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Abstract

The X-ray scattering of partially transformed 3C-SiC single crystals is considered in details. Extended 

diffuse scattering streaks, originating from stacking faults (SFs) lying in the {111} planes, are clearly 

observed in the wide-range reciprocal space maps. The intensity distribution along the diffuse streaks is 

simulated with a model including the contributions of the diffuse scattering originating from the SFs 

[based on the pioneering theoretical description given by Kabra  et al. (J. Mater. Sci. 21, 1654-1666 

(1986))], the coherent scattering emanating from untransformed areas of the crystals, as well as all θ-

dependent terms that affect the scattered intensity (the layer structure factor, the irradiated volume and 

the  polarization  of  the  beam).  The  quantitative  simulation  of  the  diffuse  streaks  reveals  that  the 

transformation occurs through the glide of partial dislocations and allows to derive the transformation 

level. It is shown that the 3C polytype is indeed unstable at high temperature. However, it is further 

shown that defect-free 3C-SiC single crystals remain stable at temperatures where it is known to be 

usually unstable (1900°C). The origin of this apparent stability is very likely of kinetic nature, i.e. the 

lack of crystalline defects inhibits the transformation.
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1. Introduction

Among the  more  than  200 SiC polytypes,  the  cubic  silicon  carbide  (3C-SiC) exhibits  the  highest 

electron  mobility  and isotropic  electrical  properties which make it  the most  desirable  polytype for 

active device applications (Nagasawa  et al., 2008). However, despite decades of studies, the actual 

performances  of  3C-SiC based  devices  have  never  reached the  expected  theoretical  performances, 

mainly because of the too poor 3C-SiC crystals quality. Even in the best free-standing 3C-SiC wafers, 

the defect density still is much higher than in the high-quality commercial 4H or 6H-SiC wafers. It is 

now commonly admitted that this poor crystal quality originates from the high temperatures that are 

required to grow SiC (>1900°C) where the 3C phase is believed to be unstable (Knippenberg, 1963 ; 

Heine et al., 1992 ; Limpijumnong & Lambrecht, 1998). A direct consequence of this instability is that 

the stacking fault (SF) energy is negative at these temperatures (Thomas et al., 2008 ; Lindefelt et al., 

2003) which hence promotes the 3C-6H polytypic transition through the formation and expansion of a 

large number of SFs. The understanding of the physics underlying this phase transition is a key issue 

for the development of high-quality 3C-SiC single crystals.

The most important achievements in the understanding of the 3C-6H transition have been realized in 

the  study  of  polycrystalline  (powdered  or  compacted)  samples  mainly  using  high-resolution 

transmission  electron  microscopy (HR-TEM) as  this  technique  allows  a  direct  visualization  of  the 

stacking sequences and defects in the structure [see Jepps & Page (1983) and references therein]. It has 

also  been  shown  that  the  transformation  in  such  samples  mainly  occurs  through  fast  transport 

mechanisms (e.g.  surface or vapor phase diffusion)  while  much slower solid-state  mechanisms are 

expected in the transformation of large single crystals (Jepps & Page, 1983). The conclusions drawn for 

polycrystalline samples can hence not be used in the study of single crystals. The first attempts to 

clearly identify the mechanism involved in the solid-state 3C-6H transition have been simultaneously 

performed by Jagodzinski (1971) and Krishna & Marshall (1971) both using X-ray diffraction (XRD) 
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rotation  photographs.  Both studies concluded that  the transition occurs in  the solid-state through a 

“layer-displacement” mechanism where a 3C stacking, ...ABCA[BC]ABC..., is transformed into a 6H 

stacking, ...ABCA[CB]ABC... . This re-stacking can be performed by local diffusional rearrangement 

of the Si and C atoms (in the layers indicated by the square brackets) according to a mechanism first 

proposed by Jagodzinski (1954) or by the simultaneous nucleation of three Schockley partials in three 

successive layers (Kabra et al., 1986). The layer displacement mechanism has been suggested by Kabra 

et  al. (1986)  on  the  basis  of  XRD rotation  photographs  and simulations  of  the  diffuse  scattering 

induced by the SFs.

An alternative mechanism has been suggested by Ogbuji et al. (1981) in which three Shockley partial 

dislocations  successively1 transforms  the  initial  3C  structure  into  ...ABCA|CABCA...,  ...ABCAC|

BCAB...  and  finally  ...ABCACB|ABC...  (the  staking  fault  associated  with  the  Shockley  partial  is 

indicated by the bar). At first sight the successive nucleation and growth of three different partials on 

three  consecutive  planes  appears  as  a  highly  unlikely  process.  An  elegant  and  physically  sound 

explanation has been proposed by Pirouz and coworkers (Pirouz, 1989 ; Pirouz & Yang, 1993). In this 

process, a pinned partial dislocation, originating from the dissociation of a screw dislocation lying in a 

given (111) plane, acts as a Frank-Read source and a faulted plane is produced by the displacement of 

the partial dislocation. The successive plane is faulted by the same partial dislocation which underwent 

a double-cross-slip motion and this process is repeated one additional time in order to produce the 

desired 6H sequence. This mechanism is supported by TEM observations (Pirouz & Yang, 1993) as 

well as by ab initio simulations (Käckell et al., 1999).

