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Corrected curvature measures
∗

J.-O. Lachaud† P. Romon‡ B. Thibert§

July 25, 2019

Abstract

This paper proposes a new mathematical and computational tool for

infering the geometry of shapes known only through approximations such

as triangulated or digital surfaces. The main idea is to decouple the

position of the shape boundary from its normal vector field. To do so, we

extend a classical tool of geometric measure theory, the normal cycle, so

that it takes as input not only a surface but also a normal vector field. We

formalize it as a current in the oriented Grassmann bundle R
3
× S

2. By

choosing adequate differential forms, we define geometric measures like

area, mean and Gaussian curvatures. We then show the stability of these

measures when both position and normal input data are approximations

of the underlying continuous shape. As a byproduct, our tool is able to

correctly estimate curvatures over polyhedral approximations of shapes

with explicit bounds, even when their natural normal are not correct, as

long as an external convergent normal vector field is provided. Finally, the

accuracy, convergence and stability under noise perturbation is evaluated

experimentally onto digital surfaces.

1 Introduction

We address in this paper the problem of defining a notion of curvature on non-
smooth sets, with the goal of estimating the curvatures of a smooth surface
through a non-smooth approximation such as a triangulation or a digitization.
In order to tackle this problem, there are two main issues: (i) the first one
is to define consistent notions of curvatures; (ii) the second is to show that
these newly defined curvatures are stable, namely that one can can estimate
the curvatures of a smooth object from an approximation. This problem has
various applications in computer science, in particular in geometry processing,
computer graphics or digital imaging where discrete surfaces are ubiquitous.
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†Laboratoire de Mathématiques, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc
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There is a long history on the generalization of the curvatures in non-smooth
geometry. One important work on this topic is the seminal paper of H. Fed-
erer [12], who first defined curvature measures for sets with positive reach. This
generalizes the notion of Gaussian and mean curvatures for convex and smooth
objects, but it unfortunately does not apply to triangulations. Using the notion
of normal cycle introduced by Wintgen [34], this notion was then extended to
a wider class of objects including triangulations, digitized objects and subana-
lytic sets [14]. The normal cycle of a general shape in R

n is a current in the
Grassmann bundle Rn×Gr(1, n) (where the Gr(1, n) ≃ S

n−1 factor contains for
the normal cone) that encodes the geometry of the shape and allows to define
curvature measures.

The stability of curvature measures has been well investigated the last 25
years. It is known that the curvature measures of a smooth object can be
approximated by the ones of a triangulation, provided that the points and the
normals of the triangulation are close to the ones of the smooth object [15, 9].
There exist different kinds of stability or convergence results for curvatures
or curvature measures, including anisotropic curvature measures, which were
introduced to estimate principal curvatures and directions [9, 26]. We may also
quote the work of [5] which extend the normal cycle to arbitrary cloud of points
by using offset surfaces, also with stability results. However these approaches
do not provide a sound definition of curvatures when the naive normals do not
converge toward smooth normals [5, 17]. This is the case for instance for the
famous counterexample of the Schwarz lantern (see Section 3.3) that converges
to a cylinder in the Hausdorff sense, but whose normals diverge. It also fails
utterly in the case of digital approximations of surfaces, since the naive normal
vectors take only six different possible values, parallel to the axes.

The key idea of this article is to replace the normal vector field of a surface S
by another vector field u which we assume to be geometrically more meaningful.
For instance if S is a digitization of a smooth surface X, one may take for u

a local average of the naive normals of X. The contribution of the paper is
therefore the following:
− We extend the notion of normal cycle of a surface to a couple (S,u) where
S is a piecewise C1-surface of R3 and u is a piecewise C1 unit vector field and
we call it the corrected normal current N(S,u). Our corrected normal current
N(S,u) allows to define new curvature measures that we call corrected curvature
mesures.
− We derive stability results for our corrected curvature measures with explicit
bounds. In particular, we show that the corrected curvature measures of (S,u)
approximate well Federer’s curvature measures of a smooth surface X, provided
that S is close to X in the Hausdorff sense and that u is close to the normal
vector field of X.
− We apply our results to the digital case and show that that it allows to
define convergent pointwise estimators for the mean and Gaussian curvature
with explicit convergence rates. We show that our estimators outperform also
in practice state-of-the-art methods like digital integral invariants [7].
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Alternative approach with varifolds. Another notable mathematical tool
for representing generic shapes is the varifold, which has been introduced to
solve shape optimization problems like Plateau’s problem [2]. A d-varifold is
a Radon measure on R

n × Gr(d, n), where Gr(d, n) denotes the Grassmannian
manifold of unoriented d-planes in R

n. Its first variation is indeed related to
the mean curvature vector field [1]. Varifolds were recently proposed for surface
approximation and mean curvature estimation in [3].

Both approaches, the one with (corrected) normal cycles and the one with
varifolds, are similar in that they rely on the Grassmann bundle. They dif-
fer however since N(S,u) is an (oriented) integral current which possesses an
additional combinatorial structure, which can be integrated against ambient
invariants forms, yielding all the geometric curvatures, whereas the varifold de-
fined in [3] is by definition unoriented and yields a vector valued mean curvature.
Our framework is therefore less universal (for instance it does not encompass
point clouds, which are a strong focus of the varifold approach). However, our
explicit yet flexible construction allows us to use the homotopy lemma and com-
pute actual convergence rates, which are further refined in a few test cases and
which result in extremely efficient approximation rates. Furthermore, our re-
sults concern both Gaussian and mean curvature and can be extended to deal
with principal curvatures and directions.

Related works in geometry processing. Since accurate geometry estima-
tions is an important step in many geometry processing tasks like sharp fea-
tures extraction, surface approximation, shape segmentation, shape matching
and identification, mesh denoising, the problem of having stable yet accurate
normal and curvature estimations on discrete surfaces has been widely studied.
We mention here some representative approaches.

The first methods for estimating curvatures on polyhedral meshes (generally
triangulated surfaces) were based on local formula using a simple neighborhood
of vertices (e.g. see [33] for a survey). However it was quickly shown that
even the classical angle defect method for Gaussian curvature estimation does
not converge in most of the cases [35]. Polynomial fitting was also popular
to estimate curvatures, but, again, even the popular osculating jets of [4] are
convergent under hypotheses that are not met in practice (like vertices lying on
the ideal continuous surface).

For triangulated meshes, it was noted that convergence of normals was es-
sential for getting convergence of area or other quantities [27]. Other authors
then show the equivalence of convergence of normal fields, metric tensors, area,
and Laplace–Beltrami operator [17]. This induces the weak convergence of mean
curvatures, but only if the naive normals of the mesh are convergent.

Recognizing the weaknesses of local fitting approaches, integral methods
(like in geometric measure theory) were explored also in this field. Integral
invariants were studied as a way to estimate curvatures onto a mesh, by a
proper eigendecomposition of a local covariance matrix [29, 28]. Unfortunately,
this method is sensitive to errors in position. The Voronoi covariance measure
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is another way to compute geometric information from arbitrary compacts [24],
with stability results. It indeed carries information related to curvature, but it
is unclear if it induces pointwise convergence of curvature estimates.

Our work is significantly different from all the previous approaches. Our
definition of curvatures is valid for surfaces that are union of cells homeomor-
phic to a disk, equipped with a vector field that only needs to be C1 per cell.
We provide stability results for curvature measures with respect to a smooth
surface. And given a convergent corrected normal vector field, we exhibit point-
wise convergence for mean and Gaussian curvatures onto digital surfaces. Note
that there exists convergent normal vectors onto digital surfaces [11, 19], so our
mathematical framework is effective and gives convergent mean and Gaussian
curvatures. Last but not least, our experiments show that they are not only
convergent but outperform the state-of-the-art.

Detailed outline of the paper. In Section 2, we formalize this new integral
with currents in R

3×S
2, which we view as the set of couples (position, unit nor-

mal vector). The unit sphere S2 stands for the oriented Grassmannian Gr(1, 3),
the set of unit vectors in R

3. Note that Gr(1, 3) can be identified by duality to
Gr(2, 3), the set of oriented planes. The advantage in using currents is that they
encompass both discrete and continuous objects. To each couple (S,u) where
S is a surface and u a unit vector field along S we associate a current N(S,u)
in R

3 × S
2 (Definition 4). Intuitively we may view the current as a piecewise

smooth oriented 2-surface in R
3 × S

2 ⊂ R
6. In particular, when the vector field

u is the naive normal field of S and S = ∂V is the boundary of a domain of R3,
then N(S,u) corresponds to the normal cycle of V [26]. Then it is known that
the integral of invariant forms over the normal cycle yields the area, mean and
Gaussian curvature integrals over S. (However, the local convergence is only
true when the normal cone approximates the smooth normal, whereas using
N(S,u) gives us the flexibility we need.)

In Section 3, we define our geometric measures, or corrected Lipschitz-Killing
curvature forms as the integral on N(S,u) of the classical invariant forms on
R

3 × S
2 (Definition 5). We further show that these measures have explicit and

simple expressions in the specific but crucial case of polyhedral surfaces and a
corrected normal vector field that is constant per face (Proposition 3). They
reduce to finite sums of quantities attached to each discrete cell of S, i.e. face
for area measure, edge for mean curvature measure, and vertex for Gaussian
curvature measure. We illustrate with the case of the Schwarz lantern, known
to be problematic even for the area, and we show how our corrected measures
give very accurate or even exact curvature measures for several natural choices
of the corrected normal field u.

We then provide in Section 4 a stability result for our corrected curvature
measures (Theorem 1). More precisely, we show that the corrected curvatures
of some (S,u) approximate well the curvature measures of a surface X = ∂V of
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class C2 provided that the surface S is close to X in the Hausdorff sense and
that the vector field u approximates well the geometric normal n of X. This
result relies on several notions of Geometric Measure theory : it uses the notion
of reach [12] introduced by Federer that allows the projection of the support of
N(S,u) onto the one of the normal cycleN(V ); the affine homotopy formula [13]
for currents is a key tool that allows to bound the flat norm between the normal
cycle N(V ) and the corrected normal cycle N(S,u); the result also makes use of
the Constancy theorem [25] that allows to solve multiplicity issues that appear
when projecting the support of N(S,u) onto the one of N(V ).

