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Strain profile determination in ion implanted single crystals using generalized simulated annealing

A novel least-squares fitting procedure is presented that allows to retrieve strain profiles in ion implanted single crystals using high-resolution X-ray diffraction (XRD). The model is based on the dynamical theory of diffraction including a B-spline -based description of the lattice strain. The fitting procedure relies on the generalized simulated annealing algorithm which, contrarily to most common least-squares fitting-based methods, allows to find the global minimum of the error function (the difference between the experimental and the calculated curves) while being extremely fast. It is shown that convergence can be achieved in few hundreds of Monte-Carlo steps, i.e. a few seconds. The method is model-independent and allows to determine the strain profile even without any 'guess' regarding its shape. This procedure is applied to the determination of strain profiles in Cs-implanted yttria-stabilized zirconia (YSZ). The strain and damage profiles of YSZ single crystals implanted at different ion fluences are analyzed and discussed.

Introduction

Zirconia is a refractory oxide which exhibits high thermal shock and corrosion resistance and good radiation stability [START_REF] Kriven | Science and technology of zirconia[END_REF]. Concerning radiation stability, it has been demonstrated that cubic yttria-stabilized zirconia (YSZ) remains stable (i.e. it does not undergo any phase transition) upon low and medium energy implantation or irradiation, so that this material appears as one of the best candidates for industrial applications such as inert matrices for the transmutation of actinides (Gong, Lutze & Ewing, 2000;Thomé et al., 2003). In addition to radiation resistance the matrix should be able to confine radiotoxic fission products. Among these products, caesium is known to yield a significant amorphization of YSZ at high ion fluences (Wang et al., 2000;Vincent et al., 2008) which may jeopardize the retention properties of the matrix. The study of the structural and microstructural consequences of Cs implantation in YSZ single crystals is hence of primary importance in order to assess the qualification of this material as a matrix for the confinement of nuclear waste fuel.

In a previous work it has been shown that Cs-implantation gives rise to an expansion of the YSZ unit cell in the implanted volume together with an inhomogeneous strain distribution in the direction normal to the surface (Debelle et al., 2010). High-resolution X-ray diffraction (XRD) is a widely employed technique for the determination of such strain profiles, especially in the case of implanted semiconductor materials, e.g. Si (Diaz et al., 2007;Emoto et al., 2006;Hironaka et al., 2000;Klappe & Fewster, 1994, Milita & Servidori, 1995;Sousbie et al., 2006), SiC [START_REF] Leclerc | [END_REF] or GaAs (Wierzchowski et al., 2005). The determination of the strain profiles from XRD data is hindered by the 'phase problem' which is due to the fact that lattice displacements affect the phase of the diffracted amplitude, E, whereas the quantity actually measured is the intensity, I = EE*, so that the phase of the amplitude is lost in the diffraction experiment (Vartanyants et al., 2000).

Consequently, the strain profile cannot be obtained by a direct inversion of the diffracted intensity.

This issue is usually circumvented by least-squares fitting a calculated XRD intensity distribution (with a parametrized strain model) to the experimental data using an appropriate minimization algorithm, such as the steepest-descent method, Newton's method (or their 'mixture', the Levenberg-Marquardt algorithm) or the simplex method [START_REF] Press | Numerical Recipes in C[END_REF]. Common to all these methods, which are local optimization algorithms, is that they require a good estimate of the strain profile prior to simulation in order to avoid the algorithm from being trapped in a secondary minimum.

Such guess strain profiles can be obtained by complementary techniques such as Rutherford backscattering spectrometry in channeling mode (RBS/C) (Debelle et al., 2010), Auger electron spectroscopy (Diaz et al., 2007), secondary ion mass spectroscopy (Sousbie et al., 2006) or Monte-Carlo simulations (Debelle et al., 2010;Emoto et al., 2006;Klappe & Fewster, 1994;[START_REF] Leclerc | [END_REF]Wierzchowski et al., 2005). There are cases however, as in the present study, where the actual strain profile significantly differs from its initial estimate, or where there is no available guess strain profile. In such a case, it is necessary to use global optimization methods which have the ability to find the global minimum regardless of the initial guess. This is the subject of the present work.

