 1. Let x : [t0,+∞[→ H be a solution trajectory of (DIN-AVD)α,β,b . Suppose that
the following growth conditions are satisfied:

(G2) b(t) > β̇(t) +
β(t)

t
;

(G3) tẇ(t) ≤ (α− 3)w(t).

Then, w(t) is positive and

i) f(x(t))−min
H

f = O
(

1

t2w(t)

)
as t→ +∞;

ii)

∫ +∞

t0

t2β(t)w(t) ‖∇f(x(t))‖2 dt < +∞;

iii)

∫ +∞

t0

t
(

(α− 3)w(t)− tẇ(t)
)

(f(x(t))−min
H

f)dt < +∞.

Proof. Given x? ∈ argminH f , define for t ≥ t0

(2) E(t) := δ(t)(f(x(t))− f(x?)) +
1

2
‖v(t)‖2 ,

where v(t) := (α− 1)(x(t)− x?) + t (ẋ(t) + β(t)∇f(x(t)) .
The function E(·) will serve as Lyapunov’s function. Differentiating E gives

(3)
d

dt
E(t) = δ̇(t)(f(x(t))− f(x?)) + δ(t)〈∇f(x(t)), ẋ(t)〉+ 〈v(t), v̇(t)〉.

Using equation (DIN-AVD)α,β,b , we have

v̇(t) = αẋ(t) + β(t)∇f(x(t)) + t
[
ẍ(t) + β̇(t)∇f(x(t)) + β(t)∇2f(x(t))ẋ(t)

]
= αẋ(t) + β(t)∇f(x(t)) + t

[
− α

t ẋ(t) + (β̇(t)− b(t))∇f(x(t))
]

= t
[
β̇(t) +

β(t)

t
− b(t)

]
∇f(x(t)).

Hence,

〈v(t), v̇(t)〉 = (α− 1)t
(
β̇(t) +

β(t)

t
− b(t)

)
〈∇f(x(t)), x(t)− x?〉

+t2
(
β̇(t) +

β(t)

t
− b(t)

)
〈∇f(x(t)), ẋ(t)〉

+t2β(t)
(
β̇(t) +

β(t)

t
− b(t)

)
‖∇f(x(t))‖2 .

Let us go back to (3). According to the choice of δ(t), the terms 〈∇f(x(t)), ẋ(t)〉 cancel, which gives

d

dt
E(t) = δ̇(t)(f(x(t))− f(x?)) + (α−1)

t δ(t)〈∇f(x(t)), x? − x(t)〉
− β(t)δ(t) ‖∇f(x(t))‖2 .

Condition (G2) gives δ(t) > 0. Combining this equation with convexity of f ,

f(x?)− f(x(t)) ≥ 〈∇f(x(t)), x? − x(t)〉,
we obtain the inequality

(4)
d

dt
E(t) + β(t)δ(t) ‖∇f(x(t))‖2 +

[ (α− 1)

t
δ(t)− δ̇(t)

]
(f(x(t))− f(x?)) ≤ 0.

Then note that

(5)
(α− 1)

t
δ(t)− δ̇(t) = t

(
(α− 3)w(t)− tẇ(t)

)
.

Hence, condition (G3) writes equivalently

(6)
(α− 1)

t
δ(t)− δ̇(t) ≥ 0,
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which, by (4), gives
d

dt
E(t) ≤ 0. Therefore, E(·) is nonincreasing, and hence E(t) ≤ E(t0). Since all the

terms enter E(·) are nonnegative, we obtain

f(x(t))− f(x?) ≤ E(t0)

t2
(
b(t)− β̇(t)− β(t)

t

) .
Then, by integrating (4) we obtain∫ +∞

t0

β(t)δ(t) ‖∇f(x(t))‖2 dt ≤ E(t0) < +∞,

and ∫ +∞

t0

t
(

(α− 3)w(t)− tẇ(t)
)

(f(x(t))− f(x?))dt ≤ E(t0) < +∞,

which gives ii) and iii), and completes the proof. � �

2.2. Particular cases.
Case 1. The (DIN-AVD)α,β system corresponds to β(t) ≡ β and b(t) ≡ 1. In this case, w(t) = 1 − β

t .

Conditions (G2) and (G3) are satisfied by taking α > 3 and t > α−2
α−3β. Hence, as a consequence of Theorem

2.1, we obtain the following result of Attouch-Peypouquet-Redont [12]:

Theorem 2.2 ([12]). Let x : [t0,+∞[→ H be a trajectory of the dynamical system (DIN-AVD)α,β . Suppose
α > 3. Then

f(x(t))−min
H

f = O
(

1

t2

)
and

∫ ∞
t0

t2‖∇f(x(t))‖2dt < +∞.

Case 2. The system(DIN-AVD)α,β,1+ β
t

, which corresponds to β(t) ≡ β and b(t) = 1 + β
t , was considered

in [30]. Compared to (DIN-AVD)α,β it has the additional coefficient β
t in front of the gradient term. This

vanishing coefficient will facilitate the computational aspects while keeping the structure of the dynamic.
Observe that in this case, w(t) ≡ 1. Conditions (G2) and (G3) boil down to α ≥ 3. Hence, as a consequence
of Theorem 2.1, we obtain

Theorem 2.3. Let x : [t0,+∞[→ H be a solution trajectory of the dynamical system (DIN-AVD)α,β,1+ β
t

.

Suppose α ≥ 3. Then

f(x(t))−min
H

f = O
(

1

t2

)
and

∫ ∞
t0

t2‖∇f(x(t))‖2dt < +∞.

Case 3. The dynamical system (DIN-AVD)α,0,b , which corresponds to β(t) ≡ 0, was considered by Attouch-
Chbani-Riahi in [7]. It comes also naturally from the time scaling of (AVD)α . In this case, we have
w(t) = b(t). Condition (G2) is equivalent to b(t) > 0. (G3) becomes

tḃ(t) ≤ (α− 3)b(t),

which is precisely the condition introduced in [7, Theorem 8.1]. Under this condition, we have the convergence
rate

f(x(t))−min
H

f = O
(

1

t2b(t)

)
as t→ +∞.

This makes clear the acceleration effect due to the time scaling. For b(t) = tr, we have f(x(t))−minH f =

O
(

1

t2+r

)
, under the assumption α ≥ 3 + r.
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Figure 2. Convergence of the objective values and trajectories associated with the system
(DIN-AVD)α,β,b for different choices of β(t) and b(t).

Case 4. Let us illustrate our results in the case b(t) = ctb, β(t) = tβ . We have w(t) = ctb−(β+1)tβ−1, w′(t) =
cbtb−1 − (β2 − 1)tβ−2. The conditions (G2), (G3) can be written respectively as:

(7) ctb > (β + 1)tβ−1 and c(b− α+ 3)tb ≤ (β + 1)(β − α+ 2)tβ−1.

When b = β− 1, the conditions (7) are equivalent to β < c− 1 and β ≤ α− 2, which gives the convergence

rate f(x(t))−minH f = O
(

1

tβ+1

)
.

Let us apply these choices to the quadratic function f : (x1, x2) ∈ R2 7→ (x1 + x2)
2
. f is convex but not

strongly so, and argmin f = {(x1, x2) ∈ R2 : x2 = −x1}. The closed-form solution of the ODE with this
choice of β(t) and b(t) is given in Appendix A.3. We choose the values α = 5, β = 3, b = β− 1 = 2 and c = 5
in order to satisfy condition (7). The left panel of Figure 2 depicts the convergence profile of the function
value, and its right panel the trajectories associated with the system (DIN-AVD)α,β,b for different scenarios
of the parameters. Once again, the damping of oscillations due to the presence of the Hessian is observed.

3. Inertial algorithms for general convex functions

3.1. Proximal algorithms.

3.1.1. Smooth case. Implicit time discretization of (DIN-AVD)α,β,b , with step size h > 0, gives

xk+1 − 2xk + xk−1

h2
+

α

kh

xk+1 − xk
h

+
βk
h

(∇f(xk+1)−∇f(xk)) + bk∇f(xk+1) = 0.

Equivalently

k(xk+1 − 2xk + xk−1) + α(xk+1 − xk) + βkhk(∇f(xk+1)−∇f(xk))

+bkh
2k∇f(xk+1) = 0.(8)

7



Set s = h2. We obtain the following algorithm with βk and bk varying with k:

(IPAHD): Inertial Proximal Algorithm with Hessian Damping.

Step k : Set µk := k
k+α (βk

√
s+ sbk).

(IPAHD)

{
yk = xk +

(
1− α

k+α

)
(xk − xk−1) + βk

√
s
(

1− α
k+α

)
∇f(xk)

xk+1 = proxµkf (yk).

Theorem 3.1. Suppose that α ≥ 1. Set

(9) δk := h
(
bkhk − βk+1 − k(βk+1 − βk)

)
(k + 1),

and suppose that the following growth conditions are satisfied:

(G2) bkhk − βk+1 − k(βk+1 − βk) > 0;

(G3) δk+1 − δk ≤ (α− 1)
δk

k + 1
.

Then, δk is positive and, for any sequence (xk)k∈N generated by (IPAHD)

i) f(xk)−min
H

f = O
(

1

δk

)
= O

(
1

k(k + 1)
(
bkh− 1

kβk+1 − (βk+1 − βk)
))

ii)
∑
k

δkβk+1‖∇f(xk+1)‖2 < +∞.

