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Abstract

A novel least-squares fitting procedure is presented that allows to retrieve strain profiles in ion 

implanted single crystals using high-resolution X-ray diffraction (XRD). The model is based on the 

dynamical theory of diffraction including a  B-spline – based description of the lattice strain. The 

fitting procedure relies on the generalized simulated annealing algorithm which, contrarily to most 

common  least-squares  fitting-based  methods,  allows  to  find  the  global  minimum  of  the  error 

function (the difference between the experimental and the calculated curves) while being extremely 

fast. It is shown that convergence can be achieved in few hundreds of Monte-Carlo steps, i.e. a few 

seconds. The method is model-independent and allows to determine the strain profile even without 

any 'guess' regarding its shape. This procedure is applied to the determination of strain profiles in 

Cs-implanted  yttria-stabilized  zirconia  (YSZ).  The  strain  and  damage  profiles  of  YSZ  single 

crystals implanted at different ion fluences are analyzed and discussed.
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1. Introduction

Zirconia is a refractory oxide which exhibits high thermal shock and corrosion resistance and good 

radiation stability (Kriven, Fraser & Kennedy, 1982). Concerning radiation stability,  it  has been 

demonstrated that cubic yttria-stabilized zirconia (YSZ) remains stable (i.e. it does not undergo any 

phase transition)  upon low and medium energy implantation or irradiation,  so that this material 

appears  as  one of  the  best  candidates  for  industrial  applications  such as  inert  matrices  for  the 

transmutation  of  actinides  (Gong,  Lutze  &  Ewing,  2000;  Thomé  et  al.,  2003).  In  addition  to 

radiation resistance the matrix should be able to confine radiotoxic fission products. Among these 

products, caesium is known to yield a significant amorphization of YSZ at high ion fluences (Wang 

et al., 2000; Vincent et al., 2008) which may jeopardize the retention properties of the matrix. The 

study of the structural and microstructural consequences of Cs implantation in YSZ single crystals 

is hence of primary importance in order to assess the qualification of this material as a matrix for 

the confinement of nuclear waste fuel.

In a previous work it has been shown that Cs-implantation gives rise to an expansion of the YSZ 

unit  cell  in  the  implanted  volume  together  with  an  inhomogeneous  strain  distribution  in  the 

direction normal to the surface (Debelle et al., 2010). High-resolution X-ray diffraction (XRD) is a 

widely employed technique for the determination of such strain profiles, especially in the case of 

implanted semiconductor materials, e.g. Si (Diaz et al., 2007; Emoto et al., 2006; Hironaka et al., 

2000; Klappe & Fewster, 1994, Milita & Servidori, 1995; Sousbie et al., 2006), SiC (Leclerc et al., 

2005) or GaAs (Wierzchowski et al., 2005). The determination of the strain profiles from XRD data 

is hindered by the 'phase problem' which is due to the fact that lattice displacements affect the phase 

of the diffracted amplitude, E, whereas the quantity actually measured is the intensity, I = EE*, so 

that  the phase of the amplitude is  lost  in the diffraction experiment  (Vartanyants  et  al.,  2000). 

Consequently, the strain profile cannot be obtained by a direct inversion of the diffracted intensity. 

This issue is usually circumvented by least-squares fitting a calculated XRD intensity distribution 

(with  a  parametrized  strain model)  to  the  experimental  data  using an appropriate  minimization 
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algorithm, such as the steepest-descent method, Newton's method (or their 'mixture', the Levenberg-

Marquardt algorithm) or the simplex method (Press  et al., 2002). Common to all these methods, 

which are  local optimization algorithms, is that they require a good estimate of the strain profile 

prior to simulation in order to avoid the algorithm from being trapped in a secondary minimum. 