As a byproduct, in the difficult case of digital surface approximations to
smooth surface, we show that our normalized definitions of mean and Gaussian
curvatures converge pointwise to the mean and Gaussian curvatures of the con-
tinuous surface S, provided u is estimated by a multigrid convergent normal
estimator (Theorem 4). The theoretical convergence speed is O(h

1/3) if h is the
sampling step of the digitized surface, and equals the best known bound for
curvature estimation O(h

1/3) for digital integral invariant method [7].
Following this stability and convergence results, we confront theory with

practice in Section 6 and present an experimental evaluation of our new curva-
ture estimator (defined from curvature measures) in the case of digital surfaces,
which is a good testbed for our framework since naive normals of S never con-
verge toward the normals of the continuous surface X (a problem known as
metrication in the case of the area measure). We show that our estimators out-
perform also in practice state-of-the-art methods like digital integral invariants
[7] and convergence speeds in O(h

2/3) are reached in practice.
We conclude in Section 7 and outline several research directions, especially

the extension of our work to anisotropic curvature measures.

2 Normal cycle corrected by a vector field u

We introduce in this section the notion of corrected normal current for piecewise
C1 surfaces endowed with a vector field in the three dimensional space, called
the corrected normal.

2.1 Corrected surface

We assume in the following that S is a closed piecewise C1 oriented surface
of R3, namely S = ∪ni=1Si where each Si is a compact surface homeomorphic
to a disc. Furthermore, we assume that we have the following combinatorial
structure: (i) each Si is called a face of S; (ii) for every i 6= j, Si,j = Si ∩ Sj
is either empty or a point or a non-degenerated connected C1 curve; when not
empty or reduced to a point, it is called an edge of S; (iii) the intersection of
three (or more) faces of S is either empty or equal to a point that is called a
vertex in the latter case.

Note that the orientation of S is equivalent to having an abstract orientation
of the combinatorial structure. Indeed, each face Si induces naturally an ori-
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entation of its bounding curves Si,j , where j ranges over the faces Sj adjacent
to Si. This orientation turns Si,j into a directed edge, and can be represented
in space by the unit vector field eij along Sij , which is tangent to Si,j . If we
are given a normal vector field ni on Si respecting its orientation, then ni× eij
points toward the inside of Si. Note that the adjacent face Sj induces the
opposite orientation on Si,j : eji = −eij .

We say that u : S \ {Si,j , i 6= j} → S
2 is a corrected normal vector field on

S if: (i) its restriction ui to the relative interior of the face Si is of class C1,
and extends continuously to Si; (ii) along any curve Si,j = Si ∩ Sj , ui and uj
are not antipodal; (iii) at any vertex p = Si1 ∩ · · · ∩ Sik , the corrected normals
ui1 , . . . ,uik lie in the same hemisphere. Note that, in this definition, we do not
require u to be continuous or even defined on the edges.

Definition 1 (Corrected surface). We say that the couple (S,u) is a corrected
surface if S ⊂ R

3 is a surface that satisfies the above assumptions and u is a
corrected normal vector field on S.

Example 1. When S consists of a single C1 face, we can choose the vector u to
be the usual normal vector n. This generalizes easily to a piecewise C1 surface.
The non-degeneracy across vertices or edges prohibits cusps or cuspidal edges.

Example 2. When S is an oriented polyhedral surface, we may choose u to be
the (unit) normal vector on each face. Here again, non-degeneracy across edges
(resp. vertices) means that the dihedral angles are between −π and +π (resp.
is a graph over the plane bounding the hemisphere).

Example 3. We can also consider any C1 unit vector field u along S, even when
S is a polyhedral surface, e.g. S can be a digital surface and u can be a bilinear
interpolation at the normals given at the vertices (in which case u usually ceases
to have unit length throughout, hence should be normalized).

2.2 Combinatorial structure

Starting from the combinatorial structure of the surface S, i.e. the set of its
vertices V , edges E and oriented faces F , together with their incidence relations,
we define a new (abstract) combinatorial surface S∗ over which the corrected
normal current will be constructed. A similar construction exists for convex
polyhedra, and is known under various names: expansion, cantellation or com-
plete truncation. 1

The idea behind the construction is that each inner edge is blown into a
strip (i.e. a combinatorial quadrilateral), while each inner vertex of degree d is
blown into a face with d edges, see Figure 1. More precisely,

• the vertices of V ∗ are the flags {(p, f) ∈ V × F, p ∈ f},

• the edges of E∗ are the flags {(e, f) ∈ E × F, e ∈ f},
1See http://mathoverflow.net/questions/263452
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• the set F ∗ is the set V̊ ∪ E̊∪F , where V̊ (resp. E̊) denotes the set of inner
vertices (resp. edges).

The incidence relations are completely determined by describing the faces as an
ordered list of vertices. Since a face f∗ ∈ F ∗ is either a vertex p, an edge e of a
face f of S, we consider separately all three cases.

• Whenever the face corresponds to an inner vertex p ∈ V , we denote it S∗
p

and let S1, . . . , Sn be an ordered list of the faces incident to p (the order is
induced from the orientation and is unique, up to circular permutation).
Then S∗

p is described by its vertices p∗1, . . . , p
∗
n where p∗i = (p, Si).

• Whenever the face corresponds to an inner edge Si,j = Si ∩ Sj ∈ E,
and Si,j joins the vertices p, q, with the convention that Si induces the
orientation p → q on Si,j , and Sj the opposite orientation. Then S∗

i,j

is the quadrilateral face joining (p∗i , p
∗
j , q

∗
j , q

∗
i ) where p∗k = (p, Sk) and

q∗k = (q, Sk).

• Whenever the face S∗
i corresponds to Si ∈ F , and the vertices of Si (in

order) are p1, . . . , pn, then S∗
i is given by its vertices p∗1, . . . , p

∗
n where

p∗k = (pk, Si).

We slightly modify this definition by dividing all the faces S∗
p into triangles.

More precisely, let S∗
p be a face of S∗ corresponding to a vertex p of S. The

boundary of this face is composed of ℓ = d(p) edges that are common with faces
S∗
i,j and denoted by s1, · · · sℓ,: (i) we add a vertex p∗ at the interior of the face

S∗
p ; (ii) for every 1 ≤ i ≤ ℓ, we add the triangle with vertex p∗ and opposite

edge si; (iii) we add the edges corresponding to these triangles, see Figure 1.

2.3 Corrected Normal Cone

We need to define the notion of corrected normal cone which is the image by a
continuous map of the combinatorial surface S∗ into R

3 × S
2. Its construction

uses the corrected normal u and is done so that the corrected normal cone
inherits the orientation of S∗.

Definition 2. Let (S,u) be a corrected surface and S∗ be the combinatorial
surface of S whose orientation is inherited from S. The corrected normal cone
NC(f∗,u) of a face f∗ of S∗ is defined by:

• if f∗ = S∗
i corresponds to a face Si in S, then NC(f∗,u) = NC(Si,u) is

the image of Si by the map p 7→ (p,u(p));

• if f∗ = S∗
i,j corresponds to an edge Si,j of S, then

NC(Si,j ,u) = {(p, n), for p ∈ Si,j and n ∈ Arc(ui(p),uj(p))},

where Arc(ui(p),uj(p)) denotes the unique geodesic arc (on the sphere)
between ui(p) and uj(p).
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S1

S2 S3

S1,2

S2,3

S3,1

p

S∗
1

S∗
2 S∗

3

S∗
1,2 S∗

3,1

S∗
2,3

S∗
p

S∗
1

S∗
2 S∗

3

S∗
1,2 S∗

3,1

S∗
2,3

Figure 1: Expansion/cantellation at a degree three vertex, followed by subdi-
vision of the face S∗

p corresponding to an original vertex p. The vertex p gives
rise to a new face S∗

p (further subdivided); edges Si,j = Si ∩ Sj give rise to new
quadrilateral faces S∗

i,j ; faces Si yield new faces S∗
i .

• if f∗ is a triangle of S∗
p , then NC(f∗,u) denotes the spherical triangle

with vertices u(p), ui(p) and ui+1(p) of area strictly less than 2π, where
u(p) ∈ S

2 is the normalized average of the ui(p).

Remark that for each oriented face f∗ of S∗, the corrected normal cone
NC(f∗,u) inherits from the orientation of f∗.

Definition 3 (Corrected Normal Cone). The corrected normal cone NC(S,u)
is the polygonal chain built as the sum of the NC(f∗,u), where f∗ ranges over
the faces of S∗.

Remark that for every face f∗, NC(f∗,u) is a surface of class at least C1 in
R

3×S
2. The corrected normal cone NC(S,u) can be seen globally as the image

by a continuous map of the combinatorial surface S∗ into R
3 × S

2. However
it may not be an embedding nor even an immersion over edges and vertices;
indeed, the image may have multiplicity above the vertices, and singularities
above the edges.
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Remark 1. The corrected normal cone NC(S∗
p ,u) above a vertex p of S is

made of d(p) spherical triangles, each of them having u(p) as a vertex. Note
that the algebraic sum of these oriented triangles do not depend on this arbitrary
point u(p). The corrected normal cone NC(S∗

p ,u) can be seen as a set of point
n ∈ {p} × S

2 with an integer multiplicity µ(p).

2.4 Corrected Normal Current

Wemay now define our variant of normal cycle, defined as a current with support
given by the corrected normal cone. For the reader unfamiliar with the notion
of currents, we recall briefly the main notions in Section 4.3.

Definition 4 (Corrected Normal Current). Let (S,u) be a corrected surface.
The corrected normal current N(S,u) of (S,u) associates to every differential
2-form ω of R3 × S

2 the real number

N(S,u)(ω) =
∑

f∗

∫

NC(f∗,u)

ω

where f∗ ranges over all the faces of S∗.