The purpose of the present article is to revisit  the question of the 3C-6H transition mechanism by 

means of modern XRD techniques, in particular wide-range reciprocal space mapping associated with 

numerical simulations of the diffuse X-ray scattering (DXS). We shall show that a quantitative analysis 

1 This is major difference as compared to the layer-displacement mechanism where the nucleation of three Shockley 
partials occurs in a single unit process.
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of the DXS intensity profiles allows to unambiguously identify the mechanism involved in the 3C-6H 

transition, as well as to determine the transformation level. Details concerning data acquisition and data 

processing are given in section 2. In section 3 we describe in details the methodology used to model the 

DXS  intensity  distribution  and  all  terms  affecting  the  scattered  intensity  (layer  structure  factor, 

irradiated volume, polarisation) are discussed. Finally, in section 4 the transformation mechanisms and 

the influence of the crystal quality on the transformation level are discussed.

2. Experimental details

2.1 3C-SiC single crystals

In the present study we used 10 × 10 mm², 250 µm – thick, commercially available (001)-oriented 3C-

SiC single crystals (HAST Corporation) grown by chemical vapor deposition on “undulant” (001) Si 

wafers (Nagasawa  et al., 2002 ; Nagasawa  et al., 2006). Three different type of crystals have been 

investigated: an untransformed 3C-SiC crystal  and two partially transformed crystals  with different 

initial transformation levels (0.6 and 1.6%). These crystals are then annealed between 1700 and 1900°C 

so as to further promote the 3C-6H transition. The annealing experiments are conducted under 600 

mbar of argon. The surface of the sample is slightly graphitized upon annealing. The graphite layer is 

removed before XRD measurements.

The undulant (001) Si substrates exhibit trenches running parallel to the [1-10] direction resulting in an 

anisotropic fault distribution in the grown 3C-SiC crystals (Nagasawa et al., 2002 ; Polychroniadis et 

al., 2004 ; Boulle et al., 2006 ; Boulle et al., 2007). This orientation corresponds to the high SF density 

direction (Boulle et al., 2006) and it turns out that the 3C-6H transition actually occurs along the [1-11] 

and  [-111].  Conversely,  no  significant  diffuse  scattering  was  observed  for  the  90°  equivalent 

orientation,  indicating  that  the  transformation  does  not  occur  along  [111]  and  [-1-11].  All  results 

presented below hence correspond to the orientation where the transformation is observed.
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2.2 Wide-range reciprocal space mapping

Wide-range reciprocal space maps (RSMs) have been recorded on a home-made laboratory equipment 

based on a rotating Cu anode coupled with a four reflections Ge(220) monochromator and equipped 

with  a  curved  position  sensitive  detector  (PSD)  with  a  120°  angular  aperture  operating  in  8192-

channels mode (that is an average channel size of ~0.015°). A five-movement sample holder allows 

precise  sample positioning.  The X-ray beam impinging  on the sample is  monochromatic  (Cu  Kα1, 

Δλ/λ=1.4×10-4) and parallel in the detector plane (Δθ = 0.0033°) with dimensions 10 × 0.1 mm2 so that 

a large volume of the sample is analyzed which provides statistically significant averaged values. A 

detailed  description  of  the  set-up  has  been  given  elsewhere  (Boulle  et  al.,  2001,  2002).  A RSM 

represents the scattered intensity in a particular (Qx, Qz) plane, where Qx and Qz are the components of 

the scattering vector Q (Q = 4π sinθ / λ) in the film plane and perpendicular to it, respectively. In the 

following experiments, Qx and Qz have been set parallel to the [1-10] and the [001] directions of SiC.

The reciprocal lattice of 3C-SiC together with the incident wave vector K0 and the associated Ewald's 

sphere are represented in Fig. 1(a) (the Ewald's sphere is reduced to a 120°-wide arc so as to match the 

actual angular aperture of the PSD). When the incidence angle ω is varied between ω0 and ω0 + Δω the 

Ewald's sphere spans the range indicated by the shaded area, so that in one single ω-scan we record a 

very  wide  portion  of  the  reciprocal  space,  including  the  (-113)  and  (002)  reflections  of  3C-SiC. 

Because we make use of a PSD, which is regularly gridded on the 2θ scale2, the RSM can not be 

directly recorded as a function of the  Qx and  Qz coordinates (as is now commonly feasible on most 

commercial  X-ray  diffractometers  and  at  synchrotron  radiation  facilities).  Instead,  the  RSMs  are 

recorded as a function of the scanning angles, ω and 2θ, which are then converted into the reciprocal 

2 Strictly speaking, the PSD is not exactly regularly  gridded on the 2θ scale.  The discrepancy between the expected 
angular position of a counting channel and its actual position is known as the integral linearity of the counter and is 
accounted for using a suitable calibration procedure (Boulle et al., 2002 ; Masson et al., 2005).
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lattice coordinates according to:

Q x=4 sinsin −/

Q z=4sin cos−/

A schematic representation of the corresponding data mesh in the reciprocal space is depicted in Fig. 