Such  guess  strain  profiles  can  be  obtained  by  complementary  techniques  such  as  Rutherford 

backscattering spectrometry in channeling mode (RBS/C) (Debelle  et al., 2010), Auger electron 

spectroscopy (Diaz et al., 2007), secondary ion mass spectroscopy (Sousbie et al., 2006) or Monte-

Carlo simulations (Debelle et al., 2010; Emoto et al., 2006; Klappe & Fewster, 1994; Leclerc et al., 

2005;  Wierzchowski  et al.,  2005). There are cases however, as in the present study, where the 

actual  strain profile significantly differs from its initial  estimate,  or where there is no available 

guess strain profile. In such a case, it is necessary to use global optimization methods which have 

the ability to find the global minimum regardless of the initial guess. This is the subject of the 

present work.

One of the most popular global optimization algorithm is simulated annealing (Kirkpatrick  et al., 

1983),  also referred to as  classical simulated annealing (CSA). In this work we implement  the 

generalized simulated annealing (GSA) algorithm (Tsallis & Stariolo, 1996) for the determination 

of strain profiles in Cs-implanted YSZ single crystals. As compared to CSA, which is based on the 

quasi-equilibrium  Boltzmann-Gibbs  statistics,  GSA  relies  on  the  Tsallis  statistics  which  is  a 

generalization of the Boltzmann-Gibbs statistics (Tsallis, 1988). GSA has proven to be superior to 

CSA both in terms of its ability to accurately locate the absolute minimum of a given function and 

in terms of computational cost, i.e. convergence is reached much more rapidly (Correia et al., 2005; 

Lemes  et al., 1997; Moret  et al., 1998; Tsallis & Stariolo, 1996; Xiang et al., 1997; Zhaoxian & 

Dang, 2003). Despite this undeniable interest, GSA has to date not been used for the analysis of  

XRD data. We show in this article that GSA, combined with a cubic B-spline strain profile (Boulle 

et al., 2003; Boulle et al., 2009), allows to overcome the phase problem and hence to retrieve strain 

profiles in a few seconds. Details concerning ion implantation and XRD data acquisition are given 
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in section 2. In section 3 we present the simulation methodology, particular emphasis being laid on 

the description of the GSA algorithm and on its ability to rapidly converge to the global minimum. 

Finally, in section 4, the strain profiles of Cs-implanted YSZ single crystals are discussed.

2. Experimental details

The samples used in this work are cubic (100)-oriented yttria-stabilized zirconia (9.5 mol% Y2O3) 

with  fluorite-type  structure  and  lattice  parameter  a =  0.5145 nm.  Implantations  and ion  beam 

characterizations  have  been  performed  with  the  JANNuS  facility  of  the  CSNSM-Orsay. 

Implantations were performed at room temperature with 300 keV Cs ions. An incident beam angle 

of 7° was used during implantation to avoid any channeling phenomenon. In the present study six 

crystals have been implanted with the following ion fluences: 3.75×1013, 7.5×1013, 3×1014, 4.5×1014, 

6×1014 and 7.5×1014 cm-2. The corresponding samples are labeled 1-6, respectively. 

XRD measurements were performed in the Bragg reflection geometry on a four-circle Seifert XRD-

3000  goniometer  using  the  line  focus  of  a  copper  X-ray  source.  A  Ge  (220)  double  crystal 

monochromator (in the CuKα1 setting, λ = 1.5406 Å) and a 0.1 mm primary slit were used, together 

with  a  0.07  mm  detector  slit,  which  allowed  an  angular  resolution  of  ~  0.01°.  A  solid-state 

scintillation detector was used. Symmetric  θ-2θ scans have been recorded in the vicinity of the 

(400) reflections of YSZ (2θ = 73.575°). It is emphasized that since the strain profile is localized 

along the direction normal to the surface (Debelle & Declémy, 2010), the analysis of symmetric 

(h00) reflections is sufficient to completely determine the strain profile.

3. Simulation procedure

3.1 X-ray diffraction

In order to simulate the experimental XRD curves we calculated intensity distributions within the 

framework of the dynamical theory of diffraction from distorted crystals (Takagi, 1969; Taupin, 

1964). The Takagi-Taupin equations describe the evolution as a function depth (in the form of a 
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differential equation) of the ratio of the diffracted and incident amplitude and are a function of the 

strain at depth z, e(z), and the structure factor at depth z, FH(z) (Pietsch, Holý and Baumbach, 2004).