One of the most popular global optimization algorithm is simulated annealing (Kirkpatrick et al., 1983), also referred to as classical simulated annealing (CSA). In this work we implement the generalized simulated annealing (GSA) algorithm (Tsallis & Stariolo, 1996) for the determination of strain profiles in Cs-implanted YSZ single crystals. As compared to CSA, which is based on the quasi-equilibrium Boltzmann-Gibbs statistics, GSA relies on the Tsallis statistics which is a generalization of the Boltzmann-Gibbs statistics (Tsallis, 1988). GSA has proven to be superior to CSA both in terms of its ability to accurately locate the absolute minimum of a given function and in terms of computational cost, i.e. convergence is reached much more rapidly (Correia et al., 2005;Lemes et al., 1997;Moret et al., 1998;Tsallis & Stariolo, 1996;Xiang et al., 1997;[START_REF] Zhaoxian | Thin Sol[END_REF]. Despite this undeniable interest, GSA has to date not been used for the analysis of XRD data. We show in this article that GSA, combined with a cubic B-spline strain profile (Boulle et al., 2003;Boulle et al., 2009), allows to overcome the phase problem and hence to retrieve strain profiles in a few seconds. Details concerning ion implantation and XRD data acquisition are given in section 2. In section 3 we present the simulation methodology, particular emphasis being laid on the description of the GSA algorithm and on its ability to rapidly converge to the global minimum.

Finally, in section 4, the strain profiles of Cs-implanted YSZ single crystals are discussed.

Experimental details

The samples used in this work are cubic (100)-oriented yttria-stabilized zirconia (9.5 mol% Y 2 O 3 ) with fluorite-type structure and lattice parameter a = 0.5145 nm. Implantations and ion beam characterizations have been performed with the JANNuS facility of the CSNSM-Orsay.

Implantations were performed at room temperature with 300 keV Cs ions. An incident beam angle of 7° was used during implantation to avoid any channeling phenomenon. In the present study six crystals have been implanted with the following ion fluences: 3.75×10 13 , 7.5×10 13 , 3×10 14 , 4.5×10 14 , 6×10 14 and 7.5×10 14 cm -2 . The corresponding samples are labeled 1-6, respectively. XRD measurements were performed in the Bragg reflection geometry on a four-circle Seifert XRD-3000 goniometer using the line focus of a copper X-ray source. A Ge (220) double crystal monochromator (in the CuKα 1 setting, λ = 1.5406 Å) and a 0.1 mm primary slit were used, together with a 0.07 mm detector slit, which allowed an angular resolution of ~ 0.01°. A solid-state scintillation detector was used. Symmetric θ-2θ scans have been recorded in the vicinity of the (400) reflections of YSZ (2θ = 73.575°). It is emphasized that since the strain profile is localized along the direction normal to the surface (Debelle & Declémy, 2010), the analysis of symmetric (h00) reflections is sufficient to completely determine the strain profile.

Simulation procedure

X-ray diffraction

In order to simulate the experimental XRD curves we calculated intensity distributions within the framework of the dynamical theory of diffraction from distorted crystals (Takagi, 1969;Taupin, 1964). The Takagi-Taupin equations describe the evolution as a function depth (in the form of a differential equation) of the ratio of the diffracted and incident amplitude and are a function of the strain at depth z, e(z), and the structure factor at depth z, F H (z) [START_REF] Pietsch | High-Resolution X-ray Scattering -From Thin Films to Lateral Nanostructures[END_REF].

The Takagi-Taupin equations were solved using the recursion formula of Bartels, Hornstra & Lobeek (1986). For this purpose the implanted region of the crystal was divided into 5 nm -thick layers in which the strain e(z) is constant but varies from one layer to another (according to equation 1 below). Similarly, the structure factor in each layer is constant but is multiplied by a static Debye-Waller (DW) factor, exp(-L H (z)), so as to take into account the effect of lattice disorder consecutive to implantation (Milita & Servidori, 1995). In a first step we assume that in each layer, L H (z) is related to the strain according to L H (z) = αe(z) 2 (Sousbie et al., 2006), where α is a fitting parameter.

This assumption is further discussed in section 4.