The following proposition is an obvious consequence of the construction but
is the heart of the notion introduced in this paper. Thanks to this property, the
corrected normal current is globally coherent. In particular, this property will
be central in the proof of stability results.

Proposition 1. If S has no boundary, then the corrected normal current N(S,u)
has no boundary.

Proof. By construction NC(S,u) is the continuous image of a combinatorial
surface S∗. This comes from the coincidence of incident faces along their bound-
aries. Now, if S has no boundary, neither does S∗, nor N(S,u).

Remark 2. Whenever S = ∂V is a piecewise smooth or planar surface, which
is the boundary of a domain in R

3, and u is chosen as the unit normal on faces
pointing toward the outside, then N(S,u) coincides with the normal cycle N(V )
of S [14, 36]. The corrected normal current thus generalizes the normal cycle.

Remark 3. For the sake of consistency and subsequent proofs, we have assumed
that the vector field u has unit length. Note that it is sometimes useful to relax
that requirement to nonzero vector fields, for example when using linear inter-
polation to construct a smooth vector field from few samples. Indeed unit length
is not required to define the corrected normal cone over a face of Si. However
over an edge Si,j or a vertex, it asks for different interpolation formulas, which
we will not delve into in this article. Nevertheless, if u is continuous, edge and
vertex contributions have zero Lebesgue measure, and the integral formulas be-
low can be defined. Moreover they will converge to the same limit as u tends to
the smooth normal n, even if u is not of unit length. This case will be illustrated
in a forthcoming article.
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θ

Figure 2: The corrected normal current of a planar curve, seen as a discrete
curve in R

3. The Grassmann bundle R
2 × Gr(1,R2) = R

2 × S
1 is represented

as R
3 where the third coordinates is the angle θ. The smooth planar curve is

a circular arc lifting to a piece of a helix. Its approximation by a digital curve
can be lifted as the normal cycle (in purple), in which case the normal on each
edge follows the axes (hence lies at height kπ/2 for some integer k); therefore
the extra circular arcs at the vertices are vertical edges of length ±π/2. On
the contrary, corrected normals on the digital curve are closer to the smooth
normals; as a result, the corresponding lift (in blue) is also closer to the helix
in R

3, and the vertical edges are shorter. Obviously, the corrected current is
closer to the smooth lift. Note that the combinatorial structure of the current
is extremely simple: each vertex is blown into an edge.

3 Corrected curvature measures

Our goal is to obtain geometric information on the surface S, namely its area
and curvatures, which are independent of the position of S in space. It is
classically known in the smooth case that the area and curvature measures can
be computed by integrating the invariant forms on the normal cycle; it also
extends to discrete surfaces (see [14]). These invariant forms [34, 36] form a
basis of the 2-forms in R

3 × S
2 that are invariant by the action of the rigid

motions of R
3. They yield the area, the mean curvature and the Gaussian

curvature.

3.1 Invariant forms, curvature measures, curvature esti-

mators

Let us now recall the expression of the invariant differential 2-forms of R3 × S
2

(see [26] for more details). Let (p,w) be any point in the oriented Grassmann
bundle R

3 × S
2. Clearly the tangent plane of R3 × S

2 at the point (p,w) is a
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space of dimension 5 spanned by the following vectors

ε1 =

(

e1
0

)

ε2 =

(

e2
0

)

ε3 =

(

w

0

)

ε̃1 =

(

0
e1

)

ε̃2 =

(

0
e2

)

,

where e1 and e2 are any vectors such that (e1, e2,w) form a direct orthonormal
frame of R3. The set of differential 2-forms of R3 × S

2 that are invariant under
the action of rigid motions is a vector space of dimension four spanned by the
following forms

ω0 = ε♭1 ∧ ε♭2, ω1 = ε♭1 ∧ ε̃♭2 − ε♭2 ∧ ε̃♭1, ω2 = ε̃♭1 ∧ ε̃♭2, ωΩ = ε♭1 ∧ ε̃♭1 + ε♭2 ∧ ε̃♭2

where ε♭(ξ) denotes the scalar product of ε and ξ.

Definition 5. Let k ∈ {0, 1, 2,Ω}. The kth Lipschitz–Killing corrected cur-
vature measure of S with respect to u associates to every Borel set B the real
number

µk(B) :=

∫

NC(S,u)∩π−1(B)

ωk,

where π : R3 × S
2 → R

3 denotes the projection on the position space.

Remark 4. When S is smooth and u = n the standard normal, µ0 is the area
density dA, while µ1 and µ2 are respectively the mean curvature and Gaussian
curvature densities, −2H dH2 and K dH2 (up to a scalar factor). This result is
reproven below.

Remark 5. The measure µΩ induced by the symplectic form ωΩ plays a different
role. Instead of measuring metric data, it tests whether a surface in the R

3×S
2

is indeed the normal bundle of a surface in R
3. Quite logically, it vanishes

identically on smooth surfaces as soon as u = n. For an approximated surface,
it measures how far the corrected normal u is from being normal to the faces.
While pointwise never true, its averaged value yields a measure of the quality of
the choice of corrected normal.

In order to recover classical geometric invariants, we further define:

Definition 6. For any Borel set B such that µ0(B) 6= 0, the normalized
corrected mean curvature Ĥu of S with respect to u is defined as Ĥu(B) :=
µ1(B)/µ0(B), and the normalized corrected Gaussian curvature Ĝu of S with
respect to u is defined as Ĝu(B) := µ2(B)/µ0(B).

3.2 Calculation of the corrected curvature measures

Let (S,u) be a corrected surface. We recall that S = ∪ni=1Si is a union of faces
of class C1, that the edges Si,j are of class C1 and the set E(S) of edges of S is
finite. The surface S is oriented. In order to state the proposition we need to
introduce the following notations.
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Notations. At every point p of the interior of a face Si, we denote by n(p) the
unit oriented normal vector, by TpS the plane tangent to S, by e1(p) a vector
of TpS given by e1 = (n × u)/‖n × u‖ if n and u are not colinear, and given
by one of the principal directions otherwise. We also introduce e2 = u× e1 and
e′2 = n × e1 ∈ TpS. Note that (e1, e2,u) is a moving frame of R3 associated
with u, while (e1, e

′
2,n) is a Darboux frame associated to the surface Si.

At every point p on an edge Si,j , we denote by e(p) = eij(p) the unit vector
along the edge Si,j oriented2 as the boundary of Si, by Ψ(p) = ∠(ui(p),uj(p))
the corrected dihedral angle between the faces Si and Sj , and e1(p) = (ui ×
uj)/‖ui × uj‖. (The last vector is only defined when ui(p) and uj(p) are not
collinear; however, whenever that happens, Ψ(p) vanishes andNC(p,u) drops in
dimension, hence does not contribute to the integrals. Without loss of generality,
we will assume that e1 is always well-defined.)

In order to integrate differential forms over manifolds (more details are pro-
vided in Section 4.3), we will use the notion of Hausdorff measure. In the
following, we denote by Hm the m-dimensional Hausdorff measure.

Proposition 2. The corrected Lipschitz–Killing curvature measures of S with
respect to u associates to every Borel set B the quantities

µ0(B) =

∫

B∩S
〈u | n〉 dH2,

µ1(B) =

∫

B∩S

(

〈du · e ′
2 | e2〉+ 〈u | n〉 〈du · e1 | e1〉

)

dH2

+
∑

i 6=j

∫

Si,j∩B
Ψ 〈e | e1〉 dH1,

µ2(B) =

∫

B∩S

(

〈du · e1 | e1〉 〈du · e ′
2 | e2〉 − 〈du · e1 | e2〉 〈du · e ′

2 | e1〉
)

dH2

+
∑

i 6=j

∫

B∩Si,j

〈(ui − uj)× e1 | de1 · e 〉dH1

+
∑

p∈B∩E(S)
Area(NC(p,u)),

µΩ(B) =

∫

B∩S

(

〈du · e ′
2 | e1〉 − 〈u | n〉〈du · e1 | e2〉

)

dH2 +

∫

Si,j

〈e | ui − uj〉dH1,

where Area(NC(p,u)) is the sum of the algebraic areas of each spherical triangle
where the sign is induced by its orientation.

Proof. We recall that u is of class C1. The measures have absolutely continuous
and atomic parts; by additivity of the integral, we may consider separately the
contributions of faces, edges and vertices.

2so that eji(p) = −eij(p).
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Above the faces. Remark that for any face Si of S the map Γu : p ∈
Si 7→ (p,u(p)) is a diffeomorphism between Si and the corrected normal cone
NC(Si,u). The change of variable formula implies that

µk(B ∩ Si) =

∫

NC(Si,u)∩π−1(B)

ωk =

∫

Γu(B∩Si)

ωk =

∫

B∩Si

Γ ∗
u
ωk

Hence, the computation of the curvature measures amounts to computing the
pull-back by Γu of the corresponding curvature forms. In order to do that, we
consider the orthonormal frame (e1, e

′
2) of the tangent plane TpS at p. Using

the fact that dΓu(p) = (Id, du(p)), one gets

Γ ∗
u
ω0(e1, e

′
2) = ω0(dΓu(p) · e1, dΓu(p) · e′2)

= ε♭1 ∧ ε♭2((e1, du · e1), (e′2, du · e′2))

=

∣

∣

∣

∣

〈e1 | e1〉 〈e1 | e2〉
〈e′2 | e1〉 〈e′2 | e2〉

∣

∣

∣

∣

= 〈e′2 | e2〉
= 〈u | n〉.

Similarly, we evaluate Γ ∗
u
ω1 and Γ ∗

u
ω2 in the same basis.