1(b). For representation purposes and further data processing (line scan extraction, etc.) the data set has 

to be interpolated so as to be regularly gridded in the (Qx,  Qz) frame. This procedure is performed in 

two steps. Firstly the original data set is triangulated using a Delaunay triangulation scheme (Berg et 

al., 2008). Secondly a (Qx, Qz) mesh is generated and the intensity at each node of the mesh is obtained 

by linear interpolation within the corresponding triangle.

The transitions between the different SiC polytypes are most easily understood when considering a 

hexagonal coordinate system where planes of corner-sharing [CSi4] tetrahedrons are stacked along the 

[001]h direction, the in-plane edges of the tetrahedrons being parallel to [100]h, [010]h and [110]h (the 

subscript 'h' refers to 'hexagonal') (Jepps & Page, 1984). In the case of the 3C-6H transition, we shall 

hence describe 3C-SiC using the usual three - layer hexagonal unit cell where the [111]c direction of 

the cubic unit-cell is parallel to the [001]h direction of the hexagonal unit-cell (Warren, 1969). The 

correspondence between the cubic and hexagonal reciprocal lattices is represented in Fig. 2(a). The row 

joining the (002) and the (-113) reflections in the cubic lattice, corresponds to the [10L]h row in the 

hexagonal lattice, so that these reflections are also written (102)h and (105)h, respectively (we conform 

to the usual notation where the hexagonal Miller indices are written in upper case). Hereinafter we shall 

only make use of the hexagonal indices. Since we make use of a three-layer hexagonal unit cell, a given 

(H K L)h reflection corresponds to the (H K 2L) reflection in the actual 6H unit cell.

A typical RSM of a significantly transformed crystal (with a 5.2% transformation level) is shown in 

figure 2(b). A significant diffuse scattering intensity is recorded along the [10L]h row indicating the 

presence of planar defects lying in the hexagonal (001)h basal planes. Besides, the streak labeled 'PSD' 

6



is due to the transmittance function of the PSD (Boulle et al., 2002). This streak lies along the Ewald 

sphere as indicated by the dashed curves in Fig. 1, and it therefore makes an angle of 20.697° with the 

normal to the surface in the case of the (102)h reflection and 61.119° in the case of the (105)h reflection. 

It is worth recalling that this map has been recorded in the same amount of time than a single ω-scan 

without impairing the resolution which is set by the incident beam divergence,  i.e. 0.0033° [except 

along the PSD streak where it is one order of magnitude worse (Boulle et al., 2002)].

We show in the following that the quantitative analysis, by means of numerical simulations, of the 

diffuse  scattering  intensity  located  along  the  [10L]h row  allows  to  obtain  a  detailed  information 

concerning the transformation mechanisms as well as the transformation level. For that purpose, there 

is an undeniable advantage in recording a full reciprocal space map since this allows to extract a line 

scan precisely located along the [10L]h row. We are hence immune to some sample misalignment errors 

(such as an unintentional ω-2θ offset for instance) that would dramatically affect the intensity obtained 

with a single scan, especially because the streak is extremely narrow in the direction perpendicular to 

[10L]h.  Moreover,  in  order  to  improve  the  counting  statistics,  when extracting  the [10L]h scan we 

integrate the intensity in the direction perpendicular to [10L]h so as to include all the intensity contained 

in the diffuse streak [in the direction perpendicular to the (Qx,  Qz) plane the integration is ensured by 

the divergence of the beam (Boulle et al., 2002)].

3. X-ray diffraction from transformed 3C-SiC crystals

The study of one-dimensional disorder in crystals is a longstanding problem which started in the late 

1930s (Landau, 1937; Lifshitz, 1937) and which still remains an active research area. The approach 

which we rely on in this work is based on the concept of non-random faulting introduced to analyze the 

2H-6H transition (Pandey et al., 1980) and extended later to the 3C-6H transition (Kabra et al., 1986). 

However, up until now it was not used in a quantitative way in the sense that it did not permit to fit 
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experimental  diffuse  scattering  profile  in  order  to  obtain,  for  instance,  the  transformation  level  of 

crystals  undergoing the 3C-6H transition.  The main reason for that  was the lack of available  high 

quality XRD data. In the following we shall make use of this approach to simulate the diffuse scattering 

profiles obtained from wide-range reciprocal space mapping experiments. Particular emphasis is laid 

on the description of the experimental factors affecting the shape of the intensity distribution.