Proof. Given x? ∈ argmin f , set

Ek := δk(f(xk)− f(x?)) +
1

2
‖vk‖2 ,

where

vk := (α− 1)(xk − x?) + k(xk − xk−1 + βkh∇f(xk)),

and (δk)k∈N is a positive sequence that will be adjusted. Set ∆Ek := Ek+1 − Ek, i.e.,

∆Ek = (δk+1 − δk)(f(xk+1)− f(x?)) + δk(f(xk+1)− f(xk)) +
1

2
(‖vk+1‖2 − ‖vk‖2)

Let us evaluate the last term of the above expression with the help of the three-point identity 1
2 ‖vk+1‖2 −

1
2 ‖vk‖

2
= 〈vk+1 − vk, vk+1〉 − 1

2 ‖vk+1 − vk‖2 .
Using successively the definition of vk and (8), we get

vk+1 − vk = (α− 1)(xk+1 − xk) + (k + 1)(xk+1 − xk + βk+1h∇f(xk+1))

−k(xk − xk−1 + βkh∇f(xk))

= α(xk+1 − xk) + k(xk+1 − 2xk + xk−1) + βk+1h∇f(xk+1)

+hk(βk+1∇f(xk+1)− βk∇f(xk))

= [α(xk+1 − xk) + k(xk+1 − 2xk + xk−1) + khβk(∇f(xk+1)−∇f(xk))]

+βk+1h∇f(xk+1) + kh(βk+1 − βk)∇f(xk+1)

= −bkh2k∇f(xk+1) + βk+1h∇f(xk+1) + kh(βk+1 − βk)∇f(xk+1)

= h
(
βk+1 + k(βk+1 − βk)− bkhk

)
∇f(xk+1).
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Set shortly Ck = βk+1 + k(βk+1 − βk)− bkhk. We have obtained

1

2
‖vk+1‖2 −

1

2
‖vk‖2 = −h

2

2
C2
k‖∇f(xk+1)‖2

〈∇f(xk+1), (α− 1)(xk+1 − x?) + (k + 1)(xk+1 − xk + βk+1h∇f(xk+1))〉

= −h2
(1

2
C2
k − Ckβk+1

)
‖∇f(xk+1)‖2 − (α− 1)hCk〈∇f(xk+1), x? − xk+1〉

−hCk(k + 1)〈∇f(xk+1), xk − xk+1〉.

Let us assume that, for k large enough

−Ck = bkhk − βk+1 − k(βk+1 − βk) ≥ 0.

Then, in the above expression, the coefficient of ‖∇f(xk+1)‖2 is less or equal than zero, which gives

1

2
‖vk+1‖2 −

1

2
‖vk‖2 ≤ −(α− 1)hCk 〈∇f(xk+1), x? − xk+1〉

−hCk(k + 1) 〈∇f(xk+1), xk − xk+1〉 .

According to the (convex) subdifferential inequality and Ck ≤ 0, we infer

1

2
‖vk+1‖2 −

1

2
‖vk‖2 ≤ −(α− 1)hCk(f(x?)− f(xk+1)

−hCk(k + 1)(f(xk)− f(xk+1)).

Take δk := −hCk(k+ 1) = h
(
bkhk− βk+1 − k(βk+1 − βk)

)
(k+ 1) so that the terms f(xk)− f(xk+1) cancel

in Ek+1 − Ek. We obtain

Ek+1 − Ek ≤
(
δk+1 − δk − (α− 1)h(bkhk − βk+1 − k(βk+1 − βk))

)
(f(xk+1)− f(x?))

Equivalently

Ek+1 − Ek ≤
(
δk+1 − δk − (α− 1)

δk
k + 1

)
(f(xk+1)− f(x?)).

By assumption (G3), we have δk+1− δk− (α−1) δk
k+1 ≤ 0. Therefore, the sequence (Ek)k∈N is non-increasing,

which, by definition of Ek, gives, for k ≥ 0

f(xk)−min
H

f ≤ E0

δk
.

By summing the inequalities

Ek+1 − Ek + h
(h

2
(βk+1 + k(βk+1 − βk)− bkhk)2 + δkβk+1

)
‖∇f(xk+1)‖2 ≤ 0

we finally obtain
∑
k δkβk+1‖∇f(xk+1)‖2 < +∞. � �

3.1.2. Non-smooth case. Let f : H → R ∪ {+∞} be a proper lower semicontinuous and convex function.
We rely on the basic properties of the Moreau-Yosida regularization. Let fλ be the Moreau envelope of f of
index λ > 0, which is defined by:

fλ(x) = min
z∈H

{
f(z) +

1

2λ
‖z − x‖2

}
, for any x ∈ H.

We recall that fλ is a convex function, whose gradient is λ−1-Lipschitz continuous, such that argmin fλ =
argmin f . The interested reader may refer to [17, 19] for a comprehensive treatment of the Moreau envelope
in a Hilbert setting. Since the set of minimizers is preserved by taking the Moreau envelope, the idea is to
replace f by fλ in the previous algorithm, and take advantage of the fact that fλ is continuously differentiable.
The Hessian dynamic attached to fλ becomes

ẍ(t) +
α

t
ẋ(t) + β∇2fλ(x(t))ẋ(t) + b(t)∇fλ(x(t)) = 0.

9



However, we do not really need to work on this system (which requires fλ to be C2), but with the discretized
form which only requires the function to be continuously differentiable, as is the case of fλ. Then, algorithm
(IPAHD) now reads {

yk = xk +
(

1− α
k+α

)
(xk − xk−1) + β

√
s
(

1− α
k+α

)
∇fλ(xk)

xk+1 = prox k
k+α (β

√
s+sbk)fλ

(yk).

By applying Theorem 3.1 we obtain that under the assumption (G2) and (G3),

fλ(xk)−minH f = O
(

1
k2bk

)
,
∑
k k

2b2k‖∇fλ(xk+1)‖2 < +∞.
Thus, we just need to formulate these results in terms of f and its proximal mapping. This is straightforward
thanks to the following formulae from proximal calculus [17]:

• fλ(x) = f(proxλf (x)) + 1
2λ

∥∥x− proxλf (x))
∥∥2.

• ∇fλ(x) = 1
λ

(
x− proxλf (x)

)
.

• proxθfλ(x) = λ
λ+θx+ θ

λ+θ prox(λ+θ)f (x).

We obtain the following relaxed inertial proximal algorithm (NS stands for Non-Smooth):

(IPAHD-NS) :

Set µk := λ(k+α)
λ(k+α)+k(β

√
s+sbk)yk = xk + (1− α

k+α )(xk − xk−1) + β
√
s

λ

(
1− α

k+α

) (
xk − proxλf (xk)

)
xk+1 = µkyk + (1− µk) prox λ

µk
f (yk).

Theorem 3.2. Let f : H → R ∪ {+∞} be a convex, lower semicontinuous, proper function. Suppose that
the following growth conditions are satisfied

(G2) bkhk − βk+1 − k(βk+1 − βk) > 0;

(G3) δk+1 − δk ≤ (α− 1)
δk

k + 1
,

where the sequence (δk) has been defined in (9). Then, for any sequence (xk)k∈N generated by (IPAHD-NS) ,
the following holds

f(proxλf (xk))−min
H

f = O
(

1

k2bk

)
,
∑
k

δkβk+1

∥∥xk+1 − proxλf (xk+1)
∥∥2 < +∞.

3.2. Gradient algorithms. Take f a convex function whose gradient is L-Lipschitz continuous. Our analy-
sis is based on the dynamic (DIN-AVD)α,β,1+ β

t
considered in Theorem 2.3 with damping parameters α ≥ 3,

β ≥ 0. Consider the time discretization of (DIN-AVD)α,β,1+ β
t

1

s
(xk+1 − 2xk + xk−1) +

α

ks
(xk − xk−1) +

β√
s

(∇f(xk)−∇f(xk−1))

+
β

k
√
s
∇f(xk−1) +∇f(yk) = 0,

with yk inspired by Nesterov’s accelerated scheme. We obtain the following scheme:

(IGAHD) : Inertial Gradient Algorithm with Hessian Damping.

Step k:αk = 1− α
k .{

yk = xk + αk(xk − xk−1)− β
√
s (∇f(xk)−∇f(xk−1))− β

√
s

k ∇f(xk−1)

xk+1 = yk − s∇f(yk),

Following [5], set tk+1 = k
α−1 , whence tk = 1 + tk+1αk.
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Given x? ∈ argmin f , our Lyapunov analysis is based on the sequence (Ek)k∈N

Ek := t2k(f(xk)− f(x?)) +
1

2s
‖vk‖2(10)

vk := (xk−1 − x?) + tk

(
xk − xk−1 + β

√
s∇f(xk−1)

)
.(11)

Theorem 3.3. Let f : H → R be a convex function whose gradient is L-Lipschitz continuous. Let (xk)k∈N
be a sequence generated by algorithm (IGAHD) , where α ≥ 3, 0 ≤ β < 2

√
s and sL ≤ 1. Then the sequence

(Ek)k∈N defined by (10)-(11) is non-increasing, and the following convergence rates are satisfied:

i) f(xk)−min
H

f = O
(

1

k2

)
as k → +∞;

ii) Suppose that β > 0. Then∑
k

k2‖∇f(yk)‖2 < +∞ and
∑
k

k2‖∇f(xk)‖2 < +∞.