Γ ∗
u
ω1(e1, e

′
2) = (ε♭1 ∧ ε̃♭2 − ε♭2 ∧ ε̃♭1) ((e1, du · e1), (e′2, du · e′2))

=

∣

∣

∣

∣

〈e1 | e1〉 〈du · e1 | e2〉
〈e ′

2 | e1〉 〈du · e ′
2 | e2〉

∣

∣

∣

∣

−
∣

∣

∣

∣

〈e1 | e2〉 〈du · e1 | e1〉
〈e ′

2 | e2〉 〈du · e ′
2 | e1〉

∣

∣

∣

∣

=

∣

∣

∣

∣

1 〈du · e1 | e2〉
0 〈du · e ′

2 | e2〉

∣

∣

∣

∣

−
∣

∣

∣

∣

0 〈du · e1 | e1〉
〈u | n〉 〈du · e ′

2 | e1〉

∣

∣

∣

∣

= 〈du · e ′
2 | e2〉+ 〈u | n〉 〈du · e1 | e1〉

Γ ∗
u
ω2(e1, e

′
2) =

∣

∣

∣

∣

〈du · e1 | e1〉 〈du · e1 | e2〉
〈du · e ′

2 | e1〉 〈du · e ′
2 | e2〉

∣

∣

∣

∣

= 〈du · e1 | e1〉 〈du · e ′
2 | e2〉 − 〈du · e1 | e2〉 〈du · e ′

2 | e1〉

Finally,

Γ∗
u
Ω(e1, e

′
2) = (ε♭1 ∧ ε̃♭1 + ε♭2 ∧ ε̃♭2) ((e1, du · e1), (e′2, du · e′2))

=

∣

∣

∣

∣

〈e1 | e1〉 〈du · e1 | e1〉
〈e ′

2 | e1〉 〈du · e ′
2 | e1〉

∣

∣

∣

∣

+

∣

∣

∣

∣

〈e1 | e2〉 〈du · e1 | e2〉
〈e ′

2 | e2〉 〈du · e ′
2 | e2〉

∣

∣

∣

∣

=

∣

∣

∣

∣

1 〈du · e1 | e1〉
0 〈du · e ′

2 | e1〉

∣

∣

∣

∣

+

∣

∣

∣

∣

0 〈du · e1 | e2〉
〈u | n〉 〈du · e ′

2 | e2〉

∣

∣

∣

∣

= 〈du · e ′
2 | e1〉 − 〈u | n〉〈du · e1 | e2〉

13



Above the edges. Let p : [0, L] → Si,j be the arc length parameterization
of Si,j that satisfies ṗ(t) = e(p(t)) (the dot denoting the derivative w.r.t. t).
Then the corrected normal cone NC(S,u) ∩ π−1(Si,j) above the edge Si,j can
be parameterized by

φ : [0, L]× [0, 1] → NC(S,u) ∩ π−1(Si,j)
(s, t) 7→ (p(t),v(s, t))

with

v(s, t) = cos(sΨ(p(t)))ui(p(t)) + sin(sΨ(p(t))) e1(p(t))× ui(p(t)).

Note that the map φ preserves the orientation. In order to shorten the equa-
tions below, we often (but not always) omit to specify that the quantities are
considered at the point p or p(t). Note also that the reference frame at (p,v) is
(e1, e2,v), where e2 = v × e1. Finally,

v̇ =
∂v

∂t
= cos(sΨ)dui · e+ sin(sΨ)d(e1 × ui) · e+ sλe2

where λ = ∂(Ψ ◦ p)/∂t, while ∂v/∂s = −Ψe2. We then get

µ1(Si,j) =

∫

NC(S,u)∩π−1(Si,j)

ε♭1 ∧ ε̃♭2 − ε♭2 ∧ ε̃♭1

=

∫ L

0

∫ 1

0

(ε♭1 ∧ ε̃♭2 − ε♭2 ∧ ε̃♭1)

(

∂φ

∂s
(s, t),

∂φ

∂t
(s, t)

)

dsdt

=

∫ L

0

∫ 1

0

(ε♭1 ∧ ε̃♭2 − ε♭2 ∧ ε̃♭1) ((0,−Ψe2), (e, v̇)) dsdt

=

∫ L

0

∫ 1

0

(
∣

∣

∣

∣

0 −Ψ〈e2 | e2〉
〈e | e1〉 〈v̇ | e2〉

∣

∣

∣

∣

−
∣

∣

∣

∣

0 −Ψ〈e2 | e1〉
〈e | e2〉 〈v̇ | e1〉

∣

∣

∣

∣

)

ds dt

=

∫ L

0

Ψ(p(t))〈e(p(t)) | e1(p(t))〉 dt

=

∫

Si,j

Ψ(p) 〈e(p) | e1(p)〉 dH1(p).

We may note that µ0 vanishes identically above the edges, since Span( ∂φ∂ψ ,
∂φ
∂t )

projects to a line on the position component. Note that this calculation can be
easily localized over a Borel set B: if we calculate µ1(B ∩ Si,j), it amounts to

14



add the indicator function of B in the integrand. Similarly, one gets

µ2(Si,j) =

∫

NC(S,u)∩π−1(Si,j)

ε̃♭1 ∧ ε̃♭2

=

∫ L

0

∫ 1

0

ε̃♭1 ∧ ε̃♭2 ((0,−Ψe2), (e, v̇)) dsdt

=

∫ L

0

∫ 1

0

∣

∣

∣

∣

−Ψ〈e2 | e1〉 −Ψ〈e2 | e2〉
〈v̇ | e1〉 〈v̇ | e2〉

∣

∣

∣

∣

dsdt

=

∫ L

0

∫ 1

0

Ψ〈v̇ | e1〉dsdt

=

∫ L

0

∫ 1

0

Ψ〈cos(sΨ)dui · e+ sin(sΨ)d(e1 × ui) · e | e1〉dsdt

=

∫ L

0

〈sinΨdui · e+ (1− cosΨ)d(e1 × ui) · e | e1〉dt

=

∫ L

0

(

sinΨ〈dui · e | e1〉+ (1− cos(Ψ)〈d(e1 × ui) · e | e1〉
)

dt

By differentiating the expression 〈ui | e1〉 = 0, we write 〈dui · e | e1〉 = −〈ui |
de1 · e〉. Similarly, one has 〈d(e1 × ui) · e | e1〉 = −〈e1 × ui | de1 · e〉. Using in
addition that ui = (e1 × ui)× e1, we see that

µ2(Si,j) = −
∫ L

0

sinΨ〈ui | de1 · e〉+ (1− cosΨ)〈e1 × ui | de1 · e〉dt

= −
∫ L

0

〈sinΨui + (1− cosΨ)(e1 × ui) | de1 · e〉dt

= −
∫ L

0

〈
(

sinΨe1 × ui + (cosΨ− 1)ui
)

× e1 | de1 · e〉dt

= −
∫ L

0

〈(uj − ui)× e1 | de1 · e〉dt

= −
∫

Si,j

〈(uj − ui)× e1 | de1 · e〉 dH1
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Finally,

µΩ(Si, j) =

∫

NC(S,u)∩π−1(Si,j)

ε♭1 ∧ ε̃♭1 + ε♭2 ∧ ε̃♭2

=

∫ L

0

∫ 1

0

(ε♭1 ∧ ε̃♭1 + ε♭2 ∧ ε̃♭2) ((0,−Ψe2), (e, v̇)) dsdt

=

∫ L

0

∫ 1

0

(
∣

∣

∣

∣

0 −Ψ〈e2 | e1〉
〈e | e1〉 〈v̇ | e1〉

∣

∣

∣

∣

+

∣

∣

∣

∣

0 −Ψ〈e2 | e2〉
〈e | e2〉 〈v̇ | e2〉

∣

∣

∣

∣

)

dsdt

=

∫ L

0

∫ 1

0

〈e | Ψe2〉dsdt = −
∫ L

0

∫ 1

0

〈e | ∂v
∂s

〉dsdt

=

∫

Si,j

〈e | ui − uj〉dH1

Above the vertices. When p is a vertex, its contribution is restricted to µ2,
since the position is constant in NC(p). Since ω2 measures the area in the
velocity component, the vertex adds a Dirac mass at p to µ2, with coefficient
equal to the (signed) area of NC(p).

Remark 6. In the smooth case, there are no edges nor vertices, and taking
u = n (and hence e′2 = e2), the formula simplify. We recover

µ0 = dH2 , µ1 = Trace(dn) dH2 = −2HdH2 and µ2 = det(dn) dH2 = KdH2

while
µΩ = (〈dn · e2 | e1〉 − 〈dn · e1 | e2〉)dH2 = 0

since dn is symmetric on TpS.

Remark 7. Similarly to [9], we can consider a vector-valued equivariant two-
form on the Grassmann bundle defined for each fixed pair of vectors X,Y ∈ R

3.
This leads to an anisotropic curvature measure µX,Y which converges to the
second fundamental form by the same theorems in Section 4. Study of this
measure allows to compute and approximate principal curvatures and principal
directions. This will be the topic of a forthcoming article.

In the case of polyhedral surfaces with a normal constant per face, we have
the following simplifications, which we will use in our experiments (section 6).

Proposition 3. Let S be a polyedral surface and u a vector field constant on
each planar face of S. Then the corrected Lipschitz–Killing curvature measures
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Figure 3: The Schwarz lantern. The vertical cylinder of height h and radius r
is cut horizontally along m+ 1 evenly spaced circles; each circle is replaced by
a regular n-gon (here m = 6 and n = 7). However, consecutive polygons are
not parallel but rather obtained one from another by a screw motion of vertical
translation h

m and angle π
n . Any vertex is connected to the two nearby vertices

above and the two nearby vertices below (except for the top and bottom levels).

are

µ0 =
∑

f

cosα(f) dH2,

µ1 =
∑

Si,j

Ψ 〈e | e1〉 dH1 =
∑

Si,j

Ψ

sinΨ
det(e,ui,uj) dH1,

µ2 =
∑

p

area(NC(p)) δp,

µΩ =
∑

Si,j

〈e | ui − uj〉 dH1,

where α(f) is the angle between the corrected normal u and the naive normal n,
Ψ is the oriented angle between the corrected normal ui and uj incident to the

edge Si,j and e1 =
ui×uj

‖ui×uj‖ , while e is the oriented unit tangent to the edge.