In the following, we assume that the strain profile, e(z), can be correctly described by a cubic spline function, so that we can make use of the cubic B-spline representation

e  z = ∑ i=1 N w i B i ,3  z (1)
where w i is the weight at knot i of the B-spline of third degree, B i,3 (z), and N is the number of knots chosen to compute e(z) (Boulle et al., 2003). Hence, given a discrete set of w i , we are able to generate the complete e(z) profile by means of equation 1. The degree of details that can be rendered entirely depends on the number of knots. Keeping the number of knots as low as possible results in a significant smoothing of the strain profile, with the risk to wipe-out small details. On the contrary, increasing the number of knots increases the ability to render tiny features of e(z), but at the same time it increases the possibility for e(z) to exhibit wild oscillations during the simulation procedure. Note that if N knots are used, the strain profile is actually divided into N-3 equally sized regions. More details and a discussion concerning the advantages of using cubic B-splines can be found elsewhere (Boulle et al., 2003;Boulle et al., 2009). A representation of a strain profile defined by 8 basis functions is given in Fig. 1. In order to ensure a smooth transition from the implanted region to the virgin crystal, the weights of the three last B-splines (indicated by the dotted curves) are fixed to 0, so that only 5 fitting parameters remain. For simplicity all weights were taken equal to 0.5 in Fig. 1, so that in the implanted region (ignoring the transition zone), the strain is constant and equal to 0.5 %. In the present case, it turned out that 5 non-zero weights are sufficient for sample 1, whereas up to 10 were necessary in the case of sample 6 which exhibits a more complex XRD curve.

Finally, the resolution of the diffractometer is taken into account by convolving the calculated intensity distribution with a Gaussian function whose width is adjusted so that the peak emanating from the virgin part of the crystal is correctly described. The computer program has been written using the Python1 programming language associated with the SciPy2 scientific library.

3.2 Generalized simulated annealing

Background: classical simulated annealing

The fitting of experimental data with a calculated model consists in minimizing an appropriate error function which measures the difference between the experimental and the calculated curves. In the following we make use of the following error function (Boulle et al., 2009)

E= ∑ i =1 M [ log I i cal -log  I i obs ] 2 / M (2)
where M is the number of data points and I i cal and I i obs are the calculated (as described in the previous section) and observed intensities. The values of the error function at each point of the parameter space, i.e. for all possible values of the parameters of the model, form a hyper-surface with several maxima and minima. The goal of any optimization algorithm is to find the deepest minimum, which corresponds to the best possible agreement between the model and the experimental data. The CSA algorithm performs this minimization by randomly exploring the hyper-surface using a Gaussian visiting distribution: for each computing step the vector of parameters x t is updated according to x t = x t-1 + ∆x, where ∆x is a vector of Gaussian random variables and t is the computing time (expressed in Monte-Carlo steps, MCS). If the parameter jump is downhill (the error function is lowered, ∆E < 0) the new configuration is accepted and constitutes the starting point for the next jump. If the jump is uphill (the error function is increased, ∆E > 0), the jump might be accepted according to an acceptance probability, which, in the case of CSA, is the Boltzmann-Gibbs acceptance probability. This gives rise to the Metropolis criterion for the uphill jump acceptance (Metropolis et al., 1953):

r ≤exp  - E T t  (3)
where T is an artificial temperature and r is a uniform random number lying between 0 and 1. The possibility of uphill moves allows the algorithm to detrap from local minima. With increasing time, the temperature is decreased so that the uphill jump probability decreases, and the system is hopefully in the close vicinity of the global minimum (Kirkpatrick et al., 1983;Tsallis & Stariolo, 1996). CSA has been successfully used in many fields of physics and chemistry and it has been shown that this algorithm will always reach the global minimum provided that the temperature decreases logarithmically with time (Geman & Geman, 1984). However, this last property results in extremely slow convergence rates. Much efforts have therefore been directed towards increasing the convergence speed without increasing the probability of being trapped in a local minimum. Along this line the most efficient algorithm, the GSA algorithm, has been proposed by Tsallis & Stariolo (1996).