Proof. We rely on the following reinforced version of the gradient descent lemma (Lemma A.1 in Appen-
dix A.1). Since s ≤ 1

L , and ∇f is L-lipschitz continuous,

f(y − s∇f(y)) ≤ f(x) + 〈∇f(y), y − x〉 − s

2
‖∇f(y)‖2 − s

2
‖∇f(x)−∇f(y)‖2

for all x, y ∈ H. Let us write it successively at y = yk and x = xk, then at y = yk, x = x?. According to
xk+1 = yk − s∇f(yk) and ∇f(x?) = 0, we get

f(xk+1) ≤ f(xk) + 〈∇f(yk), yk − xk〉 −
s

2
‖∇f(yk)‖2 − s

2
‖∇f(xk)−∇f(yk)‖2(12)

f(xk+1) ≤ f(x?) + 〈∇f(yk), yk − x?〉 −
s

2
‖∇f(yk)‖2 − s

2
‖∇f(yk)‖2.(13)

Multiplying (12) by tk+1 − 1 ≥ 0, then adding (13), we derive that

tk+1(f(xk+1)− f(x?)) ≤ (tk+1 − 1)(f(xk)− f(x?))

+〈∇f(yk), (tk+1 − 1)(yk − xk) + yk − x?〉 −
s

2
tk+1‖∇f(yk)‖2.

−s
2

(tk+1 − 1)‖∇f(xk)−∇f(yk)‖2 − s

2
‖∇f(yk)‖2.(14)

Let us multiply (14) by tk+1 to make appear Ek. We obtain

t2k+1(f(xk+1)− f(x?)) ≤ (t2k+1 − tk+1 − t2k)(f(xk)− f(x?)) + t2k(f(xk)− f(x?))

+tk+1〈∇f(yk), (tk+1 − 1)(yk − xk) + yk − x?〉 −
s

2
t2k+1‖∇f(yk)‖2

−s
2

(t2k+1 − tk+1)‖∇f(xk)−∇f(yk)‖2 − s

2
tk+1‖∇f(yk)‖2.

Since α ≥ 3 we have t2k+1 − tk+1 − t2k ≤ 0, which gives

t2k+1(f(xk+1 − f(x?)) ≤ t2k(f(xk)− f(x?))

+tk+1〈∇f(yk), (tk+1 − 1)(yk − xk) + yk − x?〉 −
s

2
t2k+1‖∇f(yk)‖2

−s
2

(t2k+1 − tk+1)‖∇f(xk)−∇f(yk)‖2 − s

2
tk+1‖∇f(yk)‖2.

According to the definition of Ek, we infer

Ek+1 − Ek ≤ tk+1〈∇f(yk), (tk+1 − 1)(yk − xk) + yk − x?〉 −
s

2
t2k+1‖∇f(yk)‖2

−s
2

(t2k+1 − tk+1)‖∇f(xk)−∇f(yk)‖2 − s

2
tk+1‖∇f(yk)‖2

+
1

2s
‖vk+1‖2 −

1

2s
‖vk‖2.

Let us compute this last expression with the help of the elementary inequality

1

2
‖vk+1‖2 −

1

2
‖vk‖2 = 〈vk+1 − vk, vk+1〉 −

1

2
‖vk+1 − vk‖2.
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By definition of vk, according to (IGAHD) and tk − 1 = tk+1αk, we have

vk+1 − vk = xk − xk−1 + tk+1(xk+1 − xk + β
√
s∇f(xk))

−tk(xk − xk−1 + β
√
s∇f(xk−1))

= tk+1(xk+1 − xk)− (tk − 1)(xk − xk−1) + β
√
s
(
tk+1∇f(xk)− tk∇f(xk−1)

)
= tk+1

(
xk+1 − (xk + αk(xk − xk−1)

)
+ β
√
s
(
tk+1∇f(xk)− tk∇f(xk−1)

)
= tk+1 (xk+1 − yk)− tk+1β

√
s(∇f(xk)−∇f(xk−1))− tk+1

β
√
s

k
∇f(xk−1)

+β
√
s(tk+1∇f(xk)− tk∇f(xk−1))

= tk+1 (xk+1 − yk) + β
√
s

(
tk+1(1− 1

k
)− tk

)
∇f(xk−1)

= tk+1 (xk+1 − yk) = −stk+1∇f(yk).

Hence

1

2s
‖vk+1‖2 −

1

2s
‖vk‖2 = −s

2
t2k+1‖∇f(yk)‖2

−tk+1

〈
∇f(yk), xk − x? + tk+1

(
xk+1 − xk + β

√
s∇f(xk)

)〉
.

Collecting the above results, we obtain

Ek+1 − Ek ≤ tk+1〈∇f(yk), (tk+1 − 1)(yk − xk) + yk − x?〉 − st2k+1‖∇f(yk)‖2

−tk+1

〈
∇f(yk), xk − x? + tk+1

(
xk+1 − xk + β

√
s∇f(xk)

)〉
−s

2
(t2k+1 − tk+1)‖∇f(xk)−∇f(yk)‖2 − s

2
tk+1‖∇f(yk)‖2.

Equivalently

Ek+1 − Ek ≤ tk+1〈∇f(yk), Ak〉 − st2k+1‖∇f(yk)‖2

−s
2

(t2k+1 − tk+1)‖∇f(xk)−∇f(yk)‖2 − s

2
tk+1‖∇f(yk)‖2,

with

Ak = (tk+1 − 1)(yk − xk) + yk − xk − tk+1

(
xk+1 − xk + β

√
s∇f(xk)

)
= tk+1yk − tk+1xk − tk+1(xk+1 − xk)− tk+1β

√
s∇f(xk)

= tk+1(yk − xk+1)− tk+1β
√
s∇f(xk)

= stk+1∇f(yk)− tk+1β
√
s∇f(xk)

Consequently

Ek+1 − Ek ≤ tk+1〈∇f(yk), stk+1∇f(yk)− tk+1β
√
s∇f(xk)〉

−st2k+1‖∇f(yk)‖2 − s

2
(t2k+1 − tk+1)‖∇f(xk)−∇f(yk)‖2 − s

2
tk+1‖∇f(yk)‖2

= −t2k+1β
√
s〈∇f(yk), ∇f(xk)〉 − s

2
(t2k+1 − tk+1)‖∇f(xk)−∇f(yk)‖2

−s
2
tk+1‖∇f(yk)‖2

= −tk+1Bk,

where

Bk := tk+1β
√
s〈∇f(yk), ∇f(xk)〉+

s

2
(tk+1 − 1)‖∇f(xk)−∇f(yk)‖2 +

s

2
‖∇f(yk)‖2.
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When β = 0 we have Bk ≥ 0. Let us analyze the sign of Bk in the case β > 0. Set Y = ∇f(yk), X = ∇f(xk).
We have

Bk =
s

2
‖Y ‖2 +

s

2
(tk+1 − 1)‖Y −X‖2 + tk+1β

√
s〈Y,X〉

=
s

2
tk+1‖Y ‖2 +

(
tk+1(β

√
s− s) + s

)
〈Y,X〉+

s

2
(tk+1 − 1)‖X‖2

≥ s

2
tk+1‖Y ‖2 −

(
tk+1(β

√
s− s) + s

)
‖Y ‖‖X‖+

s

2
(tk+1 − 1)‖X‖2.

Elementary algebra gives that the above quadratic form is non-negative when(
tk+1(β

√
s− s) + s

)2 ≤ s2tk+1(tk+1 − 1).

Recall that tk is of order k. Hence, this inequality is satisfied for k large enough if (β
√
s − s)2 < s2, which

is equivalent to β < 2
√
s. Under this condition Ek+1 −Ek ≤ 0, which gives conclusion i). Similar argument

gives that for 0 < ε < 2
√
sβ − β2 (such ε exists according to assumption 0 < β < 2

√
s)

Ek+1 − Ek +
1

2
εt2k+1‖∇f(yk)‖2 ≤ 0.

After summation of these inequalities, we obtain conclusion ii). � �

Remark 3.4. From
∑
k k

2‖∇f(xk)‖2 < +∞ we immediately infer that for k ≥ 1

inf
i=1,...,k

‖∇f(xi)‖2
k∑
i=1

i2 ≤
k∑
i=1

i2‖∇f(xi)‖2 ≤
∑
i∈N

i2‖∇f(xi)‖2 < +∞.

A similar argument holds for yk. Hence

inf
i=1,...,k

‖∇f(xi)‖2 = O
(

1

k3

)
, inf

i=1,...,k
‖∇f(yi)‖2 = O

(
1

k3

)
.

Remark 3.5. In Theorem 3.3, the convergence property of the values is expressed according to the sequence
(xk)k∈N. It is natural to know if a similar result is true for the sequence (yk)k∈N. This is an open question
in the case of Nesterov’s accelerated gradient method and the corresponding FISTA algorithm for structured
minimization [26, 18]. In the case of the Hessian-driven damping algorithms, we give a partial answer to
this question. By the classical descent lemma, and the monotonicity of ∇f we have

f(yk) ≤ f(xk+1) + 〈yk − xk+1,∇f(xk+1)〉+
L

2
‖yk − xk+1‖2

≤ f(xk+1) + 〈yk − xk+1,∇f(yk)〉+
L

2
‖yk − xk+1‖2

According to xk+1 = yk − s∇f(yk) we obtain

f(yk)−min
H

f ≤ f(xk+1)−min
H

f + s‖∇f(yk)‖2 +
s2L

2
‖∇f(yk)‖2.