3.3 The Schwarz lantern

To illustrate the remarkably fast rate of convergence of our approach, let us
apply it to the Schwarz lantern L, a C0 approximation by triangles of a cylinder
C of radius r and height h, known for its failure to converge in curvature and
even area (see Fig. 3.3). The failure occurs because the normals do not converge
to the cylinder’s (see [26] for the definition of the Schwarz lantern and an analysis
of the problem). We will use two different choices of corrected normals on the
Schwarz lantern.

We first consider the corrected normals to be constant on each triangle T
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and equal to the cylinder’s at the top (or bottom) of the triangle. Then the
angle α between the corrected normal and the face’s normal satisfies tanα =
2mr
h sin2 π

2n , so that the corrected area of the lantern is

∫

T

µ0 = cosα area(T ) = cosα× 1

2
× 2r sin

π

n
× h

m

√

1 + tan2 α =
rh

m
sin

π

n
,

∫

L

µ0 =

m
∑

i=1

2n
∑

j=1

rh

m
sin

π

n
−→
n→∞

2πrh = area(C) independently of m.

Edges are either horizontal, in which case the corrected normal is identical on
the faces above and below, or slanted, in which case the two normals ui,uj are
horizontal (so that e1 = ui × uj is vertical) and at angular distance Ψ = π/n.
For an edge e, the scalar product 〈e | e1〉ℓ(e) is then h/m, thus µ1(e) = πh

nm .
Since there are exactly 2nm such edges,

∫

L
µ1 = 2πh = 2

∫

C
1
2rdA. Finally, at a

vertex p, the corrected normals are all horizontal, so that NC(p) has measure
zero, as expected. We have thus an exact result for the mean and Gaussian
corrected curvature measures and a O(1/n) convergent one for the area.

Now consider the same triangulation with a different corrected normal u,
defined as follows: at every vertex, it is the same (horizontal) normal as the
one to the cylinder; along edges and faces, it is defined by linear interpolation
followed by normalization to one. It is easy to see that these normals coincide
with the normal to the cylinder of the horizontal projection π on C: u(p) =
r−1π(p). On a face, e1 = u× n and e′2 = n× e1. Since dπ is the projection to
the tangent plane to the cylinder, we have that du · e1 = r−1e1 and du · e′2 =
r−1〈u | n〉 e2.

The field u being continuous on the edges and at the vertices, the curvature
measures are carried only by the faces. Using Proposition 2, we get:

• the corrected area measure µ0 = 〈u | n〉 dH2 is no other than the pullback
of the area form on the cylinder by the horizontal projection, i.e. π∗dAC ;
hence µ0 measures the area of the projected lantern L onto the cylinder
C, and globally gives exactly the area of the cylinder,

• for µ1, we have that

µ1 = 〈du · e ′
2 | e2〉+ 〈u | n〉 〈du · e1 | e1〉dH2 =

2

r
〈u | n〉dH2 =

2

r
µ0;

hence we obtain exactly the mean curvature density of the cylinder,

• the corrected Gaussian curvature measure is also a pullback; but we may
directly notice that the corrected normal is horizontal, hence stays on the
equator of S2; therefore µ2 vanishes identically as in the previous example.
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4 Stability of the corrected curvature measures

We show in this section that the corrected curvatures of (S,u) approximate well
the curvature measures of a surface X of class C2 provided that the surface S
is close to X in the Hausdorff sense and that the vector field u approximates
well the normal nX of X.

In order to be able to compare the two surfaces S and X, one first need to
recall the notion of reach introduced by Federer [12]. Remark that this notion
was originally introduced in order to define the notion of curvature measures.

4.1 Background on sets with positive reach

The distance function dK of a compact set K of Rd associates to any point x of
R
d its distance to K, namely dK(x) := miny∈K d(x, y), where d is the Euclidean

distance on R
d. For a given real number ε > 0, we denote by Kε := {x ∈

R
d, dK(x) ≤ ε} the ε-offset of K. The Hausdorff distance dH(K,K ′) between

two compact sets K and K ′ is the minimum number ε such that K ⊂ K ′ε and
K ′ ⊂ Kε.

The medial axis of K is the set of points of x ∈ R
d such that the distance

d(x,K) is realized by at least two points y and y′ in K. The reach of K, denoted
by reach(K), is the infimum distance between K and its medial axis. As a
consequence, whenever the reach is positive and ε < reach(K), the projection
map

πK : Kε → K

is well-defined. It is well know that smooth compact submanifolds have positive
reach [12, 26]. The following proposition will be useful for stating our main
theorem.

Proposition 4. Let X be a compact submanifold of class C2 of Rd. Then

0 < reach(X) ≤ 1/ρX ,

where ρX is the largest absolute value of the principal curvatures of X. Further-
more πX is differentiable on Xε for any ε < reach(X) and

∀x ∈ Xε ‖DπX(x)‖ ≤ 1

1− ρX(πX(x))ε
,

where ρX(x) is the largest absolute value of the principal curvatures of X at the
point x.

4.2 Stability result

We provide in this section a stability result on the curvature measures, namely
we show that the corrected curvature measures of (S,u) approximate the cur-
vature measures of X provided that S and X are close in the Hausdorff sense
and that u is close to the unit normal vector of X. In order to state the result,
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we denote by µS,uk the corrected curvature measures of (S,u) and by µXk the
curvature measures of X, where k ∈ {0, 1, 2,Ω}. Note that the curvature mea-
sures of X coincide with the corrected curvature measures of (X,n) where n is
the geometric oriented unit normal of X.

Theorem 1. Let X be a compact surface of R3 of class C2, of normal vector n,
bounding a volume V , and S = ∪iSi be a piecewise C1,1 surface bounding a
volume W , u a corrected normal vector field on S. We assume the following
two conditions:

• there exists an open set U such that πX : U ∩ S → X is injective.

• ε := dH(S,X) < reach(X) is the position error.

Then the corrected curvature measures of (S,u) are close to the curvature mea-
sures of X in the following way: for any connected union B = ∪i∈ISi of faces
Si of S, one has

|µS,uk (B)− µXk (πX(B))| ≤ 4 (η + ε)

(

max(1, ρB)

1− ρBε

)2

(

(1 + L2
u
) (H2(B) +H1(∂B)) +

δ2
u
d3max

2π
NS
v (B)

+ 2 arcsin

(

δu
2

)

(

∑

Si,j⊂B
H1(Si,j) + dmaxN

S
v (∂B)

))

,

where δu = supi∼j supp∈Si,j
‖ui(p) − uj(p)‖ (i ∼ j whenever Si is adjacent to

Sj), η := supp∈S ‖u(p) − n(πX(p))‖ is the normal error, ρB is the maximum
absolute value of the principal curvatures of X ∩ πX(B), Lu is the maximum
of the Lipschitz constants of u over each face Si, dmax is the maximum vertex
degree, NS

v (B) and NS
v (∂B) are the number of vertices of S that respectively

belong to B and ∂B.

Remark 8. It may seem quite restrictive to evaluate the measures µS,uk and µXk
on union of faces instead of generic Borel sets. In particular, these faces may
be large, which contradicts the idea behind the normalized corrected curvature
Ĥu(B) and Ĝu(B) of Definition 6. However, the faces can be subdivided at
leasure in order to give neighborhoods as small as necessary (extra edges and
vertices will carry no curvature). Working on faces ensures a minimum of
regularity in our theorem, without loss of generality.

Theorem 1 allows us to estimate the rate of convergence of curvature mea-
sures for a sequence of approximations (Sk,uk) together with their corrected
normals vector fields. However, some terms may prove difficult, especially
NS
v (B) and NS

v (∂B) which will tend to infinity very fast. We give below two
corollaries of the previous stability result. The first one is specific to the case
where the corrected normal field u is continuous. The second case concerns
digital surface approximations, where u is constant per face.
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Corollary 1. Under the same assumptions as in Theorem 1, if u is continuous
over the whole surface S, one has:

|µS,uk (B)−µXk (πX(B))| ≤ 4 (η + ε)

(

max(1, ρB)

1− ρBε

)2

(1+L2
u
) (H2(B)+H1(∂B)).

Corollary 2. When S is a digital surface approximation with an estimated
normal vector field u constant per face, we have the following simplified estimate

|µS,uk (B)− µXk (πX(B))| ≤ 4 (η + ε)

(

max(1, ρB)

1− ρBε

)2

( 2Ni +Nb

4
h2+Nbh+35δ2

u

(

Ni

2
+Nb

)

+2arcsin
δu
2

(

h(Ni+Nb)+6Nb

))

,

where B is an union of surfels of edge size h, with Ni inner edges and Nb

boundary edges.

Proof. In the digital case, a vertex has at most 6 neighbors so dmax ≤ 6. (We
then major 63/(2π) by 35.) Since u is constant per-face, we have Lu = 0.
Furthermore, the length of each edge is h and the area of each face is h2. The
formula follows.

Estimation of curvatures on digital surfaces is studied in more details in
Section 5. The remaining of this section is devoted to the proof of Theorem 1.

4.3 Notions of geometric measure theory

Currents. We denote by Dm the set of m-differential forms on R
d. This set

can be endowed with the C∞-topology [31] and the set of m-currents on R
d is

then by definition its topological dual. Therefore a current T : Dm → R is a
continuous linear map. The support of a current T : Dm → R is the smallest
closed set K such that spt(ω) ∩ K = ∅ ⇒ T (ω) = 0. The boundary ∂T of a
m-current T is the (m − 1)-current defined by ∂T (ω) = T (dω), where d is the
exterior derivative.

When U and V are open sets in Euclidean spaces, f : U → V is of class C∞,
T is a m-current on U and f|spt(T ) is proper, one define the m-current f♯T by
f♯T (ω) = T (f∗ω) (see [13, 4.1.9]). This notion is extended when f is a locally
Lipschitz map (see [13, 4.1.14]).