The  Takagi-Taupin  equations  were  solved  using  the  recursion  formula  of  Bartels,  Hornstra  & 

Lobeek (1986). For this purpose the implanted region of the crystal was divided into 5 nm – thick 

layers in which the strain e(z) is constant but varies from one layer to another (according to equation 

1 below). Similarly, the structure factor in each layer is constant but is multiplied by a static Debye-

Waller (DW) factor, exp(-LH(z)), so as to take into account the effect of lattice disorder consecutive 

to implantation (Milita & Servidori, 1995). In a first step we assume that in each layer,  LH(z) is 

related to the strain according to LH(z) = αe(z)2 (Sousbie et al., 2006), where α is a fitting parameter. 

This assumption is further discussed in section 4. 

In the following, we assume that the strain profile, e(z), can be correctly described by a cubic spline 

function, so that we can make use of the cubic B-spline representation

e  z =∑
i=1

N

wi Bi ,3 z (1)

where wi is the weight at knot i of the B-spline of third degree, Bi,3(z), and N is the number of knots 

chosen to compute  e(z) (Boulle  et al.,  2003). Hence,  given a discrete  set  of  wi,  we are able  to 

generate  the  complete  e(z)  profile  by  means  of  equation  1.  The  degree  of  details  that  can  be 

rendered entirely depends on the number of knots. Keeping the number of knots as low as possible 

results in a significant smoothing of the strain profile, with the risk to wipe-out small details. On the  

contrary, increasing the number of knots increases the ability to render tiny features of e(z), but at 

the same time it increases the possibility for e(z) to exhibit wild oscillations during the simulation 

procedure. Note that if N knots are used, the strain profile is actually divided into N-3 equally sized 

regions. More details and a discussion concerning the advantages of using cubic B-splines can be 

found elsewhere  (Boulle  et  al.,  2003;  Boulle  et  al.,  2009).  A representation  of  a  strain profile 

defined by 8 basis functions is given in Fig. 1. In order to ensure a smooth transition from the 

implanted region to the virgin crystal, the weights of the three last B-splines (indicated by the dotted 

curves) are fixed to 0, so that only 5 fitting parameters remain. For simplicity all weights were taken 
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equal to 0.5 in Fig. 1, so that in the implanted region (ignoring the transition zone), the strain is 

constant and equal to 0.5 %. In the present case, it turned out that 5 non-zero weights are sufficient 

for sample 1, whereas up to 10 were necessary in the case of sample 6 which exhibits  a more 

complex XRD curve.

Finally,  the resolution of  the diffractometer  is  taken into account  by convolving the calculated 

intensity distribution with a Gaussian function whose width is adjusted so that the peak emanating 

from the virgin part of the crystal is correctly described. The computer program has been written 

using the Python1 programming language associated with the SciPy2 scientific library.

3.2 Generalized simulated annealing

3.2.1 Background: classical simulated annealing

The fitting of experimental data with a calculated model consists in minimizing an appropriate error 

function which measures the difference between the experimental and the calculated curves. In the 

following we make use of the following error function (Boulle et al., 2009)

E=∑
i=1

M

[ log  I i
cal −log  I i

obs ]
2
/M (2)

where  M is  the  number of  data  points  and  Ii
cal and  Ii

obs are  the calculated  (as  described in  the 

previous section) and observed intensities. The values of the error function at each point of the 

parameter space,  i.e. for all possible values of the parameters of the model, form a hyper-surface 

with several maxima and minima. The goal of any optimization algorithm is to find the deepest  

minimum,  which  corresponds  to  the  best  possible  agreement  between  the  model  and  the 

experimental  data.  The  CSA algorithm performs  this  minimization  by  randomly  exploring  the 

hyper-surface  using  a  Gaussian  visiting  distribution:  for  each  computing  step  the  vector  of 

parameters  xt is updated according to  xt =  xt-1 +  ∆x,  where  ∆x is a vector of Gaussian random 

variables and t is the computing time (expressed in Monte-Carlo steps, MCS). If the parameter jump 

is downhill (the error function is lowered, ∆E < 0) the new configuration is accepted and constitutes 