From Theorem 3.3 we deduce that

f(yk)−min
H

f ≤ O
(

1

k2

)
+

(
s+

s2L

2

)
‖∇f(yk)‖2 = O

(
1

k2

)
+ o

(
1

k2

)
.

Remark 3.6. When f is a proper lower semicontinuous proper function, but not necessarily smooth, we
follow the same reasoning as in Section 3.1.2. We consider minimizing the Moreau envelope fλ of f , whose
gradient is 1/λ-Lipschitz continuous, and then apply (IGAHD) to fλ. We omit the details for the sake of
brevity. This observation will be very useful to solve even structured composite problems as we will describe
in Section 6.
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4. Inertial dynamics for strongly convex functions

4.1. Smooth case. Recall the classical definition of strong convexity:

Definition 4.1. A function f : H → R is said to be µ-strongly convex for some µ > 0 if f − µ
2 ‖ · ‖

2 is
convex.

For strongly convex functions, a suitable choice of γ and β in (DIN)γ,β provides exponential decay of
the value function (hence of the trajectory), and of the gradients. This corresponds to linear convergence in
the algorithmic case. It can be seen as an extension of the Nesterov accelerated method for strongly convex
functions that corresponds to the particular case β = 0. The result in the case β = 0 was considered in [29,
Theorem 2.2]. In the case β > 0, a related but different result can be found in [32, Theorem 1]. The gradient
estimate is new.

Theorem 4.2. Suppose that f : H → R is µ-strongly convex for some µ > 0. Let x(·) : [t0,+∞[→ H be a
solution trajectory of

(15) ẍ(t) + 2
√
µẋ(t) + β∇2f(x(t))ẋ(t) +∇f(x(t)) = 0.

Suppose that 0 ≤ β ≤ 1
2
√
µ . Then, the following hold:

i) for all t ≥ t0
µ

2
‖x(t)− x?‖2 ≤ f(x(t))−min

H
f ≤ Ce−

√
µ

2 (t−t0)

where C := f(x(t0))−minH f + µdist(x(t0), S)2 + ‖ẋ(t0) + β∇f(x(t0))‖2.
ii) There exists some constant C1 > 0 such that, for all t ≥ t0

e−
√
µt

∫ t

t0

e
√
µs‖∇f(x(s))‖2ds ≤ C1e

−
√
µ

2 t.

Moreover,
∫∞
t0
e
√
µ

2 t‖ẋ(t)‖2dt < +∞.
When β = 0, we have f(x(t))−minH f = O

(
e−
√
µt
)

as t → +∞.

Proof. i) Let x? be the unique minimizer of f . Define E : [t0,+∞[→ R+ by

E(t) := f(x(t))−min
H

f +
1

2
‖√µ(x(t)− x?) + ẋ(t) + β∇f(x(t))‖2.

Set v(t) =
√
µ(x(t)− x?) + ẋ(t) + β∇f(x(t)). Derivation of E(·) gives

d

dt
E(t) := 〈∇f(x(t)), ẋ(t)〉+ 〈v(t),

√
µẋ(t) + ẍ(t) + β∇2f(x(t))ẋ(t)〉.

Using (15), we get

d

dt
E(t) = 〈∇f(x(t)), ẋ(t)〉+ 〈v(t),−√µẋ(t)−∇f(x(t))〉.

After developing and simplification, we obtain

d

dt
E(t) +

√
µ〈∇f(x(t)), x(t)− x?〉+ µ〈x(t)− x?, ẋ(t)〉+

√
µ‖ẋ(t)‖2

+β
√
µ〈∇f(x(t)), ẋ(t)〉+ β‖∇f(x(t))‖2 = 0.

By strong convexity of f we have

〈∇f(x(t)), x(t)− x?〉 ≥ f(x(t))− f(x?) +
µ

2
‖x(t)− x?‖2.

Thus, combining the last two relations we obtain

d

dt
E(t) +

√
µA ≤ 0,

where (the variable t is omitted to lighten the notation)

A := f(x)− f(x?) +
µ

2
‖x− x?‖2 +

√
µ〈x− x?, ẋ〉+ ‖ẋ‖2 + β〈∇f(x), ẋ〉+

β
√
µ
‖∇f(x)‖2
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Let us formulate A with E(t).

A = E − 1

2
‖ẋ+ β∇f(x)‖2 −√µ〈x− x?, ẋ+ β∇f(x)〉+

√
µ〈x− x?, ẋ〉+ ‖ẋ‖2

+β〈∇f(x), ẋ〉+
β
√
µ
‖∇f(x)‖2.

After developing and simplifying, we obtain

d

dt
E(t) +

√
µ

(
E(t) +

1

2
‖ẋ‖2 +

(
β
√
µ
− β2

2

)
‖∇f(x)‖2 − β√µ〈x− x?,∇f(x)〉

)
≤ 0.

Since 0 ≤ β ≤ 1√
µ , we immediately get β√

µ −
β2

2 ≥
β

2
√
µ . Hence

d

dt
E(t) +

√
µ

(
E(t) +

1

2
‖ẋ‖2 +

β

2
√
µ
‖∇f(x)‖2 − β√µ〈x− x?,∇f(x)〉

)
≤ 0.

Let us use again the strong convexity of f to write

E(t) =
1

2
E(t) +

1

2
E(t) ≥ 1

2
E(t) +

1

2
(f(x(t))− f(x?)) ≥ 1

2
E(t) +

µ

4
‖x(t)− x?‖2.

By combining the two inequalities above, we obtain

d

dt
E(t) +

√
µ

2
E(t) +

√
µ

2
‖ẋ(t)‖2 +

√
µB ≤ 0,

where B = µ
4 ‖x(t)− x?‖2 + β

2
√
µ‖∇f(x)‖2 − β√µ‖x− x?‖‖∇f(x)‖.

Set X = ‖x−x?‖, Y = ‖∇f(x)‖. Elementary algebraic computation gives that, under the condition
0 ≤ β ≤ 1

2
√
µ

µ

4
X2 +

β

2
√
µ
Y 2 − β√µXY ≥ 0.

Hence for 0 ≤ β ≤ 1
2
√
µ

d

dt
E(t) +

√
µ

2
E(t) +

√
µ

2
‖ẋ(t)‖2 ≤ 0.

By integrating the differential inequality above we obtain

E(t) ≤ E(t0)e−
√
µ

2 (t−t0).

By definition of E(t), we infer

f(x(t))−min
H

f ≤ E(t0)e−
√
µ

2 (t−t0),

and

‖√µ(x(t)− x?) + ẋ(t) + β∇f(x(t))‖2 ≤ 2E(t0)e−
√
µ

2 (t−t0).

ii) Set C = 2E(t0)e
√
µ

2 t0 . Developing the above expression, we obtain

µ‖x(t)− x?‖2 + ‖ẋ(t)‖2 + β2‖∇f(x(t))‖2 + 2β
√
µ 〈x(t)− x?,∇f(x(t))〉

+ 〈ẋ(t), 2β∇f(x(t)) + 2
√
µ(x(t)− x?)〉 ≤ Ce−

√
µ

2 t.

By convexity of f we have 〈x(t)− x?,∇f(x(t))〉 ≥ f(x(t))− f(x?). Moreover,

〈ẋ(t), 2β∇f(x(t)) + 2
√
µ(x(t)− x?)〉

=
d

dt

(
2β(f(x(t))− f(x?)) +

√
µ‖x(t)− x?‖2

)
.

Combining the above results, we obtain
√
µ[2β(f(x(t))− f(x?)) +

√
µ‖x(t)− x?‖2] + β2‖∇f(x(t))‖2

+
d

dt

(
2β(f(x(t))− f(x?)) +

√
µ‖x(t)− x?‖2

)
≤ Ce−

√
µ

2 t.

15



Set Z(t) := 2β(f(x(t))− f(x?)) +
√
µ‖x(t)− x?‖2]. We have

d

dt
Z(t) +

√
µZ(t) + β2‖∇f(x(t))‖2 ≤ Ce−

√
µ

2 t.

By integrating this differential inequality, elementary computation gives

e−
√
µt

∫ t

t0

e
√
µs‖∇f(x(s))‖2ds ≤ Ce−

√
µ

2 t.

Noticing that the integral of e
√
µs over [t0, t] is of order e

√
µt, the above estimate reflects the fact, as

t→ +∞, the gradient terms ‖∇f(x(t))‖2 tend to zero at exponential rate (in average, not pointwise).
�

Remark 4.3. Let us justify the choice of γ = 2
√
µ in Theorem 4.2. Indeed, considering

ẍ(t) + 2γẋ(t) + β∇2f(x(t)) +∇f(x(t)) = 0,

a similar proof to that described above can be performed on the basis of the Lyapunov function

E(t) := f(x(t))−min
H

f +
1

2
‖γ(x(t)− x?) + ẋ(t) + β∇f(x(t))‖2.