Note that if a subset S of Rd ism-rectifiable, then it is of class C1 Hm-almost
everywhere and it is possible to integrate differential forms over it, and thus to
define currents of the form

ω 7→
∫

S

ω =

∫

S

ω(e1, · · · , em)dHm(x),

where (e1, · · · , em) is any direct orthonormal basis of the tangent space at x.
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Integral currents. There exist several categories of currents, but we are
mainly mentioning the one we use in this paper. A m-current T is said to
be rectifiable if its support S = spt(T ) is m-rectifiable, compact and oriented
and if for every ω ∈ Dm(Rd), one has

T (ω) =

∫

S

µ ω,

where µ(x) ∈ Z is the multiplicity and satisfies
∫

S
µ(x)dHm(x) < ∞. When

µ(x) = k is constant, we denote T = k ·S. Note that a current can be rectifiable
without having its boundary rectifiable. A current T is said to be integral if
both T and ∂T are rectifiable.

Flat norm and mass. We can also define semi-norms over the set of currents.
The mass M(T ) of a m-current T is given by

M(T ) = sup{T (ω), ω ∈ Dm(Rd) and ∀x ∈ R
d ‖ω(x)‖∗ ≤ 1},

where ‖ω(x)‖∗ = sup{ω(x)(ξ1, ..., ξm), ξi ∈ R
d and ‖ξi‖ ≤ 1}. The flat norm

F(T ) of T is given by

F(T ) = inf

{

M(A) +M(B), T = A+ ∂B,
A is m-rectifiable
B is (m+ 1)-rectifiable

}

.

Constancy Theorem. A key tool in the proof is the Constancy Theorem
(see [13, 4.1.14] or [25, 3.13]). This theorem is important since it implies that
the multiplicity of a current supported on a C1 submanifold is constant. We
state it for integral currents in the case where there is no boundary, even though
it is true in a much more general setting.

Theorem 2 (Constancy Theorem). Let X be an m-dimensional oriented sub-
manifold of Rd of class C1 with no boundary. If T is an integral current sup-
ported in X with no boundary, then there exists an integer λ such that

T (ω) = λ

∫

X

ω.

4.4 Proof of Theorem 1

The proof is based on the homotopy formula for currents and is in the same
spirit than the proof of [9]. We recall that the projection map πX : Xε → X is
well defined and differentiable since ε < reach(K). We first build the Lipschitz
map

f : Xε × R
3 → spt(N(X))

(p, u) 7→ (πX(p),nX(πX(p)).

Lemma 1.

f♯N(S,u) = N(X).
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Proof. By definition, f♯N(S,u) is a 2-current supported in the set spt(N(X)).
Since N(S,u) has no boundary, f♯N(S,u) also has no boundary. Furthermore,
spt(N(X)) is of class C1, so by the Constancy Theorem (Theorem 2), one has
f♯N(S,u) = λ ·N(X), where λ is an integer. We know by assumption that there
exists an open set U such that πX : U ∩ S → X is injective. This implies that
the restriction of f to spt(N(S,u)) is one-to-one onto its image, so the constant
λ = 1.

We denote by D = N(S,u)x(B × R
3) the restriction of the current N(S,u)

to B × R
3. By Lemma 1, one has

f♯D = f♯

(

N(S,u)x(B × R
3)
)

= N(X)x(πX(B)× R
3).

Let h be the affine homotopy between f and the identity:

h : [0, 1]×Xε × R
3 → R

3 × R
3

(t, x) 7→ (1− t)(x) + tf(x).

In the remaining of the proof, in order to shorten equations, we put x = (p,u).
Using the affine homotopy formula for locally Lipschitz map (see [23, page 187]
or [13, 4.1.14]), one has

N(S,u)x(B × R
3)−N(X)x(πX(B)× R

3) = D − f♯D = ∂E − F,

where E = h♯(D× [0, 1]) and F = h♯(∂D× [0, 1]) are respectively 3-current and
2-current that satisfy

M(E) ≤ sup
x∈spt(D)

‖x− f(x)‖ · sup
x∈spt(D)

(1, ‖Df(x)‖2) ·M(D),

M(F ) ≤ sup
x∈spt(D)

‖x− f(x)‖ · sup
x∈spt(D)

(1, ‖Df(x)‖) ·M(∂D),

where the norm of the linear map Df(x) is ‖Df(x)‖ = sup‖h‖=1 Df(x) · h. By
definition of the flat norm one has

F(N(S,u)x(B × R
3)−N(X)x(πX(B)× R

3))

≤M(E) +M(F )

≤ sup
x∈spt(D)

‖x− f(x)‖ · sup
x∈spt(D)

(1, ‖Df(x)‖2) ·
(

M(D) +M(∂D)
)

.

(1)

The following lemmas bound the terms involved in the right hand side term of
the previous equation.

Lemma 2. For every x ∈ spt(D), one has

‖x− f(x)‖ ≤
√

η2 + ε2 ≤ η + ε and max(1, ‖Df(x)‖2) ≤
(

max(1, ρB)

1− ρBε

)2

.
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Proof. Clearly, by definition of the Euclidean norm, one has

‖x− f(x)‖ ≤
√

η2 + ε2 ≤ η + ε.

Using the fact that ‖DπX(x)‖ ≤ 1/(1−ρX(πX(x))ε) for every x in Xε and that
‖DnX(p)‖ ≤ ρX(p), one has by composition:

‖Df(x)‖ ≤ max

(

1

1− ρBε
,

ρB
1− ρBε

)

=
max(1, ρB)

1− ρBε
.

The conclusion follows from the fact that the upper bound is greater than 1.

Lemma 3.

M(D) ≤ (1 + L2
u
) H2(B) + 2 arcsin(

δu
2
)
∑

Si,j⊂B
H1(Si,j) +

δ2
u
d3max

2π
NS
v (B).

Proof. We can decompose the mass of D into three terms: the mass Mf above
the relative interior of the faces Si of S, the mass Me above the relative interior
of the edges of Si,j , and the mass Mv above the vertices of S.

Above the faces of S. We recall that the corrected normal coneNC(S0
i ,u) above

the interior S0
i of the face Si is parameterized by Γu : p ∈ S0

i 7→ (p,u(p)). Since
u is Lu-Lipschitz on each face Si, the map Γu is

√

1 + L2
u
-Lipschitz. The mass

above S0
i is given by the General Area-Coarea Formula [25, 3.13]

∫

NC(S0

i
,u)

dH2 =

∫

S0

i

J2(Γu)dH2 ≤
∫

S0

i

√

1 + L2
u

2
dH2 = (1 + L2

u
) H2(Si)

where J2(Γu) denotes the 2-Jacobian. Summing over all the faces S0
i of S, one

has
Mf ≤ (1 + L2

u
) H2(S).

Above the edges of S. We recall that π : spt(N(s,u)) → R
3, defined by π(p, n) =

p, denotes the restriction to the support of N(S,u) of the projection onto the
position component. Note that the support of N(S,u) above an edge Si,j is
given by spt(N(S,u)x(Si,j × R

3)) = π−1(Si,j). The Coarea formula thus gives:

M
(

N(S,u)x(Si,j × R
3)
)

=

∫

π−1(Si,j)

dH2

=

∫

Si,j

(

∫

π−1(p)

1

J1(π)
dH1

)

dH1(p)

=

∫

Si,j

H1(π−1(p))dH1(p)

=

∫

Si,j

2 arcsin

(‖ui(p)− uj(p)‖
2

)

dH1(p)

≤ 2 arcsin(
δu
2
) H1(Si,j).
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The third line follows from the fact that the 1-Jacobian of π satisfies J1(π) = 1
and that π−1(p) is an arc of circle of length 2 arcsin(‖ui(p)−uj(p)‖/2). Summing
over all the edges Si,j one has

Me ≤ 2 arcsin(
δu
2
)
∑

Si,j⊂B
H1(Si,j).

Above the vertices of S. Let p ∈ B be a vertex of S. The support of the cor-
rected cycle N(S,u)x({p} × R

3) above p obviously lies in the set {p} × S
2. By

construction, the multiplicity µ(n) of a point (p,n) lying in this support is an
integer that satisfies |µ(n)| ≤ deg(p), where deg(p) is the degree of p, namely
the number of edges Si,j incident to p.

By definition, one has ‖ui(p)−uj(p)‖ ≤ δu for every pair of adjacent faces i
and j containing p, which implies that the length of the boundary of the normal
component of the support of N(S,u)x({p} × R

3) is at most L = deg(p)δu. By
the isoperimetric inequality, this implies that the area of this normal component
is at most L2/(2π) ≤ deg(p)2δ2

u
/(2π). Therefore, one has:

M
(

N(S,u)x({p} × R
3)
)

=

∫

S2

|µ(n)|dH2(n) ≤ δ2
u
deg(p)2

2π
deg(p).

Summing over all the vertices of S ∩ ∂B, one has

Mv ≤ δ2
u

2π

∑

vertices p

deg(p)3 ≤ δ2
u
d3max

2π
NS
v (B).

Lemma 4.

M(∂D) ≤
√

1 + L2
u
H1(∂B) + 2dmax arcsin(

δu
2
)NS

v (∂B).

Proof. Since B = ∪i∈ISi is a connected union of faces Si, its boundary is a
union of edges Si,j where i ∈ I and j /∈ I. The boundary ∂D of the restricted
current D = N(S,u)x(B × R

3) is supported on curves of two different kinds.
Above the relative interior of each Si,j ⊂ ∂B, the supportD is parameterized

by Γuj
: S0

i,j → R
3 × R

3. One then has

M
(

(∂D)x(S0
i,j × R

3)
)

=

∫

Γuj
(S0

i,j
)

dH1

=

∫

S0

i,j

J1(Γuj
) dH1

≤
∫

S0

i,j

√

1 + L2
u
dH1

≤
√

1 + L2
u
H1(Si,j).
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Above a vertex p of S ∩ ∂B, the support of the D is the union of at most
deg(p) arcs of circles. Each such arc of circle is a geodesic between two vectors
uj1(p) and uj2(p), and is of length less than 2 arcsin(‖uj1(p) − uj2(p)‖/2) ≤
2 arcsin(δu/2). Therefore

M
(

(∂D)x({p} × R
3)
)

≤ 2 deg(p) arcsin(
δu
2
).