1 http://www.python.org/
2 http://www.scipy.org/
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the starting point for the next jump. If the jump is uphill (the error function is increased, ∆E > 0), 

the jump might be accepted according to an acceptance probability, which, in the case of CSA, is 

the Boltzmann-Gibbs acceptance  probability.  This  gives  rise  to the Metropolis  criterion  for the 

uphill jump acceptance (Metropolis et al., 1953):

r≤exp −E
T t   (3)

where T is an artificial temperature and r is a uniform random number lying between 0 and 1. The 

possibility of uphill moves allows the algorithm to detrap from local minima. With increasing time, 

the  temperature  is  decreased  so  that  the  uphill  jump  probability  decreases,  and  the  system  is 

hopefully in the close vicinity of the global minimum (Kirkpatrick et al., 1983; Tsallis & Stariolo, 

1996). CSA has been successfully used in many fields of physics and chemistry and it has been 

shown that this algorithm will  always reach the global minimum provided that the temperature 

decreases logarithmically with time (Geman & Geman, 1984). However, this last property results in 

extremely slow convergence rates. Much efforts have therefore been directed towards increasing the 

convergence speed without increasing the probability of being trapped in a local minimum. Along 

this line the most efficient algorithm, the GSA algorithm, has been proposed by Tsallis & Stariolo 

(1996).

3.2.2 Implementation of GSA

Within  the framework of GSA we make use of  the generalized  thermostatistics  (Tsallis,  1988) 

instead of the Boltzmann-Gibbs statistics, so that the Gaussian visiting distribution is replaced with

gqv  x = qv−1
 

D /2   1
qv−1


D−1

2 
 1

qv−1
−

1
2 

[T t  ]
−D / 3−q v 

[1 qv−1 
 x 

2

[T t ]
2 / 3−qv  ]

1 / qv−1 D−1 /2 (4)

where  D is  the number of fitting parameters  (the dimension of the vector  x),  Γ is  the Gamma 

function and qv ∈ (1, 3) defines the shape of the distribution: for  qv → 1 we obtain the Gaussian 
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distribution,  qv = 2 corresponds to the Lorentzian distribution and for  qv > 2 we obtain 'super-

Lorentzian' distributions exhibiting tails decreasing slower than 1/∆x2 (Fig. 2). With such tails, the 

parameters  occasionally perform very long jumps which ensures a more efficient  detrapping as 

compared to the Gaussian distribution and hence a faster convergence. Such long jumps are known 

as  Lévy  flights;  the  relationships  between  Lévy  distributions  and  Tsallis  statistics  have  been 

discussed by Rathie & Da Silva (2008) (see also Alemany & Zanette, 1994; Wilk & Wlodarczyk, 

2000; Brouers et al., 2004).

The GSA algorithm implies the generation of random numbers Δx effectively obeying equation 4, 

i.e. Tsallis random numbers (instead of a Gaussian random numbers). Up until recently, this was a 

quite difficult task. In this work we make use of the recently introduced Tsallis random number 

generator proposed by Schanze (2006) which produces random numbers obeying exactly equation 

4:

x=
y

su
(5a)

where y is a  D-dimensional vector of Gaussian random variables,  u is a random variable obeying 

the gamma γ(1, p) distribution and the parameters p and s are given by

p=
3−qv

2  qv−1 
 and s=

2 qv−1 
T

1 / 3−qv 
. (5b)

In implementing equation 5, we make use of the Gaussian and Gamma random number generators 

included in the SciPy library. The exactness of equation 5 can be assessed by comparing equation 4 

with a probability distribution function (pdf) obtained with equation 4 (Fig. 2). It can be seen that 

the pdf of random numbers generated with equation 5 perfectly matches the expected distribution 

whatever the value of the shape parameter qv.

At each computing step a new random vector ∆x is generated (using equation 5) and each parameter 

xi (i ∈ [1, D]) is modified according to

xi,t = xi,t-1 + ki∆xi (6)

where ki is a scale factor which takes into account the fact that the different parameters may differ 

8



by several orders of magnitude. In the present case the weights wi are of the order of unity, whereas 

the parameter α can be of the order of several hundreds. This modification yields a significant gain 

in computing efficiency by avoiding the larger parameters to evolve in very small steps.