Under the conditions γ ≤ √µ and β ≤ µ
2γ3 we obtain the exponential convergence rate

f(x(t))−min
H

f = O
(
e−

γ
2 t
)

as t → +∞.

Taking γ =
√
µ gives the best convergence rate, and the result of Theorem 4.2.

4.2. Non-smooth case. Following [2], (DIN)γ,β is equivalent to the first-order systemẋ(t) + β∇f(x(t)) +
(
γ − 1

β

)
x(t) + 1

β y(t) = 0;

ẏ(t) +
(
γ − 1

β

)
x(t) + 1

β y(t) = 0.
.

This permits to extend (DIN)γ,β to the case of a proper lower semicontinuous convex function f : H →
R ∪ {+∞}. Replacing the gradient of f by its subdifferential, we obtain its Non-Smooth version :

(DIN-NS)γ,β

ẋ(t) + β∂f(x(t)) +
(
γ − 1

β

)
x(t) + 1

β y(t) 3 0;

ẏ(t) +
(
γ − 1

β

)
x(t) + 1

β y(t) = 0.

Most properties of (DIN)γ,β are still valid for this generalized version. To illustrate it, let us consider the
following extension of Theorem 4.2.

Theorem 4.4. Suppose that f : H → R ∪ {+∞} is lower semicontinuous and µ-strongly convex for some
µ > 0. Let x(·) be a trajectory of (DIN-NS)2√µ,β . Suppose that 0 ≤ β ≤ 1

2
√
µ . Then

µ

2
‖x(t)− x?‖2 ≤ f(x(t))−min

H
f = O

(
e−
√
µ

2 t
)

as t → +∞,

and

∫ ∞
t0

e
√
µ

2 t‖ẋ(t)‖2dt < +∞.

Proof. Let us introduce E : [t0,+∞[→ R+ defined by

E(t) := f(x(t))−min
H

f +
1

2
‖√µ(x(t)− x?)−

(
2
√
µ− 1

β

)
x(t)− 1

β
y(t)‖2,

that will serve as a Lyapunov function. Then, the proof follows the lines of Theorem 4.2, with the use of the
derivation rule of Brezis [19, Lemme 3.3, p. 73]. �

5. Inertial algorithms for strongly convex functions

5.1. Proximal algorithms.
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5.1.1. Smooth case. Consider the inertial dynamic (15). Its implicit discretization similar to that performed
before gives

1

h2
(xk+1 − 2xk + xk−1) +

2
√
µ

h
(xk+1 − xk) +

β

h
(∇f(xk+1)−∇f(xk)) +∇f(xk+1) = 0,

where h is the positive step size. Set s = h2. We obtain the following inertial proximal algorithm with
hessian damping (SC refers to Strongly Convex):

(IPAHD-SC)yk = xk +
(

1− 2
√
µs

1+2
√
µs

)
(xk − xk−1) + β

√
s
(

1− 2
√
µs

1+2
√
µs

)
∇f(xk)

xk+1 = prox β
√
s+s

1+2
√
µs f

(yk).

Theorem 5.1. Take f : H → R µ-strongly convex, µ > 0, and suppose that

0 ≤ β ≤ 1

2
√
µ

and
√
s ≤ β.

Set q = 1
1+ 1

2

√
µs

, which satisfies 0 < q < 1. Then, the sequence (xk)k∈N generated by the algorithm

(IPAHD-SC) obeys, for any k ≥ 1

µ

2
‖xk − x?‖2 ≤ f(xk)−min

H
f ≤ E1q

k−1,

where E1 = f(x1)− f(x?) + 1
2‖
√
µ(x1 − x?) + 1√

s
(x1 − x0) + β∇f(x1)‖2. Moreover, the gradients converge

exponentially fast to zero: setting θ = 1
1+
√
µs which belongs to ]0, 1[, we have

θk
k−2∑
p=0

θ−j‖∇f(xj)‖2 = O
(
qk
)

as k → +∞.

Proof. Take x? ∈ argmin f , and consider the sequence (Ek)k∈N

Ek := f(xk)− f(x?) +
1

2
‖vk‖2,

where vk =
√
µ(xk − x?) + 1√

s
(xk − xk−1) + β∇f(xk).

We will use the following equivalent formulation of the algorithm (IPAHD-SC)

(16)
1√
s

(xk+1 − 2xk + xk−1) + 2
√
µ(xk+1 − xk) + β(∇f(xk+1)−∇f(xk)) +

√
s∇f(xk+1) = 0.

We have

Ek+1 − Ek = f(xk+1)− f(xk) +
1

2
‖vk+1‖2 −

1

2
‖vk‖2.

Using successively the definition of vk and (16), we get

vk+1 − vk =
√
µ(xk+1 − xk) +

1√
s

(xk+1 − 2xk + xk−1) + β(∇f(xk+1)−∇f(xk))

=
√
µ(xk+1 − xk)− 2

√
µ(xk+1 − xk)−

√
s∇f(xk+1)

= = −√µ(xk+1 − xk)−
√
s∇f(xk+1).
17



Write shortly Bk =
√
µ(xk+1 − xk) +

√
s∇f(xk+1). We have

1

2
‖vk+1‖2 −

1

2
‖vk‖2 = 〈vk+1 − vk, vk+1〉 −

1

2
‖vk+1 − vk‖2

= −
〈
Bk,
√
µ(xk+1 − x?) +

1√
s

(xk+1 − xk) + β∇f(xk+1)

〉
− 1

2
‖Bk‖2

= −µ 〈xk+1 − xk, xk+1 − x?〉 −
√
µ

s
‖xk+1 − xk‖2 − β

√
µ 〈∇f(xk+1), xk+1 − xk〉

−√µs 〈∇f(xk+1), xk+1 − x?〉 − 〈∇f(xk+1), xk+1 − xk〉 − β
√
s‖∇f(xk+1)‖2

−1

2
µ‖xk+1 − xk‖2 −

1

2
s‖∇f(xk+1‖2 −

√
µs 〈∇f(xk+1), xk+1 − xk〉

By virtue of strong convexity of f

f(xk) ≥ f(xk+1) + 〈∇f(xk+1), xk − xk+1〉+
µ

2
‖xk+1 − xk‖2;

f(x?) ≥ f(xk+1) + 〈∇f(xk+1), x? − xk+1〉+
µ

2
‖xk+1 − x?‖2.

Combining the above results, and after dividing by
√
s, we get

1√
s

(Ek+1 − Ek) +
√
µ[f(xk+1)− f(x?) +

µ

2
‖xk+1 − x?‖2]

≤ − µ√
s
〈xk+1 − xk, xk+1 − x?〉 −

√
µ

s
‖xk+1 − xk‖2

−β
√
µ

s
〈∇f(xk+1), xk+1 − xk〉 −

µ

2
√
s
‖xk+1 − xk‖2 − β‖∇f(xk+1)‖2

− µ

2
√
s
‖xk+1 − xk‖2 −

1

2

√
s‖∇f(xk+1‖2 −

√
µ 〈∇f(xk+1), xk+1 − xk〉 ,

which gives, after developing and simplification

1√
s

(Ek+1 − Ek) +
√
µEk+1 − βµ 〈∇f(xk+1), xk+1 − x?〉

≤ −
(√

µ

2s
+

µ√
s

)
‖xk+1 − xk‖2 −

(
β −

β2√µ
2

+

√
s

2

)
‖∇f(xk+1)‖2

−√µ 〈∇f(xk+1), xk+1 − xk〉 .

According to 0 ≤ β ≤ 1
2
√
µ , we have β − β2√µ

2 ≥ 3β
4 , which, with Cauchy-Schwarz inequality, gives

1√
s

(Ek+1 − Ek) +
√
µEk+1 +

(√
µ

2s
+

µ√
s

)
‖xk+1 − xk‖2 +

3β

4
‖∇f(xk+1)‖2

−βµ‖∇f(xk+1)‖‖xk+1 − x?‖ −
√
µ‖∇f(xk+1)‖‖xk+1 − xk‖ ≤ 0.

Let us use again the strong convexity of f to write

Ek+1 ≥
1

2
Ek+1 +

1

2
(f(xk+1)− f(x?)) ≥ 1

2
Ek+1 +

µ

4
‖xk+1 − x?‖2.

Combining the two inequalities above, we get

1√
s

(Ek+1 − Ek) +
1

2

√
µEk+1 +

√
µ
µ

4
‖xk+1 − x?‖2 +

(√
µ

2s
+

µ√
s

)
‖xk+1 − xk‖2

+
3β

4
‖∇f(xk+1)‖2 − βµ‖∇f(xk+1)‖‖xk+1 − x?‖ −

√
µ‖∇f(xk+1)‖‖xk+1 − xk‖ ≤ 0.
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Let us rearrange the terms as follows

1√
s

(Ek+1 − Ek) +
1

2

√
µEk+1

+

(
√
µ
µ

4
‖xk+1 − x?‖2 +

β

2
‖∇f(xk+1)‖2 − βµ‖∇f(xk+1)‖‖xk+1 − x?‖

)
︸ ︷︷ ︸

Term 1

+

((√
µ

2s
+

µ√
s

)
‖xk+1 − xk‖2 +

β

4
‖∇f(xk+1)‖2 −√µ‖∇f(xk+1)‖‖xk+1 − xk‖

)
︸ ︷︷ ︸

Term 2

≤ 0

Let us examine the sign of the last two terms in the rhs of inequality above.