Within the framework of the kinematical theory of diffraction (Warren, 1969), the intensity distribution 

along the [10L]h row can be written:

I  L = k⋅P V ∫ dL '⋅R L '  I s L− L ' b (1)

where the scale factor k and the background b are constants for a given set of experimental conditions 

(incident  beam intensity,  counting time...).  P and  V are the polarization and the irradiated volume, 

respectively.  Is(L)  is  the  intensity  diffracted  by  the  sample  which  has  to  be  convoluted  with  the 

resolution of the diffractometer  R(L). The resolution of the diffractometer has been studied in details 

elsewhere (Boulle et al., 2002). In present case it is very well described by a Gaussian function with a 

FWHM (full width at half-maximum) = 0.006 close to  L = 2, and FWHM = 0.01 close to  L = 5, as 

estimated from the width of the coherent peaks of an untransformed 3C-SiC crystal. It should be noted 

however that this broadening has a noticeable effect only in the case of very narrow peaks (as those 

emanating from a perfect single crystal).  The broad diffuse scattering intensity distribution remains 

unaffected  by the resolution  of  diffractometer.  Finally,  it  must  be mentioned that  in  the  case of  a 

significant beam divergence, specific correction must be applied to the measured scattered intensity in 

order to recover the actual intensity distribution along the diffuse streaks (Pandey et al., 1987). These 

corrections originate from the fact that in such a case the measured intensity at given incidence angle 

actually results from the integration of the diffuse streak over a length determined by the divergence of 

the beam. In the present case, because of the excellent beam collimation (0.0033°) such corrections are 

not necessary.
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3.1 Diffuse scattering

As mentioned  earlier,  the  intensity  diffracted  from a partially  transformed crystal  is  calculated  by 

means  of  the  approach  developed  by  Kabra  et  al. (1986).  Within  this  formalism  the  intensity 

distribution along the [10L]h row can be written (see also Holloway, 1969)

I tL=C 2 I c2 1−C 2×ℜ{1
2


∑
n=1

N−1

∑
m=0

n−1

aN−m J n−m exp [−2 i  N−m  L /3 ]−a0 J 0

∑
n=0

N

an exp [−2 i n L/3 ] } (2)

where L is the Miller index corresponding to the 3C hexagonal unit-cell. The first term on the right-

hand side of  equation  (2)  is  the  coherent  part  of  the  scattered  intensity,  the intensity  of  which is 

modulated by a Debye-Waller – like factor (C ∈ [0,1]) which depends on the faulting structure (e.g. on 

the transformation mechanism) and the defect density. The coherent intensity,  Ic, is described in the 

next section. The term ψ² is proportional to the squared structure factor, f², of a single “SiC” layer and 

to  the  intensity  distribution  in  the directions  perpendicular  to  [10L]h (Warren,  1969).  Since  in  the 

present case the intensity is integrated in the direction perpendicular to [10L]h, ψ² reduce to Af², where 

A is the crystal's cross-section in the directions perpendicular to [10L]h. The second term on the right 

hand side of equation (2) is the diffuse scattering due to the presence of faults. The main advantage of 

this formulation is that it does not necessitate an explicit resolution of difference-equation (Holloway, 

1969), but it only requires the expression of the pair correlation function, Jm, and the coefficients of the 

difference-equation,  an  (although this remains a challenging and cumbersome task in many cases). In 

the case of the 3C-6H transition,  both  Jm and  an can be calculated analytically  assuming a certain 

transition mechanism and therefore a particular faulting structure.

For the dislocation-based mechanism it turns out that C = 0 (i.e. the intensity of the coherent peak is 0) 

and N = 6, and the coefficients Jm and an are given by Kabra et al. (1986, p. 1657) :

9



a0 = -τ² ; J0 = 1

a1 = -ωτ(1− τ) ; J1 = (-2τ + τ²ω² + ω)/D1

a2 = 0 ;  J2 = (τ + ω² + τ²ω)/D1

a3 = 0 ;  J3 = (1 – τ)²/D1

a4 = 0 ;  J4 = (1 – τ)(ω - 2τω + τ)/D1

a5 = -ω(1 − τ) ;  J5 = {(1 – τ)[(ω²(1 − 3τ) + 2τ(ω − τ)]  − τ²(1 + 2τ)}/D1

a6 = 1 and ω = exp(2πi/3), D1 = (1 + τ)² + 2τ,

where  τ is  the  transformation  level  (τ =  0  for  the  3C phase  and  τ =  1  for  the  6H phase).  The 

corresponding DXS profile [computed with the above coefficients and equations (1-2) and τ = 0.1] is 

displayed in Fig. 3.

For the layer-displacement mechanism we have C = [(1+2τ)/(1+5τ)]2 and N = 5. The expressions of Jm 

and an are not explicitly given in the above-mentioned reference. However, they can be deduced using 

the approach of Lele (1980) which holds in the case where one of the roots of the difference-equation 

has unit modulus. We obtain

a0 = τω2 ; J0 = [6ω2τ + 3τ 2(1 + ω + 8ω2)]/D2

a1 = τω ; J1 = [-3ω2τ + 3τ 2(ω – 4ω2 − 2)]/D2

a2 = τ ; J2 = [3τ 2(1 − ω)2]/D2

a3 = τω2 ; J3 = [3τ 2(1 + ω − 2ω2)]/D2

a4 = τω ; J4 = [3τ 2(ω + ω2 − 2)]/D2

a5 = 1 and D2 = ω2(1 + 5τ)2.