Within the framework of GSA, the temperature cooling schedule is given by (Tsallis & Stariolo, 

1996)

T t =T 0
2qv−1

−1

1t 
q v−1

−1
. (7)

The initial temperature T(0) is chosen so that the jump for each parameter remains roughly within 

the range of acceptable values for each parameter. Nonetheless, each time xi exceeds the range of 

acceptable values,  a new  ∆xi is  generated  using equation 5.  Moreover,  we have found that  the 

efficiency of the algorithm is increased if the temperature is decreased step-wise, each step lasting 

100 MCS. This allows the parameter space to be sufficiently explored for each temperature.

Similarly to CSA, a downhill jump is always accepted. A uphill jump is accepted if the generalized 

Metropolis criterion is met

r≤[1qa−1 
E
T t ]

1/ 1−q a

(8)

where qa ∈ (-∞, 1) is the acceptance parameter and r is a uniform random number lying between 0 

and 1. For  qa < 1 the uphill probability is set to 0 when 1 qa−1 
E
T t

0  to ensure that the 

probability lies in the [0,1] range. Notice that qv = qa = 1 corresponds to CSA, whereas qv = 2qa = 2 

(i.e. a Lorentzian visiting distribution combined with the classical Metropolis criterion) corresponds 

to the so-called fast  simulated annealing algorithm (Szu & Hartley,  1987).  Earlier  studies have 

shown that convergence in faster for qa < 1 (Penna, 1995). A significant improvement of the GSA 

algorithm has been performed by Xiang et al. (1997). Instead of using a constant qa, they suggested 

to use a decreasing qa:

qa(t) = qa(0) – λt (9)
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where λ is a constant (0.85 in the present case). With this modification, for large computing times, 

the uphill acceptance probability is almost zero (equation 8) so that GSA behaves as a steepest 

descent – type algorithm. The GSA algorithm used in combination with equation 9 will hereinafter 

be  denoted  as  improved-GSA  (iGSA).  The  influence  of  the  acceptance  parameter  on  the 

convergence speed is further discussed in the next section.

In brief, the GSA algorithm can be summarized as follows:

(1) Given a set of parameters [qv,  qa(0) and  T(0)] generate a random vector of parameters  x0. 

Compute the corresponding error function E0 (equation 2).

(2) Using equation 5 generate a random jump of parameters Δx, compute xt (equation 6) and 

the corresponding error function Et (equation 2).

(3) - If the jump is downhill (Et < Et-1), the new configuration is accepted (i.e. replace xt-1 by xt)

- If the jump is uphill (Et ≥ Et-1), the new configuration is accepted only if the generalized 

Metropolis criterion is satisfied (equation 8). Otherwise, the configuration is rejected (i.e. 

keep the previous configuration xt-1)

(4) Decrease T (equation 7) and qa (equation 9) and return to (2) until the maximum number of 

iterations is reached, t = tmax. The algorithm returns the parameters  xt corresponding to the 

lowest error function encountered, Et,min.

3.3 Performance of the algorithm

In this section the efficiency of the GSA algorithm, applied to the determination of strain profiles 

from XRD data, is discussed using sample 1 (corresponding to a fluence of 3.75×1013 cm-2) as an 

example.  For this  sample,  the implanted thickness was fixed to 200 nm (according to previous 

results, see Debelle et al., 2010) divided into 5-nm thick layers for the Takagi-Taupin calculation. 

Six fitting parameters were used: 5 B-spline weights and the strain / Debye-Waller proportionality 

constant, α. The shape parameter was fixed to qv = 2.6 and the acceptance parameter was qa = -5 (or 

qa(0) = -5 when using equation 9). Notice that several (qa, qv) values have been tested in this work. 
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We here only retain those (-5, 2.6) that gave the best results for this particular problem (this point is  

further discussed at the end of this section). For comparison, the results obtained with CSA (qv = qa 

= 1) are also given.