Implementation of GSA

Within the framework of GSA we make use of the generalized thermostatistics (Tsallis, 1988) instead of the Boltzmann-Gibbs statistics, so that the Gaussian visiting distribution is replaced with

g qv  x =  q v -1   D / 2   1 q v -1  D-1 2    1 q v -1 - 1 2  [T t] -D / 3-qv [ 1  q v -1   x  2 [T t] 2 / 3-q v  ] 1 / q v -1 D -1 / 2 (4)
where D is the number of fitting parameters (the dimension of the vector x), Γ is the Gamma function and q v ∈ (1, 3) defines the shape of the distribution: for q v → 1 we obtain the Gaussian distribution, q v = 2 corresponds to the Lorentzian distribution and for q v > 2 we obtain 'super-Lorentzian' distributions exhibiting tails decreasing slower than 1/∆x 2 (Fig. 2). With such tails, the parameters occasionally perform very long jumps which ensures a more efficient detrapping as compared to the Gaussian distribution and hence a faster convergence. Such long jumps are known as Lévy flights; the relationships between Lévy distributions and Tsallis statistics have been discussed by Rathie & Da Silva (2008) (see also Alemany & Zanette, 1994;Wilk & Wlodarczyk, 2000;Brouers et al., 2004).

The GSA algorithm implies the generation of random numbers Δx effectively obeying equation 4,

i.e. Tsallis random numbers (instead of a Gaussian random numbers). Up until recently, this was a quite difficult task. In this work we make use of the recently introduced Tsallis random number generator proposed by Schanze (2006) which produces random numbers obeying exactly equation 4:

 x= y s u (5a)
where y is a D-dimensional vector of Gaussian random variables, u is a random variable obeying the gamma γ(1, p) distribution and the parameters p and s are given by

p= 3-q v 2  q v -1 and s=  2  q v -1  T 1 / 3-q v . ( 5b 
)
In implementing equation 5, we make use of the Gaussian and Gamma random number generators included in the SciPy library. The exactness of equation 5 can be assessed by comparing equation 4 with a probability distribution function (pdf) obtained with equation 4 (Fig. 2). It can be seen that the pdf of random numbers generated with equation 5 perfectly matches the expected distribution whatever the value of the shape parameter q v .

At each computing step a new random vector ∆x is generated (using equation 5) and each parameter

x i (i ∈ [1, D]) is modified according to x i,t = x i,t-1 + k i ∆x i (6)
where k i is a scale factor which takes into account the fact that the different parameters may differ by several orders of magnitude. In the present case the weights w i are of the order of unity, whereas the parameter α can be of the order of several hundreds. This modification yields a significant gain in computing efficiency by avoiding the larger parameters to evolve in very small steps.

Within the framework of GSA, the temperature cooling schedule is given by (Tsallis & Stariolo, 1996)

T t =T 0 2 q v -1 -1 1t q v -1 -1 . ( 7 
)
The initial temperature T( 0) is chosen so that the jump for each parameter remains roughly within the range of acceptable values for each parameter. Nonetheless, each time x i exceeds the range of acceptable values, a new ∆x i is generated using equation 5. Moreover, we have found that the efficiency of the algorithm is increased if the temperature is decreased step-wise, each step lasting 100 MCS. This allows the parameter space to be sufficiently explored for each temperature.

Similarly to CSA, a downhill jump is always accepted. A uphill jump is accepted if the generalized

Metropolis criterion is met r ≤ [ 1  q a -1   E T t ] 1/ 1-q a (8)
where q a ∈ (-∞, 1) is the acceptance parameter and r is a uniform random number lying between 0 and 1. For q a < 1 the uphill probability is set to 0 when 1  q a -1   E T t 0 to ensure that the probability lies in the [0,1] range. Notice that q v = q a = 1 corresponds to CSA, whereas q v = 2q a = 2 (i.e. a Lorentzian visiting distribution combined with the classical Metropolis criterion) corresponds to the so-called fast simulated annealing algorithm (Szu & Hartley, 1987). Earlier studies have shown that convergence in faster for q a < 1 (Penna, 1995). A significant improvement of the GSA algorithm has been performed by Xiang et al. (1997). Instead of using a constant q a , they suggested to use a decreasing q a : q a (t) = q a (0) -λt

where λ is a constant (0.85 in the present case). With this modification, for large computing times, the uphill acceptance probability is almost zero (equation 8) so that GSA behaves as a steepest descent -type algorithm. The GSA algorithm used in combination with equation 9 will hereinafter be denoted as improved-GSA (iGSA). The influence of the acceptance parameter on the convergence speed is further discussed in the next section.