Term 1 Set X = ‖xk+1 − x?‖, Y = ‖∇f(xk+1)‖. Elementary algebra gives that

√
µ
µ

4
X2 +

β

2
Y 2 − βµXY ≥ 0,

holds true under the condition 0 ≤ β ≤ 1
2
√
µ . Hence, under this condition

√
µ
µ

4
‖xk+1 − x?‖2 +

β

2
‖∇f(xk+1)‖2 − βµ‖∇f(xk+1)‖‖xk+1 − x?‖ ≥ 0.

Term 2 Set X = ‖xk+1 − xk‖, Y = ‖∇f(xk+1)‖. Elementary algebra gives(√
µ

2s
+

µ√
s

)
X2 +

β

4
Y 2 −√µXY ≥ 0

holds true under the condition
√
µ

2s + µ√
s
≥ µ

β . Hence, under this condition(√
µ

2s
+

µ√
s

)
‖xk+1 − xk‖2 +

β

4
‖∇f(xk+1)‖2 −√µ‖∇f(xk+1)‖‖xk+1 − xk‖ ≥ 0.

In turn, the condition
√
µ

2s + µ√
s
≥ µ

β is equivalent to
√
s ≤ β

2

(
1 +

√
1 + 2

β
√
µ

)
.

Clearly, this condition is satisfied if
√
s ≤ β.

Let us put the above results together. We have obtained that, under the conditions 0 ≤ β ≤ 1
2
√
µ and

√
s ≤ β,

1√
s

(Ek+1 − Ek) +
1

2

√
µEk+1 ≤ 0.

Set q = 1
1+ 1

2

√
µs

, which satisfies 0 < q < 1. From this, we infer Ek ≤ qEk−1 which gives

(17) Ek ≤ E1q
k−1.

Since Ek ≥ f(xk)− f(x?), we finally obtain

f(xk)− f(x?) ≤ E1q
k−1 = O

(
qk
)
.

Let us now estimate the convergence rate of the gradients to zero. According to the exponential decay of
(Ek)k∈N, as given in (17), and by definition of Ek, we have, for all k ≥ 1

‖√µ(xk − x?) +
1√
s

(xk − xk−1) + β∇f(xk)‖2 ≤ 2Ek ≤ 2E1q
k−1.

After developing, we get

µ‖xk − x?‖2 +
1

s
‖xk − xk−1‖2 + β2‖∇f(xk)‖2 + 2β

√
µ 〈xk − x?,∇f(xk)〉

+
1√
s
〈xk − xk−1, 2β∇f(xk) + 2

√
µ(xk − x?)〉 ≤ 2E1q

k−1.

By convexity of f , we have

〈xk − x?,∇f(xk)〉 ≥ f(xk)− f(x?) and 〈xk − xk−1,∇f(xk)〉 ≥ f(xk)− f(xk−1)
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Moreover, 〈xk − xk−1, xk − x?〉 ≥ 1
2‖xk − x

?‖2 − 1
2‖xk−1 − x

?‖2.
Combining the above results, we obtain

√
µ
(

2β(f(xk)− f(x?)) +
√
µ ‖xk − x?‖2

)
+ β2 ‖∇f(xk)‖2

+
1√
s

(
2β(f(xk)− f(x?)) +

√
µ ‖xk − x?‖2

)
− 1√

s

(
2β(f(xk−1)− f(x?)) +

√
µ ‖xk−1 − x?‖2

)
≤ 2E1q

k−1.

Set Zk := 2β(f(xk)− f(x?)) +
√
µ‖xk − x?‖2. We have, for all k ≥ 1

(18)
1√
s

(Zk − Zk−1) +
√
µZk + β2‖∇f(xk)‖2 ≤ 2E1q

k−1.

Set θ = 1
1+
√
µs which belongs to ]0, 1[. Equivalently

Zk + θβ2
√
s‖∇f(xk)‖2 ≤ θZk−1 + 2E1θ

√
sqk−1.

Iterating this linear recursive inequality gives

(19) Zk + θβ2
√
s

k−2∑
p=0

θp‖∇f(xk−p)‖2 ≤ θk−1Z1 + 2E1θ
√
s

k−2∑
p=0

θpqk−p−1.

Then notice that θ
q =

1+ 1
2

√
µs

1+
√
µs < 1, which gives

k−2∑
p=0

θpqk−p−1 = qk−1
k−2∑
p=0

(
θ

q

)p
≤ 2

(
1 +

1
√
µs

)
qk−1.

Collecting the above results, we obtain

(20) θβ2
√
s

k−2∑
p=0

θp‖∇f(xk−p)‖2 ≤ θk−1Z1 +
4E1√
µ
qk−1.

Using again the inequality θ < q, and after reindexing, we finally obtain

θk
k−2∑
p=0

θ−j‖∇f(xj)‖2 = O
(
qk
)
.

�

5.1.2. Non-smooth case. Let f : H → R∪{+∞} be a proper, lower semicontinuous and convex function. We
argue as in Section 3.1.2 by replacing f with its Moreau envelope fλ. This operation also preserves strong
convexity, thought with a different modulus as shown by the following result.

Proposition 5.2. Suppose that f : H → R ∪ {+∞} is a proper, lower semicontinuous convex function.
Then, for any λ > 0 and µ > 0

f is µ-strongly convex =⇒ fλis strongly convex with modulus
µ

1 + λµ
.

Proof. If f is strongly convex with constant µ > 0, we have f = g + µ
2 ‖ · ‖

2 for some convex function g.

Elementary calculus (see e.g., [17, Exercise 12.6]) gives, with θ = λ
1+λµ ,

fλ(x) = gθ

(
1

1 + λµ
x

)
+

µ

2(1 + λµ)
‖x‖2.

Since x 7→ gθ

(
1

1+λµ x
)

is convex, the above formula shows that fλ is strongly convex with constant µ
1+λµ . �
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According to the expressions ∇fλ(x) = 1
λ

(
x− proxλf (x)

)
, and proxθfλ(x) = λ

λ+θx + θ
λ+θ prox(λ+θ)f (x),

(IPAHD-SC) becomes with θ = β
√
s+s

1+2
√

µ
1+λµ s

and a =
2
√

µ
1+λµ s

1+2
√

µ
1+λµ s

:

(IPAHD-NS-SC){
yk = xk + (1− a)(xk − xk−1) + β

√
s

λ (1− a)
(
xk − proxλf (xk)

)
xk+1 = λ

λ+θyk + θ
λ+θ prox(λ+θ)f (yk)

It is a relaxed inertial proximal algorithm whose coefficients are constant. As a result, its computational
burden is equivalent to (actually twice) that of the classical proximal algorithm. A direct application of the
conclusions of Theorem 5.1 to fλ gives the following statement.

Theorem 5.3. Suppose that f : H → R ∪ {+∞} is a proper, lower semicontinuous and convex function
which is µ-strongly convex for some µ > 0. Take λ > 0. Suppose that

0 ≤ β ≤ 1

2

√
λ+

1

µ
and

√
s ≤ β.

Set q =
1

1 + 1
2

√
µ

1+λµs
, which satisfies 0 < q < 1. Then, for any sequence (xk)k∈N generated by algorithm

(IPAHD-NS-SC)

‖xk − x?‖ = O
(
qk/2

)
and f(proxλf (xk))−min

H
f = O

(
qk
)

as k → +∞,

and
‖xk − proxλf (xk)‖2 = O

(
qk
)

as k → +∞.
5.2. Inertial gradient algorithms. Let us embark from the continuous dynamic (15) whose linear con-
vergence rate was established in Theorem 4.2. Its explicit time discretization with centered finite differences
for speed and acceleration gives

1

s
(xk+1 − 2xk + xk−1) +

√
µ
√
s

(xk+1 − xk−1) + β
1√
s

(∇f(xk)−∇f(xk−1)) +∇f(xk) = 0.

Equivalently,

(21) (xk+1 − 2xk + xk−1) +
√
µs(xk+1 − xk−1) + β

√
s(∇f(xk)−∇f(xk−1)) + s∇f(xk) = 0,

which gives the inertial gradient algorithm with Hessian damping (SC stands for Strongly Convex):

(IGAHD-SC)

xk+1 = xk +
1−√µs
1+
√
µs (xk − xk−1)− β

√
s

1+
√
µs (∇f(xk)−∇f(xk−1))

− s
1+
√
µs∇f(xk).

Let us analyze the linear convergence rate of (IGAHD-SC) .

Theorem 5.4. Let f : H → R be a function µ-strongly convex for some µ > 0, and whose gradient ∇f is
L-Lipschitz continuous. Suppose that

β ≤ 1
√
µ

and L ≤ min


√
µ

8β
,

√
µ

2s + µ√
s

2βµ+ 1√
s

+
√
µ

2

 .

Set q =
1

1 + 1
2

√
µs

, which satisfies 0 < q < 1. Then, for any sequence (xk)k∈N generated by algorithm

(IGAHD-SC) , we have

‖xk − x?‖ = O
(
qk/2

)
and f(xk)−min

H
f = O

(
qk
)

as k → +∞.
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Moreover, the gradients converge exponentially fast to zero: setting θ = 1
1+
√
µs which belongs to ]0, 1[, we

have

θk
k−2∑
p=0

θ−j‖∇f(xj)‖2 = O
(
qk
)

as k → +∞.