The evolution of the error function (equation 2) as a function of the computing time is reported in 

Fig. 3(a), in the case of three  successful3 fitting procedures using CSA, standard GSA and iGSA. 

For  each  algorithm  several  simulations  were  performed  and  we  present  here  the  best  results 

obtained in each case. In all cases the initial set of parameters is randomly chosen. First of all, it 

appears that GSA is significantly quicker than CSA: the iGSA algorithm is able to find the global 

minimum (E = 0.013) in ~200 MCS (6 seconds), whereas an approximate solution (E = 0.014) is 

found with CSA in ~20 000 MCS (10 minutes). The global minimum is also reached with GSA in 

~1000 MCS (30 seconds). Strictly speaking, in the case of CSA convergence is not reached since 

the error function significantly oscillates, even for long computation times. These oscillations are 

due to accepted uphill moves which are mandatory to detrap from local minima, but at the same 

time this possibility increases the computing time. These oscillations are drastically reduced in the 

case of GSA, because of the negative acceptance  parameter  which progressively inhibits  uphill 

moves, as shown by equation 8. As a consequence, the convergence speed is significantly increased, 

as mentioned earlier. This fast convergence is made possible by the long tails of the Tsallis visiting 

distribution (see Fig. 2 for high qv values) so that efficient detrapping is ensured by 'tunneling' out 

from local minima. Finally, in the case of iGSA, there is a strict convergence in the sense that the  

algorithm perfectly remains within the global minimum as soon as this one is reached.

The simulations corresponding to the best solutions obtained with GSA and CSA are reported in 

Fig. 3(b): an almost perfect agreement is achieved with GSA (an identical simulation is obtained 

with  iGSA),  whereas  the  intensity  of  the  fringes  is  not  perfectly  reproduced  with  CSA.  The 

corresponding strain profiles are given in Fig. 3(c-d) (solid black line). Although the overall shape 

is similar,  there are noticeable differences in the 0-75 nm depth range.  Besides, the main issue 

3 We have here chosen a simple example with only 6 parameters so that all three algorithms were able to find a 
solution in a relatively short time. There are cases however, especially for sample 6 for which up to 20 parameters 
are necessary, where CSA simply failed to find a solution in a reasonable time.
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arises  from the  fact  that  in  the  case  of  CSA the  error  function  oscillates,  even  for  very  long 

computing times. This makes the reliability of the obtained solution somewhat questionable. This is 

illustrated in Fig.  3(c-d) where 100 strain profiles (randomly chosen within the last  104 cycles, 

colored dotted curves) are plotted in order to provide an estimation of the confidence limit on the 

retrieved strain profile. It clearly appears that there is a huge uncertainty range in case of CSA, 

whereas in the case of GSA the maximum uncertainty on the derived strain profiles is ∆e ~ 0.1%. In 

the case of iGSA, since the error function remains stable, the uncertainty range is smaller than the  

line width.

Finally we would like to emphasize that the efficiency of GSA (as compared to CSA for instance) 

as well as the appropriate choice of parameters (the shape parameter  qv, the acceptance parameter 

qa,  the initial  temperature  T(0)) is strongly problem- dependent.  Actually,  significantly different 

behaviors have been observed for different types of problems such as fitting ellipsometric curves 

(Zhaoxian  &  Dang,  2003)  or  low-energy  electron  diffraction  patterns  (Correia  et  al.,  2005), 

calculation of the ground-state geometry of clusters (Lemes  et al., 1997), electrostatics (Xiang et  

al., 1997), function minimization (Tsallis & Stariolo, 1996)... The conclusions drawn in the present 

work (and in others) are hence not general and each problem requires a careful adjustment of the 

different parameters.

4. Results and discussion

The iGSA algorithm is now applied to the investigation of the strain depth profiles in Cs-implanted 

YSZ single crystals. The results of the simulations for all samples studied are given in Fig. 4(a), and 

the  associated  strain  profiles  are  displayed  in  Fig.  4(b).  It  is  worth  noticing  that  a  successful 

simulation has been obtained in all cases. The inspection of the retrieved strain profiles reveals that 

with increasing the ion fluence (i)  the overall  width of  the implanted  region increases,  (ii)  the 

magnitude of the strain increases and (iii) the location of the maximum strain is shifted towards 
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higher  depths.  These observations  are  in good qualitative  agreement  with transmission electron 

microscopy observations and RBS/C experiments (Vincent et al., 2008; Debelle et al., 2010).