In brief, the GSA algorithm can be summarized as follows:

(1) Given a set of parameters [q v , q a (0) and T(0)] generate a random vector of parameters x 0 .

Compute the corresponding error function E 0 (equation 2).

(2)

Using equation 5 generate a random jump of parameters Δx, compute x t (equation 6) and the corresponding error function E t (equation 2).

(3) -If the jump is downhill (E t < E t-1 ), the new configuration is accepted (i.e. replace x t-1 by x t )

-If the jump is uphill (E t ≥ E t-1 ), the new configuration is accepted only if the generalized Metropolis criterion is satisfied (equation 8). Otherwise, the configuration is rejected (i.e.

keep the previous configuration x t-1 ) (4) Decrease T (equation 7) and q a (equation 9) and return to (2) until the maximum number of iterations is reached, t = t max . The algorithm returns the parameters x t corresponding to the lowest error function encountered, E t,min .

Performance of the algorithm

In this section the efficiency of the GSA algorithm, applied to the determination of strain profiles from XRD data, is discussed using sample 1 (corresponding to a fluence of 3.75×10 13 cm -2 ) as an example. For this sample, the implanted thickness was fixed to 200 nm (according to previous results, see Debelle et al., 2010) divided into 5-nm thick layers for the Takagi-Taupin calculation.

Six fitting parameters were used: 5 B-spline weights and the strain / Debye-Waller proportionality constant, α. The shape parameter was fixed to q v = 2.6 and the acceptance parameter was q a = -5 (or q a (0) = -5 when using equation 9). Notice that several (q a , q v ) values have been tested in this work.

We here only retain those (-5, 2.6) that gave the best results for this particular problem (this point is further discussed at the end of this section). For comparison, the results obtained with CSA (q v = q a = 1) are also given.

The evolution of the error function (equation 2) as a function of the computing time is reported in Fig. 3(a), in the case of three successful3 fitting procedures using CSA, standard GSA and iGSA.

For each algorithm several simulations were performed and we present here the best results obtained in each case. In all cases the initial set of parameters is randomly chosen. First of all, it appears that GSA is significantly quicker than CSA: the iGSA algorithm is able to find the global minimum (E = 0.013) in ~200 MCS (6 seconds), whereas an approximate solution (E = 0.014) is found with CSA in ~20 000 MCS (10 minutes). The global minimum is also reached with GSA in ~1000 MCS (30 seconds). Strictly speaking, in the case of CSA convergence is not reached since the error function significantly oscillates, even for long computation times. These oscillations are due to accepted uphill moves which are mandatory to detrap from local minima, but at the same time this possibility increases the computing time. These oscillations are drastically reduced in the case of GSA, because of the negative acceptance parameter which progressively inhibits uphill moves, as shown by equation 8. As a consequence, the convergence speed is significantly increased, as mentioned earlier. This fast convergence is made possible by the long tails of the Tsallis visiting distribution (see Fig. 2 for high q v values) so that efficient detrapping is ensured by 'tunneling' out from local minima. Finally, in the case of iGSA, there is a strict convergence in the sense that the algorithm perfectly remains within the global minimum as soon as this one is reached.

The simulations corresponding to the best solutions obtained with GSA and CSA are reported in Fig. 3(b): an almost perfect agreement is achieved with GSA (an identical simulation is obtained with iGSA), whereas the intensity of the fringes is not perfectly reproduced with CSA. The corresponding strain profiles are given in Fig. 3(c-d) (solid black line). Although the overall shape is similar, there are noticeable differences in the 0-75 nm depth range. Besides, the main issue arises from the fact that in the case of CSA the error function oscillates, even for very long computing times. This makes the reliability of the obtained solution somewhat questionable. This is illustrated in Fig. 3(c-d) where 100 strain profiles (randomly chosen within the last 10 4 cycles, colored dotted curves) are plotted in order to provide an estimation of the confidence limit on the retrieved strain profile. It clearly appears that there is a huge uncertainty range in case of CSA, whereas in the case of GSA the maximum uncertainty on the derived strain profiles is ∆e ~ 0.1%. In the case of iGSA, since the error function remains stable, the uncertainty range is smaller than the line width.