The result follows by summing over all the vertices and edges of ∂B.

End of proof of Theorem 1. Plugging the results of Lemmas 2, 3 and 4 with
Equation (1), one gets:

F(N(S,u)x(B × R
3)−N(X)x(πX(B)× R

3))

≤ (η + ε)

(

max(1, ρX)

1− ρXε

)2

(

(1 + L2
u
) (H2(B) +H1(∂B)) +

δ2
u
d3max

2π
NS
v (B)

+ 2 arcsin(
δu
2
)
(

∑

Si,j⊂B
H1(Si,j) + dmaxN

S
v (∂B)

))

,

For every form ω ∈ {ω0, ω1, ω2,Ω}, one has ‖ω‖ ≤ 2 and ‖dω‖ ≤ 4. Let
i ∈ {0, 1, 2}. One has

|µSk (B)−µXk (πX(B))|
= |N(S,u)x(B × R

3)ωk −N(X)x(πX(B)× R
3)ωk|

≤ sup(‖ωk‖, ‖dωk‖) F(N(S,u)x(B × R
3)−N(X)x(πX(B)× R

3))

≤ 4 F(N(S,u)x(B × R
3)−N(X)x(πX(B)× R

3)),

which implies the result.

5 Convergence of curvatures on digital surfaces

Digital surfaces come from the sampling of Euclidean shapes in a regular grid.
They appear naturally when analyzing 3D images (coming from tomography or
MRI). But for estimating curvatures, the digital surfaces are the most challeng-
ing among all discrete surfaces. As boundaries of union of cubes, their geometric
normals can take only six possible directions. We show in this section how our
normalized corrected curvatures provide accurate pointwise approximations of
the curvatures of the original Euclidean shape. More precisely, we show their
multigrid convergence and give an explicit speed of convergence.
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We begin by recalling useful notions of digital geometry and establishing a
few lemmas linking the local geometry of the digitized surface and the local
geometry of the continuous surface. We will then use the stability result of the
previous section to establish multigrid convergence results.

In this section, let V be a compact domain of R3 whose boundary X := ∂V
is of class C3. We assume that the reach of X is greater than ρ > 0. Let h > 0
be the sampling gridstep of the regular grid hZ3. The Gauss digitization of V
is defined as Gh(V ) := V ∩ hZ3. Digital sets are subsets of hZ3. Let us denote
Qh
z the axes-aligned cube of edge length h centered on a point z ∈ hZ3. Digital

sets can thus be seen as a union of such cubes in R
3. We can now defined the

digitized surface Xh of X := ∂V at step h as the topological boundary of the
Gauss digitization of V , seen as a union of cubes:

Xh := ∂(
⋃

z∈Gh(V )

Qh
z ).

We call surfel any square of edge length h that is the face of some Qh
z , with

z ∈ Gh(V ) and that is included in Xh. We call linel any edge of a surfel.
In order to apply the stability result presented in the previous section, a

few requirements are necessary: (i) the object S := Xh should be a surface
(i.e. a 2-manifold), and (ii) an open set U should exists where the projection
πX : U ∩ S → X is injective.

Concerning point (i), unfortunately, Xh is not a 2-manifold in general, even
for smooth and convex shapes V [32]. However Xh is almost a 2-manifold since
the places where it is not a 2-manifold tends to zero quickly as h tends to zero.
We recall Theorem 2 of [22]:

Theorem 3. Let h < 0.198ρ, letting y ∈ Xh, then the digital surface Xh is
locally homeomorphic to a 2-disk around y if either (i) y does not belong to a
linel of Xh, or (ii) y belongs to a linel s of Xh and s∩X = ∅, or (iii) y belongs
to a linel s of Xh and ∃p ∈ s∩X but the angle αy between s and the normal to
X at p satisfies αy ≥ 1.260h/ρ.

So Xh may not be a manifold only when the normal of X is very close to
one of the axes. It is possible to fix locally the manifoldness of digital surfaces
by making it well-composed, either by subsampling the grid and doing majority
interpolation [32], or repairing the digital surface by adding voxels [30] or by
splitting vertices and edges [16]). All these transformations affect a very small
part of the digital surface according to the previous theorem. Therefore from
now on we shall assume that Xh is a 2-manifold.

As for point (ii), Theorem 3 of [22] gives a positive answer to the existence
of an open set U where the projection is injective. Indeed the area on X, where
the projection πX : U ∩Xh → X is not injective is proportional to Area(S) h
and tends to zero.

The following results relate combinatorial properties of Xh to geometric
properties. In all the sections, we denote by B

R
p the ball centered at p and of

radius R.
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Lemma 5. Let p be an arbitrary point of Xh. Let B be the surfels of Xh that
lie in Xh ∩ B

R
p . Then the numbers Ni of inner linels (the ones bordering two

surfels of B) and Nb of boundary linels of B (the ones bordering only one surfel
of B) follow these bounds for radius R = Khα:

Ni = O(h4α−3 + h2α−2), Nb = O(hα−1 + h7α−3).

The proof of Lemma 5 relies on the following intermediary lemma.

Lemma 6. Under the same assumptions as in Lemma 5, one has

Xh ∩ ∂BRp ⊂
(

X ∩ ∂BRp
)O(h+h3α)

.

of Lemma 6. Let x ∈ Xh∩∂BRp . We denote by ε the Hausdorff distance between
X and its Gauss digitization Xh. It is known that ε = O(h). We put p′ = π(p)
and x′ = π(x). We denote by C the geodesic starting at the point p′ and passing
through x′. We first assume that x′ ∈ B

R
p . In that case, the geodesic curve C is

extended until it reaches a point x̃ ∈ ∂BRp . Note that such a curve always exist
if R is small enough. In the following of the proof, we denote by Ca,b the curve
between any two points a and b and by ℓ(Ca,b) its length. Since the length of a
curve is greater than its chord, we have

ℓ(Cp′,x′) ≥ ‖p′ − x′‖ ≥ ‖p− x‖ − ‖x− x′‖ − ‖p′ − p‖ ≥ R− 2ε.

If R is small enough, then the line segment [p′, x̃] belongs to the offset Xr of X,
where r = reach(X) is the reach of X. By using the Lipschitz property of the
projection map π onto X (see Proposition 4), one gets

ℓ(Cp′,x̃) ≤ ℓ(π([p′, x̃])) ≤ 1

1− ε̃/r
‖p′ − x̃‖,

where ε̃ = maxw∈[p′,x̃] ‖w−π(w)‖ = O(R2). Since ‖p′−x̃‖ ≤ ‖p−x̃‖+‖p′−p‖ ≤
R+ ε, one gets

ℓ(Cx′,x̃) = ℓ(Cp′,x̃)− ℓ(Cp′,x′) ≤ (1+O(R2))(R+ ε)−R+2ε = O(R3 +R2ε+ ε)

Since the curve is longer than its chord, R = O(hα), ε = O(h), we have

‖x′ − x̃‖ = O(h3α + h2α+1 + h) = O(h3α + h).

If x′ /∈ B
R
p , the same result holds with a similar proof. In that case the geodesic

curve C does not have to be extended and x̃ = C∩BRp . We deduce that ‖x−x̃‖ =
O(h3α + h), which ends the proof.

Proof of Lemma 5. Let us first bound Ni. Since X is of class C2, the intersec-
tion of X with a ball of radius R = Khα is contained in a box of dimensions
(2R)× (2R)×O(R2). It is known that the digitized surface Xh is at an Haus-

dorff distance less than
√
3
2 h from X ([22], Theorem 1). Hence the set B is
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included in a set of dimensions (2R + 2h) × (2R + 2h) × (O(R2) + 2h). Since
α ∈ (0, 1), we have h in O(hα). Furthermore, since R = Khα, the set B is thus
included in a domain of volume O(hαhαhmin(2α,1)). This implies that the num-
ber of voxels intersecting B is less than O(hmin(4α,2α+1)−3). This also implies
that Ni = O(hmin(4α,2α+1)−3).

Let us now bound Nb. Every point x ∈ ∂B belongs to a surfel that intersects
Xh ∩ ∂BRp , so is at a distance less than

√
2h/2 from X ∩ ∂BRp . By Lemma 6,

one has

∂B ⊂
(

X ∩ ∂BRp
)O(h+h3α)

.

Since the length of X ∩ ∂BRp is in O(R), the volume of
(

X ∩ ∂BRp
)O(h+h3α)

is
O(R(h + h3α)2). The number of boundary edges Nb is of the same order than
the number of cubes of size h intersecting this volume so

Nb =
O(R(h+ h3α)2)

h3
= O(hα−1 + h7α−3).

We may now state our convergence result for the normalized corrected cur-
vatures onto digitized surfaces.

Theorem 4. Let V be a compact domain of R3 whose boundary X := ∂V is
of class C3,τ . Let Xh be the boundary of the Gauss digitization of V with step
h. Suppose that the normal estimator satisfies δu = O(hβ) with β ≤ 1 and

η = O(h
2

3 ). Let p ∈ Xh and B be the set of surfels of Xh contained in the ball
centered at p and of radius Khα (for arbitrary K > 0 and α ∈ (0, 1)). Then

|Ĥu(B)−H(πX(p))| = O(hγ
′

) (2)

|Ĝu(B)−G(πX(p))| = O(hγ
′

), (3)

where γ′ = min((1 + τ)α, 2β − 4/3, β − α− 1/3, 2α+ 2β − 7/3, 5α+ β − 7/3).

Remark 9. Note that for any β ∈]2/3, 1[, there exists α ∈]7/6 − β, β − 1/3[
such that γ′ > 0, which implies that we have the convergence of the pointwise
mean and Gaussian curvature measures.