An  important  assumption  made  in  deriving  equation  (2)  is  that  the  whole  crystal  is  transformed 

simultaneously. However, considering the very large lateral dimensions of the crystals (10×10 mm2) 

this  is very unlikely to happen. Moreover this assumption is contradictory with the analysis,  using 
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Raman scattering, of similar 3C-SiC crystals undergoing the 3C-6H transformation which proved that 

the  transformation  is  initiated  at  the  surface  and then  propagates  into  the  crystal  volume (Yoo & 

Matsunami, 1991; Püsche et al., 2004). In the volume probed with the X-ray beam both transformed 

and untransformed areas certainly co-exist  so that  we finally  write the intensity  scattered from the 

sample as

I s= x t I t1−x t I c (3)

where xt is the volume fraction of transformed material.

3.2 Coherent scattering

Narrow and intense Bragg (coherent) peaks may appear in the [10L]h scan, either as a consequence of a 

non-zero Debye-Waller factor in equation (2) or as a consequence of the existence of untransformed 

regions in the crystal, equation (3). All previous studies on this type of 3C-SiC single crystals (Boulle 

et  al.,  2006 ;  Boulle  et  al.,  2009)  revealed  that  the size of  the domains  over  which diffraction  is 

coherent (mosaic domains) is larger or close to the coherence length of the diffractometer (the inverse 

of the resolution). This result is in good agreement with the derivation of equation (2) which explicitly 

assumes  infinite  crystals,  i.e. there  should  be  no  finite-size  –  induced  broadening  effects.  In  the 

following the mosaic domains have been assimilated to cubes with edge length D. The calculation has 

been performed within the framework of the kinematical  theory of diffraction using the formalism 

described by Boulle, Conchon & Guinebretière (2006). Since the coherent peaks emanate from perfect 

regions of the crystal, the calculation can as well be carried out within the framework of the dynamical 

theory of diffraction (Authier, 2001). The intensity profile corresponding to the coherent diffraction 

from an untransformed region (assuming cubes with D = 6 µm) is depicted in Fig. 3 for the range L = 

1.5 – 5.5. The coherent intensity is obviously not affected by the transformation level of the crystal, so 

that the Bragg peaks are extremely narrow and exactly located at  L = 2 and L = 5, whereas they are 

11



significantly broadened and shifted towards higher  L values in the diffuse intensity  distribution (in 

agreement with the initial calculation of Kabra  et al. (1986)). Moreover, the DXS profile exhibits a 

significant  intensity  contribution  between  the  Bragg  peaks  (which  is  obviously  not  present  in  the 

coherent intensity distribution) which corresponds to the diffuse streaks observed in the RSMs. Finally, 

it should be noted that even in the most transformed crystals analyzed in this work, the mosaic domain 

size still remains as large as 300-500 nm (as estimated from the width of the Bragg peaks), which is 

largely sufficient to yield negligible effects on the DXS profiles. However, this effect must be taken 

into account in the calculation of the coherent profile.

3.3 The layer structure factor

Since we are scanning wide regions of the reciprocal space, the layer structure factor can clearly not be 

assumed as being a constant across the whole range of L. We make use of the classical description of 

close-packed structures where the Si atoms form a hexagonal close-packed layer whereas the C atom 

occupies the tetrahedral void with coordinates (1/3, 2/3, z). In the ideal 2H structure z2H = 1/8, so that in 

the three-layers hexagonal structure we have z3C = (2/3)z2H = 1/12. The layer structure factor writes

f = f Si f C exp[2i  H
3


2 K
3

L z3C] (4)

The atomic scattering factors  fSi and  fC depend on the scattering angle  θ and are computed using the 

method of Waasmaier & Kirfel (1995). Finally, considering the [10L]h row and applying Bragg's law, 

the scattering angle is related to the Miller index L through

=asin  

2a3
8L2 (5)

where a is the cell parameter of 3C-SiC, a = 4.359 Å. The evolution of the squared structure factor is 

depicted in Fig. 3 for the range L = 1.5 – 5.5.
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3.4 The irradiated volume and polarization

We finally consider the effect of the irradiated volume and the polarization of the X-ray beam. Let us 

first consider the intensity dI, diffracted by a volume element dV = Sdz, located at a depth z below the 

surface of the crystal,  Fig.  4. The area  S is related to the X-ray beam cross section  S0 and to the 

incidence angle ω according to S = S0 / sin ω. Making use of Beer-Lambert's law we have 

dI ∝ I 0 exp [−l1l2 ] dV (6)

where I0 is the incident beam intensity, μ is the linear absorption coefficient and l1 + l2 is the path length 

of the beam within the crystal.

The integration of equation (6) over the thickness of the crystal t yields an effective (i.e. accounting for 

absorption) irradiated volume 

V =
S


sin

sin sin − 1−exp {− t [ 1
sin  

−
1

sin −  ]} (7)

where φ = θ – ω is the asymmetry angle. Inspection of Fig. 2b allows to write φ as a function of the 

Miller index L :

=asin  L−2

8L2
sin (8)

and θ is given by equation (5).