Proof. The proof is based on Lyapunov analysis, and the decrease property at linear rate of the sequence
(Ek)k∈N defined by

Ek := f(xk)− f(x?) +
1

2
‖vk‖2,

where x? is the unique minimizer of f , and

vk =
√
µ(xk−1 − x?) +

1√
s

(xk − xk−1) + β∇f(xk−1).

We have Ek+1 − Ek = f(xk+1) − f(xk) + 1
2‖vk+1‖2 − 1

2‖vk‖
2. Using successively the definition of vk and

(21), we obtain

vk+1 − vk =
√
µ(xk − xk−1) +

1√
s

(xk+1 − 2xk + xk−1) + β(∇f(xk)−∇f(xk−1))

=
1√
s

(
(xk+1 − 2xk + xk−1) +

√
µs(xk − xk−1) + β

√
s(∇f(xk)−∇f(xk−1))

)
=

1√
s

(
− s∇f(xk)−√µs(xk+1 − xk−1) +

√
µs(xk − xk−1))

)
= −√µ(xk+1 − xk)−

√
s∇f(xk).

Since 1
2‖vk+1‖2 − 1

2‖vk‖
2 = 〈vk+1 − vk, vk+1〉 − 1

2‖vk+1 − vk‖2, we have

1

2
‖vk+1‖2 −

1

2
‖vk‖2 = −1

2
‖√µ(xk+1 − xk) +

√
s∇f(xk)‖2

−
〈
√
µ(xk+1 − xk) +

√
s∇f(xk),

√
µ(xk − x∗) +

1√
s

(xk+1 − xk) + β∇f(xk)

〉
= −µ 〈xk+1 − xk, xk − x∗〉 −

√
µ

s
‖xk+1 − xk‖2 − β

√
µ 〈∇f(xk), xk+1 − xk〉

−√µs 〈∇f(xk), xk − x∗〉 − 〈∇f(xk), xk+1 − xk〉 − β
√
s‖∇f(xk)‖2

−1

2
µ‖xk+1 − xk‖2 −

1

2
s‖∇f(xk‖2 −

√
µs 〈∇f(xk), xk+1 − xk〉 .

By strong convexity of f and L-lipschitz continuity of ∇f we have

f(x?) ≥ f(xk) + 〈∇f(xk), x? − xk〉+
µ

2
‖xk − x?‖2

f(xk) ≥ f(xk+1) + 〈∇f(xk+1), xk − xk+1〉+
µ

2
‖xk+1 − xk‖2

≥ f(xk+1) + 〈∇f(xk), xk − xk+1〉+ (
µ

2
− L)‖xk+1 − xk‖2.

Combining the results above, and after dividing by
√
s, we get

1√
s

(Ek+1 − Ek) +
√
µ[f(xk+1)− f(x?) +

µ

2
‖xk − x?‖2] +

√
µ(f(xk)− f(xk+1))

≤ − µ√
s
〈xk+1 − xk, xk − x?〉 −

√
µ

s
‖xk+1 − xk‖2 − β

√
µ

s
〈∇f(xk), xk+1 − xk〉

+
1√
s

(L− µ

2
)‖xk+1 − xk‖2 −

µ

2
√
s
‖xk+1 − xk‖2

−
(
β +

1

2

√
s

)
‖∇f(xk‖2 −

√
µ 〈∇f(xk), xk+1 − xk〉 .
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Let us make appear Ek

1√
s

(Ek+1 − Ek) +
√
µEk+1 ≤

√
µ 〈∇f(xk), xk+1 − xk〉+

√
µ
L

2
‖xk+1 − xk‖2

+

√
µ

2
‖ 1√

s
(xk+1 − xk) + β∇f(xk)‖2 + µ

〈
xk − x?,

1√
s

(xk+1 − xk) + β∇f(xk)

〉
− µ√

s
〈xk+1 − xk, xk − x?〉 −

√
µ

s
‖xk+1 − xk‖2 − β

√
µ

s
〈∇f(xk), xk+1 − xk〉

+
1√
s

(L− µ

2
)‖xk+1 − xk‖2 −

µ

2
√
s
‖xk+1 − xk‖2

−
(
β +

1

2

√
s

)
‖∇f(xk‖2 −

√
µ 〈∇f(xk), xk+1 − xk〉 .

After developing and simplification, we get

1√
s

(Ek+1 − Ek) +
√
µEk+1 ≤ −

(√
µ

2s
+

µ√
s
− L

(
1√
s

+

√
µ

2

))
‖xk+1 − xk‖2

−
(
β −

β2√µ
2

+

√
s

2

)
‖∇f(xk+1)‖2 + βµ 〈∇f(xk), xk − x?〉 .

Let us majorize this last term by using the Lipschitz continuity of ∇f
〈∇f(xk), xk − x?〉 = 〈∇f(xk)−∇f(x?), xk − x?〉 ≤ L‖xk − x?‖2

≤ 2L‖xk+1 − x?‖2 + 2L‖xk+1 − xk‖2.
Therefore

1√
s

(Ek+1 − Ek) +
√
µEk+1 +

(√
µ

2s
+

µ√
s
− L

(
2βµ+

1√
s

+

√
µ

2

))
‖xk+1 − xk‖2

+

(
β −

β2√µ
2

+

√
s

2

)
‖∇f(xk+1)‖2 − 2βµL‖xk+1 − x?‖2 ≤ 0.

According to 0 ≤ β ≤ 1√
µ , we have β − β2√µ

2 ≥ β
2 , which gives

1√
s

(Ek+1 − Ek) +
√
µEk+1 +

(√
µ

2s
+

µ√
s
− L

(
2βµ+

1√
s

+

√
µ

2

))
‖xk+1 − xk‖2

+
β

2
‖∇f(xk+1)‖2 − 2βµL‖xk+1 − x?‖2 ≤ 0.

Let us use again the strong convexity of f to write

Ek+1 ≥
1

2
Ek+1 +

1

2
(f(xk+1)− f(x?)) ≥ 1

2
Ek+1 +

µ

4
‖xk+1 − x?‖2.

Combining the two above relations we get

1√
s

(Ek+1 − Ek) +
1

2

√
µEk+1 +

(√
µ
µ

4
− 2βµL

)
‖xk+1 − x?‖2 +(√

µ

2s
+

µ√
s
− L

(
2βµ+

1√
s

+

√
µ

2

))
‖xk+1 − xk‖2 +

β

2
‖∇f(xk+1)‖2 ≤ 0

Let us examine the sign of the above quantities: Under the condition L ≤
√
µ

8β we have
√
µµ4 − 2βµL ≥ 0.

Under the condition L ≤
√
µ

2s + µ√
s

2βµ+ 1√
s
+
√
µ

2

we have
√
µ

2s + µ√
s
− L

(
2βµ+ 1√

s
+
√
µ

2

)
≥ 0. Therefore, under the

above conditions
1√
s

(Ek+1 − Ek) +
1

2

√
µEk+1 +

β

2
‖∇f(xk+1)‖2 ≤ 0.

Set q = 1
1+ 1

2

√
µs

, which satisfies 0 < q < 1. By a similar argument as in Theorem 5.1

Ek ≤ E1q
k−1.
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According to the definition of Ek ≥ f(xk)− f(x?), we finally obtain

f(xk)− f(x?) = O
(
qk
)
,

and the linear convergence of xk to x? and that of the gradients to zero. �

6. Numerical results

Here, we illustrate our results on the composite problem on H = Rn,

(RLS) min
x∈Rn

{
f(x) :=

1

2
‖y −Ax‖2 + g(x)

}
,

where A is a linear operator from Rn to Rm, m ≤ n, g : Rn → R ∪ {+∞} is a proper lsc convex function
which acts as a regularizer. Problem (RLS) is extremely popular in a variety of fields ranging from inverse
problems in signal/image processing, to machine learning and statistics. Typical examples of g include the
`1 norm (Lasso), the `1− `2 norm (group Lasso), the total variation, or the nuclear norm (the `1 norm of the
singular values of x ∈ RN×N identified with a vector in Rn with n = N2). To avoid trivialities, we assume
that the set of minimizers of (RLS) is non-empty.

Though (RLS) is a composite non-smooth problem, it fits perfectly well into our framework. Indeed, the
key idea is to appropriately choose the metric. For a symmetric positive definite matrix S ∈ Rn×n, denote
the scalar product in the metric S as 〈S·, ·〉 and the corresponding norm as ‖·‖S . When S = I, then we
simply use the shorthand notation for the Euclidean scalar product 〈·, ·〉 and norm ‖·‖. For a proper convex
lsc function h, we denote hS and proxSh its Moreau envelope and proximal mapping in the metric S, i.e.

hS(x) = min
z∈Rn

1

2
‖z − x‖2S + h(z), proxSh(x) = argminz∈Rn

1

2
‖z − x‖2S + h(z).

Similarly, when S = I, we drop S in the above notation.
Let M = s−1I −A∗A. With the proviso that 0 < s ‖A‖2 < 1, M is a symmetric positive definite matrix.