The diffraction curves corresponding to samples (1-4) have been simulated using a strain profile 

comprising 5 (sample 1) or 6 (samples 2 - 4) non-zero B-splines and a single strain / Debye-Waller 

proportionality factor. This latter feature implies that the lattice damage is directly related to the 

lattice strain and it hence follows the same trends as those (i-iii) mentioned above for the lattice 

strain.  Samples  5  and  6  necessitated  a  strain  profile  made  of  8  and  10  non-zero  B-splines, 

respectively. Moreover, in these latter cases the simple assumption that the lattice damage is related 

to the lattice strain did not allow to simulate the diffraction curves. We therefore introduced an 

independent DW profile based on B-spline functions (similarly to the procedure implemented for 

the strain profile, equation 1). The B-spline weights corresponding to the strain profile and to the 

DW profile were refined independently so that the total number of fitting parameters were 16 and 

20 for sample 5 and 6, respectively. With this modification, it turned out that the lattice damage is 

still related to the lattice strain, but it also develops close the surface. This is illustrated in Fig. 4(b) 

(for clarity we only show the DW curve corresponding to sample 6). Actually, the position of the 

minimum DW (i.e. maximum lattice damage) clearly coincides with the position of the maximum 

strain, but there is an additional 25-nm thick surface layer where the DW factor ranges between 0.3 

and 0.8.  In order to assess the relevance of this  surface damage,  we compared the simulations 

obtained with and without (i.e. the DW factor is kept equal to 0.8 in the corresponding region) 

surface damage [see Fig.  4(c)].  The simulation in this  latter  case clearly fails  to reproduce the 

experimental data, especially in the low angle region. Hence it can be concluded that for the highest 

fluences, lattice damage not only develops in the core of the implanted region but also close to the 

surface.

Finally, in Fig. 4(d) we plot the evolution of the maximum lattice strain (emax) and the maximum 

lattice  damage  (given  by the  minimum value  of  the  DW factor)  in  the  implanted  region  as  a 

function of the ion fluence. In the case of lattice strain we recover the behavior already observed for 
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this material (Debelle  et al., 2010),  i.e. the lattice strain first slowly increases between 3.75×1013 

and 3×1014 cm-2 and then strongly increases between 3×1014 and 7.5×1014 cm-2. The evolution of the 

maximum lattice  damage  follows a  similar  behavior  as  the  maximum strain.  In  a  first  step,  it 

remains roughly constant and, as the strain starts to significantly increase, the DW factor strongly 

decreases.  For the highest fluence studied here (7.5×1014 cm-2),  the region corresponding to the 

highest lattice strain is significantly damaged (DW = 0.15). Above 7.5×1014 cm-2 (5×1015 cm-2 , data 

not shown here, see Debelle et al. 2010) a significant strain relaxation is observed, associated with a 

pronounced decrease of the XRD intensity emanating from the implanted region (which hinders its 

simulation). This weakening of the XRD intensity is very likely due  to the growth of the highly 

damaged region towards both sides of the damage peak. In other words, the region with a low DW 

factor extents over a larger depth range instead of being confined within the highly strained region. 

At higher fluences (5×1016 cm-2) the amorphization (corresponding to DW = 0) of the implanted 

region was evidenced by TEM (Vincent et al., 2008). The simulations presented in this work show 

that this amorphization is not an abrupt process. On the contrary, the lattice damage increases both 

in  magnitude  and  depth  extension  until  a  complete  amorphization  of  the  implanted  region  is 

reached.

5. Conclusions

In order to determine the strain profiles (and the associated damage profiles) in implanted single 

crystals from X-ray diffraction data, we developed a simulation procedure based on the dynamical 

theory of diffraction, including a  B-spline description of the strain profile, and making use of the 

generalized simulated annealing algorithm. This algorithm allows to find the global minimum of the 

error  function  in  a  few  hundreds  of  computing  steps  (i.e. a  few  seconds  or  tens  of  seconds 

depending on the number of parameters).