The polarization of the beam impinging on the detector is determined by the different Bragg reflections 

encountered.  Whereas the intensity of the  σ – component remains constant, the intensity of the  π– 

component is reduced by a factor cos²θ at each reflection with angle θ (Warren, 1969). Since we are 

using a four-reflection Ge(220) monochromator, the final polarization factor can be written

P=
1cos8Ge(220) cos2

2
(9)

The variations of V and P within the L = 1.5 – 5.5 range are plotted in Fig. 3. It can be seen that the 

13



irradiated volume varies rapidly (more than a factor of 2) in the range  L = 1.5 – 3.5, whereas the 

polarization has more limited influence.

From the previous calculations it appears that the diffuse scattering alone [as given by equation (2)] is 

not sufficient to accurately describe the actual intensity distribution along the [10L]h row. The coherent 

scattering must be taken into account [equation (3)] as well as the different  θ-dependent terms (P,  V 

and f²) that affect the scattered intensity.

4. Application

4.1 Fitting methodology

The scattered intensity distribution is calculated using equations (1-9). The computer program has been 

written using the Python programming language3 together with the SciPy scientific library4. The scale 

factor  k (including all constant terms) and the background  b are determined from the maximum and 

minimum intensity in the experimental [10L]h scan, respectively. The remaining parameters are the size 

of the mosaic domains D, the volume fraction of transformed material xt and the level of transformation 

in the transformed regions τ. The overall transformation level is given by xtτ. The size of the mosaic 

domains  is  straightforwardly  deduced  from the  width  of  the  coherent  peak  so  that  the  only  free 

parameters  in  the  fitting  procedure  are  xt and  τ.  Let  us  examine  how these  parameters  affect  the 

intensity distribution.

Fig. 5 shows the superposition of an experimental and a calculated curve (together with the coherent 

and diffuse components of the scattered intensity) in the vicinity of the L = 2 peak, where it can be seen 

that the model perfectly fits the data in the range of L considered. As expected from equation (3) the 

volume fraction of transformed material only affects the relative intensity of the diffuse and coherent 

components. The value of xt is hence simply obtained by matching the coherent/diffuse intensity ratio. 

3 http://www.python.org/
4 http://www.scipy.org/
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The transformation level  τ only affect the shape of the diffuse intensity distribution, as illustrated by 

the red curves. It turns out that the diffuse scattering is extremely sensitive to this latter parameter: the 

overall shape and the position of the maxima in the diffuse scattering curve are significantly affected by 

the transformation level,  so that  this parameter  is easily obtained by fitting the diffuse part  of the 

scattering profile.

Finally  it  should  be  noticed  that  since  we  are  using  a  gas-filled  PSD  the  intensity  of  the  beam 

impinging on the counter should in principle not exceed ~ 3000 counts/s (in our case), otherwise the 

counting linearity is lost. Despite of that, we preferred not to use beam attenuators, even close to the 

Bragg peaks, since in such a case we would attenuate a whole portion of the reciprocal space and not 

only the region of high intensity. It turned out that close to the L = 5 peak the detector often saturates 

(especially  for  high-quality  crystals),  i.e. the  intensity  exceeds  ~3000 counts/s,  which  leads  to  an 

underestimation of the peak intensity in its close vicinity. Therefore, although the L = 5 peak should 

exhibit  a higher intensity,  its measured intensity is lower than the  L = 2 peak. For that reason, the 

region close to the L = 5 peak is not used in the fitting procedure.

4.2 The transformation mechanism

The experimental  and  simulated  [10L]h scans  of  a  partially  transformed  3C-SiC single  crystal  are 

reported in Fig. 6. Let us first consider the raw (non-annealed) crystal, Fig. 6(a), where the simulation 

is  performed assuming either  the dislocation-based mechanism (full  line) or the layer-displacement 

mechanism (dashed line).  It  can be concluded that  the layer-displacement  mechanism is  unable  to 

correctly describe the experimental data (see for instance the features pointed by the arrows, which are 

on the contrary very well reproduced with dislocation-based mechanism). It can hence be concluded 

that the 3C-6H transition takes place by the glide of partial dislocations. The overall transformation 

level is estimated to  xtτ = 1.6%. The annealing at high temperature (1700°C during 5 hours) further 
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promotes the 3C-6H transition, Fig. 6(b). This confirms that the 3C polytype is indeed unstable at high 

temperatures, since the overall transformation level is increased to xtτ = 5.2%.

At  first  sight  it  might  look surprising that,  although we are  using  the  same theoretical  basis,  our 

conclusions concerning the transformation mechanism are opposite to those of Kabra et al. (1986). This 

can be understood as follows. Firstly, they based their conclusions on the existence in their rotation 

photographs  of  narrow  and  intense  peaks,  so  that  (according  to  section  3.1)  the  only  possible 

mechanism is the layer-displacement mechanism which is indeed characterized by a non-zero Debye-

Waller  factor.  Contrarily  to  Kabra  et  al.,  we  included  in  the  simulation  the  coherent  scattering 

emanating from untransformed regions of the crystal so that the existence of a coherent peak is not a 

relevant criteria in our case. It is hence very likely that the narrow and intense peaks observed by Kabra 

et al. were also due to untransformed parts of their crystals. Secondly, since they were using rotation 

photographs (it must be borne in mind that their work goes back to the 1980s), they were unable to 

access the fine structure of the diffuse scattering. It appears, Fig. 6(a), that a detailed inspection of the 

fine structure of the diffuse scattering is mandatory to be able to conclude about the transformation 

mechanism.