It can be easily shown (we provide a proof in Appendix A.2 for completeness; see also the discussion in [22,
Section 4.6]), that the proximal mapping of f as defined in (RLS) in the metric M is

(22) proxMf (x) = proxsg(x+ sA∗(y −Ax)),

which is nothing but the forward-backward fixed-point operator for the objective in (RLS). Moreover, fM is
a continuously differentiable convex function whose gradient (again in the metric M) is given by the standard
identity

∇fM (x) = x− proxMf (x),

and ‖∇fM (x)−∇fM (z)‖M ≤ ‖x− z‖M , i.e. ∇fM is Lipschitz continuous in the metric M . In addition, a
standard argument shows that

argmin(f) = Fix(proxMf ) = argmin(fM ).

We are then in position to solve (RLS) by simply applying (IGAHD) (see Section 3.2) to fM . We infer from
Theorem 3.3 and properties of fM that

f(proxMf (xk))−min
Rn

f = O(k−2).

(IGAHD) and FISTA (i.e. (IGAHD) with β = 0) were applied to fM with four instances of g: `1 norm, `1−`2
norm, the total variation, and the nuclear norm. The results are depicted in Figure 3. One can clearly
see that the convergence profiles observed for both algorithms agree with the predicted rate. Moreover,
(IGAHD) exhibits, as expected, less oscillations than FISTA, and eventually converges faster.

7. Conclusion, Perspectives

As a guideline to our study, the inertial dynamics with Hessian driven damping give rise to a new class of
first-order algorithms for convex optimization. While retaining the fast convergence of the function values
reminiscent of the Nesterov accelerated algorithm, they benefit from additional favorable properties among
which the most important are:

• fast convergence of gradients towards zero;
• global convergence of the iterates to optimal solutions;
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Figure 3. Evolution of f(proxMf (xk)) − minRn f , where xk is the iterate of either

(IGAHD) or FISTA, when solving (RLS) with different regularizers g.
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• extension to the non-smooth setting;
• acceleration via time scaling factors.

This article contains the core of our study with a particular focus on the gradient and proximal methods.
The results thus obtained pave the way to new research avenues. For instance:

• as initiated in Section 6, apply these results to structured composite optimization problems beyond
(RLS) and develop corresponding splitting algorithms;

• with the additional gradient estimates, we can expect the restart method to work better with the
presence of the Hessian damping term;

• deepen the link between our study and the Newton and Levenberg-Marquardt dynamics and algo-
rithms (e.g., [13]), and with the Ravine method [23].

• the inertial dynamic with Hessian driven damping goes well with tame analysis and Kurdyka-
Lojasiewicz property [2], suggesting that the corresponding algorithms be developed in a non-convex
(or even non-smooth) setting.

Appendix A. Auxiliary results

A.1. Extended descent lemma.

Lemma A.1. Let f : H → R be a convex function whose gradient is L-Lipschitz continuous. Let s ∈]0, 1/L].
Then for all (x, y) ∈ H2, we have

(23) f(y − s∇f(y)) ≤ f(x) + 〈∇f(y), y − x〉 − s

2
‖∇f(y)‖2 − s

2
‖∇f(x)−∇f(y)‖2.

Proof. Denote y+ = y − s∇f(y). By the standard descent lemma applied to y+ and y, and since sL ≤ 1 we
have

(24) f(y+) ≤ f(y)− s

2
(2− Ls) ‖∇f(y)‖2 ≤ f(y)− s

2
‖∇f(y)‖2.

We now argue by duality between strong convexity and Lipschitz continuity of the gradient of a convex
function. Indeed, using Fenchel identity, we have

f(y) = 〈∇f(y), y〉 − f∗(∇f(y)).

L-Lipschitz continuity of the gradient of f is equivalent to 1/L-strong convexity of its conjugate f∗. This
together with the fact that (∇f)−1 = ∂f∗ gives for all (x, y) ∈ H2,

f∗(∇f(y)) ≥ f∗(∇f(x)) + 〈x, ∇f(y)−∇f(x)〉+
1

2L
‖∇f(x)−∇f(y)‖2 .

Inserting this inequality into the Fenchel identity above yields

f(y) ≤ −f∗(∇f(x)) + 〈∇f(y), y〉 − 〈x, ∇f(y)−∇f(x)〉 − 1

2L
‖∇f(x)−∇f(y)‖2

= −f∗(∇f(x)) + 〈x, ∇f(x)〉+ 〈∇f(y), y − x〉 − 1

2L
‖∇f(x)−∇f(y)‖2

= f(x) + 〈∇f(y), y − x〉 − 1

2L
‖∇f(x)−∇f(y)‖2

≤ f(x) + 〈∇f(y), y − x〉 − s

2
‖∇f(x)−∇f(y)‖2 .

Inserting the last bound into (24) completes the proof. �

A.2. Proof of (22).

Proof. We have

proxMf (x) = argminz∈Rn
1

2
‖z − x‖2M + f(z)

= argminz∈Rn
1

2s
‖z − x‖2 − 1

2
‖A(z − x)‖2 +

1

2
‖y −Az‖2 + g(z).
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By the Pythagoras relation, we then get

proxMf (x) = argminz∈Rn
1

2s
‖z − x‖2 +

1

2
‖y −Ax‖2 − 〈A(x− z), Ax− y〉+ g(z)

= argminz∈Rn
1

2s
‖z − x‖2 − 〈z − x, A∗ (y −Ax)〉+ g(z)

= argminz∈Rn
1

2s
‖z − (x− sA∗ (Ax− y))‖2 + g(z)

= proxsg (x− sA∗ (Ax− y)) .

�

A.3. Closed-form solutions of (DIN-AVD)α,β,b for quadratic functions. We here provide the closed
form solutions to (DIN-AVD)α,β,b for the quadratic objective f : Rn → 〈Ax, x〉, where A is a symmetric
positive definite matrix. The case of a semidefinite positive matrix A can be treated similarly by restricting
the analysis to ker(A)>. Projecting (DIN-AVD)α,β,b on the eigenspace of A, one has to solve n independent
one-dimensional ODEs of the form

ẍi(t) +
(α
t

+ β(t)λi

)
ẋi(t) + λib(t)xi(t) = 0, i = 1, . . . , n.

where λi > 0 is an eigenvalue of A. In the following, we drop the subscript i.
Case β(t) ≡ β, b(t) = b+ γ/t, β ≥ 0, b > 0, γ ≥ 0: The ODE reads

(25) ẍ(t) +
(α
t

+ βλ
)
ẋ(t) + λ

(
b+

γ

t

)
x(t) = 0.

• If β2λ2 6= 4bλ: set

ξ =
√
β2λ2 − 4bλ, κ = λ

γ − αβ/2
ξ

, σ = (α− 1)/2.

Using the relationship between the Whitaker functions and the Kummer’s confluent hypergeometric
functions M and U , see [16], the solution to (25) can be shown to take the form

x(t) = ξα/2e−(βλ+ξ)t/2 [c1M(α/2− κ, α, ξt) + c2U(α/2− κ, α, ξt)] ,

where c1 and c2 are constants given by the initial conditions.
• If β2λ2 = 4bλ: set ζ = 2

√
λ (γ − αβ/2). The solution to (25) takes the form

x(t) = t−(α−1)/2e−βλt/2
[
c1J(α−1)/2(ζ

√
t) + c2Y(α−1)/2(ζ

√
t)
]
,

where Jν and Yν are the Bessel functions of the first and second kind.

When β > 0, one can clearly see the exponential decrease forced by the Hessian. From the asymptotic
expansions of M , U , Jν and Yν for large t, straightforward computations provide the behaviour of |x(t)| for
large t as follows:

• If β2λ2 > 4bλ, we have

|x(t)| = O
(
t−

α
2 +|κ|e−

βλ−ξ
2 t
)

= O
(
e−

2b
β t−(α2−|κ|) log(t)

)
.

• If β2λ2 < 4bλ, whence ξ ∈ iR+
∗ and κ ∈ iR, we have

|x(t)| = O
(
t−

α
2 e−

βλ
2 t
)
.

• If β2λ2 = 4bλ, we have

|x(t)| = O
(
t−

2α−1
4 e−

βλ
2 t
)
.
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Case β(t) = tβ, b(t) = ctβ−1, β ≥ 0, c > 0: The ODE reads now

ẍ(t) +
(α
t

+ tβλ
)
ẋ(t) + cλtβ−1x(t) = 0.

Let us make the change of variable t := τ
1

β+1 . Let y(τ) := x
(
τ

1
β+1

)
. By the standard derivation chain rule,

it is straightforward to show that y obeys the ODE

ÿ(τ) +

(
α+ β

(1 + β)τ
+

λ

1 + β

)
ẏ(τ) +

cλ

(1 + β)2τ
y(τ) = 0.

It is clear that this is a special case of (25). Since β and λ > 0, set

ξ =
λ

1 + β
, κ = −α+ β − c

1 + β
, σ =

α+ β

2(1 + β)
− 1

2
.

It follows from the first case above that

x(t) = ξσ+1/2e−
λτ
1+β

[
c1M

(
σ − κ+ 1/2,

α+ β

1 + β
, ξτ

)
+ c2U

(
σ − κ+ 1/2,

α+ β

1 + β
, ξτ

)]
.

Asymptotic estimates can also be derived similarly to above. We omit the details for the sake of brevity.
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