Finally we would like to emphasize that the efficiency of GSA (as compared to CSA for instance)

as well as the appropriate choice of parameters (the shape parameter q v , the acceptance parameter q a , the initial temperature T( 0)) is strongly problem-dependent. Actually, significantly different behaviors have been observed for different types of problems such as fitting ellipsometric curves [START_REF] Zhaoxian | Thin Sol[END_REF] or low-energy electron diffraction patterns (Correia et al., 2005), calculation of the ground-state geometry of clusters (Lemes et al., 1997), electrostatics (Xiang et al., 1997), function minimization (Tsallis & Stariolo, 1996)... The conclusions drawn in the present work (and in others) are hence not general and each problem requires a careful adjustment of the different parameters.

Results and discussion

The iGSA algorithm is now applied to the investigation of the strain depth profiles in Cs-implanted YSZ single crystals. The results of the simulations for all samples studied are given in Fig. 4(a), and the associated strain profiles are displayed in Fig. 4(b). It is worth noticing that a successful simulation has been obtained in all cases. The inspection of the retrieved strain profiles reveals that with increasing the ion fluence (i) the overall width of the implanted region increases, (ii) the magnitude of the strain increases and (iii) the location of the maximum strain is shifted towards higher depths. These observations are in good qualitative agreement with transmission electron microscopy observations and RBS/C experiments (Vincent et al., 2008;Debelle et al., 2010).

The diffraction curves corresponding to samples (1-4) have been simulated using a strain profile comprising 5 (sample 1) or 6 (samples 2 -4) non-zero B-splines and a single strain / Debye-Waller proportionality factor. This latter feature implies that the lattice damage is directly related to the lattice strain and it hence follows the same trends as those (i-iii) mentioned above for the lattice strain. Samples 5 and 6 necessitated a strain profile made of 8 and 10 non-zero B-splines, respectively. Moreover, in these latter cases the simple assumption that the lattice damage is related to the lattice strain did not allow to simulate the diffraction curves. We therefore introduced an independent DW profile based on B-spline functions (similarly to the procedure implemented for the strain profile, equation 1). The B-spline weights corresponding to the strain profile and to the DW profile were refined independently so that the total number of fitting parameters were 16 and 20 for sample 5 and 6, respectively. With this modification, it turned out that the lattice damage is still related to the lattice strain, but it also develops close the surface. This is illustrated in Fig. 4(b)

(for clarity we only show the DW curve corresponding to sample 6). Actually, the position of the minimum DW (i.e. maximum lattice damage) clearly coincides with the position of the maximum strain, but there is an additional 25-nm thick surface layer where the DW factor ranges between 0.3 and 0.8. In order to assess the relevance of this surface damage, we compared the simulations obtained with and without (i.e. the DW factor is kept equal to 0.8 in the corresponding region)

surface damage [see Fig. 4(c)]. The simulation in this latter case clearly fails to reproduce the experimental data, especially in the low angle region. Hence it can be concluded that for the highest fluences, lattice damage not only develops in the core of the implanted region but also close to the surface.

Finally, in Fig. 4(d) we plot the evolution of the maximum lattice strain (e max ) and the maximum lattice damage (given by the minimum value of the DW factor) in the implanted region as a function of the ion fluence. In the case of lattice strain we recover the behavior already observed for this material (Debelle et al., 2010), i.e. the lattice strain first slowly increases between 3.75×10 13 and 3×10 14 cm -2 and then strongly increases between 3×10 14 and 7.5×10 14 cm -2 . The evolution of the maximum lattice damage follows a similar behavior as the maximum strain. In a first step, it remains roughly constant and, as the strain starts to significantly increase, the DW factor strongly decreases. For the highest fluence studied here (7.5×10 14 cm -2 ), the region corresponding to the highest lattice strain is significantly damaged (DW = 0.15). Above 7.5×10 14 cm -2 (5×10 15 cm -2 , data not shown here, see Debelle et al. 2010) a significant strain relaxation is observed, associated with a pronounced decrease of the XRD intensity emanating from the implanted region (which hinders its simulation). This weakening of the XRD intensity is very likely due to the growth of the highly damaged region towards both sides of the damage peak. In other words, the region with a low DW factor extents over a larger depth range instead of being confined within the highly strained region.