Let  us  briefly  discuss  both  transformation  mechanisms  from  the  point  of  view  of  the  faulting 

probabilities.  In  the  case  of  the  dislocation-based  mechanism  the  initial  3C-type  stacking, 

ABCABCABC, is first transformed (with probability α) into ABCAC1|B2CAB by means of the double-

cross-slip process (the underlined symbols represent the 6H unit cell)5. In this first configuration, after 

the layer B2, there is no guarantee that the 6H unit cell will repeat (i.e. that B2 will be followed by an A3 

layer)  since  this  implies  the  double-cross-slip  motion  to  occur  a  second  time  (with  the  same 

probability) so as to yield ABCACB2|A3BC. It is striking that, although it has been introduced a few 

years  before,  the  probability  tree  derived  by  Kabra  et  al. (p1657)  exactly  corresponds  to  the 

5 For convenience we here make use of the AiBjCk-type stacking symbols, introduced by Pandey (1984), which are used to 
construct the probability trees in Kabra et al. (1986).
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dislocation-based mechanism later  developed by Pirouz (1989). On the contrary, in the case of the 

layer-displacement mechanism, the initial 3C-type stacking is directly transformed (with probability β) 

into ABCA[CB2]A3BC, i.e. the layer B2 is necessarily followed by an A3 layer which ensures at least 

three more layers of 6H type [p1659 in Kabra  et al. (1986)]. The present work hence validates the 

initial calculation of Kabra  et al. and provides an unambiguous determination of the transformation 

mechanism.

4.3 Influence of initial crystal quality

Two additional crystals, with an improved initial crystal quality have been investigated. Sample 2 and 

sample  3  are  characterized  by  a  xtτ =  0.6%  [Fig.  7(a)]  and  xtτ =  0.004%  [Fig.  7(c)]  initial 

transformation level, respectively (to be compared with sample 1 for which xtτ = 1.6%). In both cases, 

the  dislocation-based  model  fits  the  data  fairly  well  which  further  confirms  the  nature  of  the 

transformation  mechanism6.  Sample  2  has  been  annealed  at  a  higher  temperature  than  sample  1 

(1800°C  during  5h),  in  order  to  increase  the  transformation  kinetics  as  compared  to  sample  1. 

Similarly,  sample  3 has  been annealed  successively  at  1800°C during 2 h and 1900°C during 1h. 

Surprisingly,  it  turned out  that,  despite  the higher  temperatures,  sample 2 and sample 3 were less 

transformed than sample 1. Sample 2, Fig. 7(b), exhibits an overall transformation level  xtτ = 3.75%, 

whereas  sample  3  remained  absolutely  unchanged  (xtτ =  0.004% ),  Fig  7(d).  In  other  words,  the 

stability of 3C-SiC at high temperatures is directly dependent on its initial quality: lowering the crystal 

quality results in a lower high-temperature stability. This simple result indicates that, although the 3C 

polytype is unstable at high temperatures, the transformation is limited by the nucleation of crystalline 

defects (i.e. dislocations or stacking faults in the present case). This is in contrast with the study of 

polycrystalline samples (Jepps & Page, 1983) which systematically undergo the 3C-6H transition for 

6 The model fits the data fairly well, excepted at L = 4 where a very weak and narrow peak sometimes appears, the origin 
of which is not completely understood to date.
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temperatures  > 1600°C.  This  discrepancy probably  arises  from the  presence of  surfaces  and grain 

boundaries which, in the case of polycrystalline materials, act as a source of planar defects necessary 

for the transformation. This proves that it should be possible to grow large 3C-SiC single crystals at 

high temperatures, provided that crystalline defects are not introduced during growth.

5. Conclusions

The X-ray scattering from partially transformed 3C-SiC crystals has been quantitatively analyzed using 

wide-range reciprocal space mapping. [10L]h scans extracted from the maps have been simulated with a 

model including the diffuse scattering originating from the defect structure in the transformed crystals, 

the coherent scattering emanating from untransformed areas of the crystals, as well as all θ-dependent 

terms  that  affect  the  scattered  intensity  (the  layer  structure  factor,  the  irradiated  volume  and  the 

polarization of the beam). In particular, we made use of the theoretical calculations of Kabra  et al. 