The proposed procedure has been applied to the study of Cs-implanted YSZ single crystals. We 

have shown that Cs-implantation gives rise to an inhomogeneous lattice strain and lattice damage 
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distribution in the direction perpendicular to the crystal surface. As the ion fluence increases the 

magnitude of the strain in the implanted region increases, the width of the strained region increases 

and the position of the maximum strain is shifted towards higher depths. Since the lattice damage is 

related to lattice strain, similar conclusions hold for the lattice damage, excepted for the two highest 

investigated fluences (6×1014 and 7.5×1014 cm-2) where lattice damage also develops close to the 

surface.

The simulation procedure developed in this work is obviously not limited to implanted YSZ, but 

can be efficiently used for the analysis of any type of single crystal or epitaxial heterostructure  

exhibiting an inhomogeneous strain distribution.
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Figure Caption

Figure 1

Example strain profile (thick black line) calculated with 5 non-zero basis functions (thin black lines, 

labeled 1 - 5). The weight w of each basis function was taken equal to 0.5. The weight of the last 3 

basis functions (dotted line) is fixed to 0 in order to ensure a smooth transition from the implanted  

region to the virgin region of the crystal.

Figure 2

Probability distribution function of Tsallis random numbers with  D = 1 and  T = 1 for different 

values of qv. The theoretical pdf calculated with equation 2 (thin black line) and the experimental 

pdf calculated from equation 3 (thick gray line) perfectly superimpose. The experimental pdf were 

computed from 106 random numbers with a 0.5 histogram size. All curves are normalized to unit 

maximum. Since equation 2 is not defined for qv = 1 and qv = 3, the cases qv ~ 1 and qv ~ 3 have 

actually been computed with qv = 1.01 and qv = 2.99, respectively.

Figure 3

(a)  Evolution of the error  function for three different  simulations  using conventional  simulated 

annealing (CSA, red curve), generalized simulated annealing (GSA, gray curve) and generalized 

simulated  annealing  improved  with  equation  5  (iGSA,  black  curve).  GSA and  improved-GSA 

clearly outperform CSA.

(b) Simulation of θ-2θ scans in the case of CSA (upper curve) and GSA or iGSA (both approaches 

yield the same result, lower curve); black line: experimental data, red line: simulation. The curves 

are shifted vertically for clarity.

(c)  Retrieved strain  profile  in  the  case  of  CSA (thick  black  curve).  The dotted colored  curves 

correspond to 100 profiles randomly chosen within the last 104 cycles so as to give an estimation of 

the uncertainty on the retrieved strain profile.
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(d) Retrieved strain profile in the case of GSA and iGSA (thick black curve). The dotted colored 

curves correspond to 100 profiles randomly chosen within the last 104 cycles of the GSA algorithm. 

It can be seen that the uncertainty is significantly reduced. In the case of iGSA the uncertainty is  

smaller than the line width.

Figure 4

(a)  θ-2θ scans recorded in the vicinity of the (400) reflection of the virgin and implanted YSZ 

single crystals. Black circles: experimental data; red line: simulation. The labels (1-6) indicate the 

corresponding samples. The curves are shifted vertically for clarity.

(b)  Strain  profiles  corresponding to  sample  1-6  (black  lines,  left  axis).  The arrow indicate  the 

evolution for increasing fluence. The Debye-Waller profile corresponding to sample 6 is also given 

(red line, right axis).

(c) Influence of the surface damage on the simulations corresponding to sample 6 (black circles: 

experimental data; red line: simulation).  The curves are shifted vertically for clarity.  Neglecting 

surface damage clearly deteriorates the quality of simulation.

(d) Evolution of the maximum strain, emax (black squares, left axis), and the minimum Debye-Waller 

factor, DWmin (red circles, right axis), as a function of the ion fluence. The solid lines are guide to 

the eyes. Increasing the ion fluence increases both the lattice strain and the lattice damage.
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