At higher fluences (5×10 16 cm -2 ) the amorphization (corresponding to DW = 0) of the implanted region was evidenced by TEM (Vincent et al., 2008). The simulations presented in this work show that this amorphization is not an abrupt process. On the contrary, the lattice damage increases both in magnitude and depth extension until a complete amorphization of the implanted region is reached.

Conclusions

In order to determine the strain profiles (and the associated damage profiles) in implanted single crystals from X-ray diffraction data, we developed a simulation procedure based on the dynamical theory of diffraction, including a B-spline description of the strain profile, and making use of the generalized simulated annealing algorithm. This algorithm allows to find the global minimum of the error function in a few hundreds of computing steps (i.e. a few seconds or tens of seconds depending on the number of parameters).

The proposed procedure has been applied to the study of Cs-implanted YSZ single crystals. We have shown that Cs-implantation gives rise to an inhomogeneous lattice strain and lattice damage distribution in the direction perpendicular to the crystal surface. As the ion fluence increases the magnitude of the strain in the implanted region increases, the width of the strained region increases and the position of the maximum strain is shifted towards higher depths. Since the lattice damage is related to lattice strain, similar conclusions hold for the lattice damage, excepted for the two highest investigated fluences (6×10 14 and 7.5×10 14 cm -2 ) where lattice damage also develops close to the surface.

The simulation procedure developed in this work is obviously not limited to implanted YSZ, but can be efficiently used for the analysis of any type of single crystal or epitaxial heterostructure exhibiting an inhomogeneous strain distribution.

Example strain profile (thick black line) calculated with 5 non-zero basis functions (thin black lines, labeled 1 -5). The weight w of each basis function was taken equal to 0.5. The weight of the last 3 basis functions (dotted line) is fixed to 0 in order to ensure a smooth transition from the implanted region to the virgin region of the crystal.

Figure 2 Probability distribution function of Tsallis random numbers with D = 1 and T = 1 for different values of q v . The theoretical pdf calculated with equation 2 (thin black line) and the experimental pdf calculated from equation 3 (thick gray line) perfectly superimpose. The experimental pdf were computed from 10 6 random numbers with a 0.5 histogram size. All curves are normalized to unit maximum. Since equation 2 is not defined for q v = 1 and q v = 3, the cases q v ~ 1 and q v ~ 3 have actually been computed with q v = 1.01 and q v = 2.99, respectively. (c) Retrieved strain profile in the case of CSA (thick black curve). The dotted colored curves correspond to 100 profiles randomly chosen within the last 10 4 cycles so as to give an estimation of the uncertainty on the retrieved strain profile.
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 3 Figure 3 (a) Evolution of the error function for three different simulations using conventional simulated annealing (CSA, red curve), generalized simulated annealing (GSA, gray curve) and generalized simulated annealing improved with equation 5 (iGSA, black curve). GSA and improved-GSA clearly outperform CSA. (b) Simulation of θ-2θ scans in the case of CSA (upper curve) and GSA or iGSA (both approaches yield the same result, lower curve); black line: experimental data, red line: simulation. The curves are shifted vertically for clarity.
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We have here chosen a simple example with only 6 parameters so that all three algorithms were able to find a solution in a relatively short time. There are cases however, especially for sample 6 for which up to 20 parameters are necessary, where CSA simply failed to find a solution in a reasonable time.
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(d) Retrieved strain profile in the case of GSA and iGSA (thick black curve). The dotted colored curves correspond to 100 profiles randomly chosen within the last 10 4 cycles of the GSA algorithm.

It can be seen that the uncertainty is significantly reduced. In the case of iGSA the uncertainty is smaller than the line width.