(1986)  in  order  to  compute  the  DXS  intensity  distribution  in  the  case  of  the  layer-displacement 

mechanism  and  the  dislocation-based  model.  The  quantitative  comparison  of  experimental  and 

calculated [10L]h scans revealed that the transformation occurs through the glide of partial dislocations 

and not by the layer-displacement mechanism. Moreover, we showed that the 3C polytype is indeed 

unstable at high temperature: partially transformed 3C single crystals subjected to high temperature 

annealing tend to transform into the 6H polytype. However, we also showed that (almost) defect-free 

3C-SiC single  crystals  remain  stable  even at  temperatures  at  which  they  are  known to be usually 

unstable. This apparent stability has probably a kinetic origin, i.e. the lack of crystalline defects inhibits 

the transformation. The wide-range reciprocal space mapping technique appears as a simple and highly 

quantitative tool to study the defect structure of single crystals undergoing polytypic transformations.
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Figure caption

Figure 1

(a)  schematic  representation  of  a  portion  of  the  reciprocal  lattice  of  3C-SiC  (dotted  lattice).  The 

accessible reflections are represented as gray spheres (only the reflection in the left-hand side quadrant 

are indexed). The large half-sphere is the sphere of resolution which limits the area accessible with the 

X-ray wavelength. The two gray half-spheres correspond to the Laüe zones which can be accessed in 

the transmission geometry. The red-yellow shaded area is the portion of the reciprocal space that is 

recorded when the incident beam (indicated by the incident wave-vector K0) is scanned from ω = 1° to 

ω = 31°. The bold 120°-wide arcs correspond to the portion of the Ewald sphere associated with the 

PSD. The dashed arcs indicate the position of the Ewald sphere when the (-113) and (002) planes come 

into diffraction. (b) schematic representation of the actual data mesh. Each circle is a measured data 

point. δω and δ2θ are the scanning steps.

Figure 2

(a)  schematic  representation  of  the  cubic  (black)  and hexagonal  (red)  lattices.  K0 and  Ks are  the 

incident and scattered wave vectors.  φ is the asymmetry angle,  i.e. the angle between the scattering 

vector  Q =  Ks –  K0 and the normal to the surface of the crystal, [001]c. The 3C-SiC reflections are 

represented  as  gray  spheres.  The  direction  joining  the  (002)  and  (-113)  reflections  (bold  red) 

corresponds to the [10L]h row.

(b) typical reciprocal space map of a partially transformed (001)-oriented 3C-SiC single crystal (with a 

5.2% transformation level). The diffuse streak joining the (002) and (-113) reflections is clearly visible. 

The angle ψ = 54.74° is the angle between the {001} and the {111} planes of a cubic lattice.
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(c) 12x magnification (in reversed contrast) of the (002) reflection evidencing the two equivalent [-111] 

and  [1-11]  streaks  and the  PSD streak.  Notice  that  despite  the  fact  that  a  very  wide  area  of  the 

reciprocal space is scanned, high-resolution is achieved.

Figure 3

Plot of the different contributions to the [10L]h scan. The coherent (dashed line) and diffuse (solid line) 

are plotted in black (left axis) and the contributions of the structure factor, the irradiated volume and 

the polarization have not been included in the calculation. The curves have been shifted vertically for 

clarity. The squared structure factor (square), the irradiated volume (triangle) and polarization (circle) 

are drawn in red (right axis) and have been normalized to unit maximum. The irradiated volume and 

the structure factor significantly affect the intensity in the range considered, whereas the polarization 

has a less pronounced effect. The vertical dotted lines indicate the positions of the peaks of 6H-SiC.

Figure 4

Schematic  drawing  of  the  diffraction  geometry  when  considering  the  diffraction  from  a  volume 

element dV = Sdz located at a depth z below the surface of the crystal. S0 is the beam cross section and t 

is the thickness of the crystal. l1 + l2 is the path length of the beam inside the crystal.

Figure 5

[10L]h scan in the  L = 1.5-2.5 region of a 5.2% - transformed 3C-SiC crystal (xt = 40%,  τ = 13%). 

Experimental data: black circles; simulation: gray line. The coherent (dashed line) and diffuse (black 

line) components are also shown (divided by a factor 2 for clarity). The red curves labeled +5% and 

-5% correspond to a 5% increase or decrease of the transformation level in the transformed areas.
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Figure 6

(a) experimental (black line) [10L]h scan and simulated scans with the dislocation-based mechanism 

(gray  curve)  and  with  layer-displacement  mechanism  (dashed  curve)  in  the  case  of  partially 

transformed sample (sample 1,  xtτ = 1.6%). The arrows point to characteristic features of the diffuse 

scattering curve that are perfectly reproduced with the dislocation-based model and that are clearly not 

reproduced with layer-displacement mechanism. The curves are shifted vertically for clarity.

(b) [10L]h scan from sample 1 annealed at 1700°C for 5h, the transformation level is now xtτ = 5.2%. 

Black line: experimental data; gray line: simulation. The curves are shifted vertically for clarity. The 

vertical dotted lines indicate the positions of the peaks of 6H-SiC.

Figure 7

(a) [10L]h scan from sample 2 in its initial state (xtτ = 1.6%) and (b) after annealing at 1800°C (xtτ = 

3.75%). (c) sample 3 in its initial state (xtτ = 0.004%) and (d) after annealing at 1800°C and 1900°C 

(xtτ = 0.004%). The vertical dotted lines indicate the positions of the peaks of 6H-SiC.
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