Proof. This proof relies on Corollary 2. We know that the Hausdorff ε between

X and the boundary of its Gauss discretization Xh is no greater than
√
3
2 h, so

ε = O(h). By plugging ε = O(h), δu = O(hβ), η = O(h
2

3 ) with β ≤ 1 in
Corollary 2, one gets

∆ := µS,u0 (B)− µX0 (πX(B)) = O
(

h
2

3

(

Nih
2β +Nbh

β
))

.

Furthermore, since we are in the hypotheses of Lemma 5, we have bounds for
Ni = O(h4α−3 + h2α−2) and Nb = O(hα−1 + h7α−3). This leads to

∆ = h2αO
(

h2α+2β− 7

3 + h2β− 4

3 + hβ−α−
1

3 + h5α+β− 7

3

)

= h2αO(hγ),
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where

γ = min

(

2α+ 2β − 7

3
, 2β − 4

3
, β − α− 1

3
, 5α+ β − 7

3

)

Using the fact that there exists a constant C such that µX0 (πX(B)) ≥ Ch2α,
one gets

µS,u0 (B) = µX0 (πX(B))(1 +O(hγ)).

Similarly, for k = 1, 2

µS,uk (B) = µXk (πX(B)) +O(h2α+γ) .

Finally, we can relate our normalized mean curvature with the ratio of the mean
curvature measure and the area measure:

Ĥu(B) =
µS,u1 (B)

µS,u0 (B)
=

µX1 (πX(B)) +O(h2α+γ))

µX0 (πX(B))(1 +O(hγ))
=

µX1 (πX(B))

µX0 (πX(B))
+O(hγ). (4)

It remains to relate this ratio of measures to the mean curvature at p′ :=
πX(p). Recall that the surface is of class C3,τ , τ ≤ 1. From the proof of the
preceding Lemma, we know that there are two real numbers R1 and R2 with
DR1

(p′) ⊂ πX(B) ⊂ DR2
(p′), where Dr(p

′) is the geodesic disk centered at p′ of
radius r, with R1, R2 = O(hα) and R2 −R1 = O(h+ h3α). Then we can write
in geodesic polar coordinates

∫

DR1
(p′)

HdA =

∫ R1

0

∫ 2π

0

H(r, θ)r(1 +O(r))drdθ.

Using the C1,τ regularity of H we have, as r → 0,

H(r, θ) = H(p′) + ar cos θ + br sin θ +O(r1+τ )

for some constant coefficients a, b. Therefore,

∫

DR1
(p′)

HdA = H(p′) area(DR1
(p′))

+

∫ R1

0

∫ 2π

0

(a cos θ + b sin θ +O(rτ ))(1 +O(r))r2drdθ

= H(p′) area(DR1
(p′)) +

∫ R1

0

∫ 2π

0

(a cos θ + b sin θ +O(rτ ))r2drdθ

because τ ≤ 1

= H(p′) area(DR1
(p′)) +

∫ R1

0

∫ 2π

0

O(r2+τ )drdθ

= H(p′) area(DR1
(p′)) +O(R3+τ

1 )

= H(p′) area(DR1
(p′)) +O(h(3+τ)α)
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Similarly the difference between the integrals over the two disks satisfies
∣

∣

∣

∣

∣

∫ R2

R1

∫ 2π

0

(H(r, θ)−H(p′))r(1 +O(r))drdθ

∣

∣

∣

∣

∣

= O(R3
2 −R3

1) = O(h2α+1 + h5α)

so that

µX1 (πX(B))−H(p′)µX0 (πX(B))

=

∫

DR1
(p′)

HdA−H(p′)area(DR1
(p′)) +O(h2α+1 + h5α)

= O(h(3+τ)α + h2α+1 + h5α)

= O(h(3+τ)α + h2α+1)

and

µX1 (πX(B)) = H(p′)µX0 (πX(B)) +O(h(3+τ)α + h2α+1)

= H(p′)µX0 (πX(B))
(

1 +O(h(1+τ)α + h)
)

.

Finally,

µX1 (πX(B))

µX0 (πX(B))
= H(p′) +O(hmin(1,(1+τ)α)) (5)

Combining (4) and (5) yields

Ĥu(B) = H(p′) +O(hmin(1,(1+τ)α,2β−4/3,β−α−1/3,2α+2β−7/3,5α+β−7/3))

= H(p′) +O(hmin((1+τ)α,2β−4/3,β−α−1/3,2α+2β−7/3,5α+β−7/3)).

The same holds for the Gaussian curvature.

Remark 10. The above bound η = O(h2/3) has been established in [19] for the
normal vector estimator based on digital integral invariants. Note that β = 1 is
the optimal convergence rate, since it is the one obtained by taking the ground
truth normal, i.e. taking the normal at the projection on X. There is yet
no formal proof that any digital normal vector estimator is Lipschitz (which
implies β = 1). However, we have run simulations and both Voronoi Covariance
measure [24, 11] and digital Integral Invariant [19] appear to be Lipschitz normal
estimator (see Figure 4).

Remark 11. If we choose u as the normals estimated by digital integral invari-
ant normal estimator and we assume β = 1, then the previous theorem implies
that, when the set B of surfels is taken in a ball of center p and radius Kh

1

3 ,
then the mean corrected curvature Ĥu(B) (resp. the Gaussian corrected cur-
vature Ĝu(B)) tends to the mean curvature H(πX(p)) (resp. to the Gaussian

curvature G(πX(p))) with a speed O(h
1

3 ). In the terminology of [18], Ĥu (resp.
Ĝu ) is a multigrid convergent mean (resp. Gaussian) curvature estimator.
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Figure 4: Experimental evaluation of the Lipschitz property of VCM and II
normal vector estimators as a function of the gridstep h. Asymptotic behavior
is observed when reading the graph from right to left. It is observed that
δu ≤ O(h) for both estimators.

In the following section, we perform a comparative evaluation of our curva-
ture estimators. Although we have checked that they are indeed convergent for
a radius Kh

1

3 with a speed at least O(h
1

3 ), we will run our experiments with

a much smaller radius Kh
1

2 (see Figures 5 and 6). Indeed it provides not only
faster estimators but also a slightly better error bound in practice, closer to
O(h

2

3 ). The reason is still investigated.

6 Experimental evaluation on digital surfaces

We present here a series of experiments which demonstrates that the corrected
measures provide accurate and stable curvature information. We do not eval-
uate experimentally the accuracy of measures themselves (which are already
established through our main theorem), but the much more difficult problem of
pointwise mean and curvature inference. As a stressful testbed that maximizes
the difficulty of estimating curvatures, we evaluate the accuracy of the normal-
ized corrected mean curvature Ĥ and the normalized Gaussian curvature Ĝ on
digital surfaces (see Definition 6). Indeed, their canonical normal vectors can
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Figure 5: Experimental evaluation of the asymptotic error of mean curvature
along a digitized polynomial shape (“goursat”, see next section) as a function
of the gridstep h. Convergence behavior is observed when reading the graph
from right to left, where smaller values of h are located. We check two different
exponents α of the computation radius Khα: α = 1

3 and α = 1
2 . Thick lines

represent ℓ∞-error, thin lines represent ℓ2-error. Theoretically α = 1
3 should be

the best choice and implies a ℓ∞-error of O(h
1

3 ). In practice, the error is smaller

and seems below O(h
1

2 ). Furthermore, even better results are achieved when
choosing α = 1

2 .

only take six different values. Last, we compare our new approach with the
state-of-the-art method of [7, 19], which is based on digital integral invariants.
We also show that the normal cycle approach [34, 36, 8, 9] is neither accurate
nor convergent for digital surfaces.

6.1 Methodology of evaluation on digitizations of polyno-

mial surfaces

We evaluate the accuracy of our geometric estimators on the digitization of im-
plicitly defined polynomial shapes X, in order to have ground-truth curvatures.
Let us detail our methodology for evaluating our new curvature estimators.
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Figure 6: Experimental evaluation of the asymptotic error of Gaussian cur-
vature along a digitized polynomial shape (“goursat”, see next section) as a
function of the gridstep h. Convergence behavior is observed when reading the
graph from right to left, where smaller values of h are located. We check two
different exponents α of the computation radius Khα: α = 1

3 and α = 1
2 . Thick

lines represent ℓ∞-error, thin lines represent ℓ2-error. Theoretically α = 1
3

should be the best choice and implies a ℓ∞-error of O(h
1

3 ). In practice, the

error is smaller and seems below O(h
1

2 ). Furthermore, even better results are
achieved when choosing α = 1

2 .

Ground-truth surfaces. We shall test shapes whose boundary is at least
twice differentiable. As a representative example, we choose the “Goursat” im-
plicit polynomial shape X := {(x, y, z) ∈ R

3, P (x, y, z) ≥ 0}, with P (x, y, z) :=
4 − 0.015(x4 + y4 + z4) + x2 + y2 + z2. Its minimal, mean and maximal mean
curvatures are respectively approximately −0.1070, 0.0956, 0.3448. Its mini-
mal, mean and maximal Gaussian curvatures are respectively approximately
−0.0337, 0.0080, 0.1189. Its reach is greater than 2.9.

Input digitized surfaces. We digitize a shape X using Gauss digitization
Gh(X) := X ∩ hZ3 at several gridsteps h. If we see the discrete set Gh(X) as a
union of axis-aligned cubes of edge-length h centered on those points, its topo-
logical boundary is then a union of axis-aligned squares of edge-length h that
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Figure 7: Illustration of “Goursat” polynomial surface, from left to right:
smooth surface, its corresponding digitized surfaces at h = 0.5, h = 0.25,
h = 0.125.

forms a digital surface (e.g. see [22]). We denote it by ∂hX. As illustrated on
Figure 7, digitized surfaces ∂hX tends toward the smooth surface ∂X in Haus-
dorff distance. In fact they are a Hausdorff approximation of ∂X at distance

less than
√
3
2 h [22]. However their natural normal vectors n do not tend toward

the normal vectors of the smooth surface, since they can take only six different
values whatever h.

Input corrected normal vector field u. We must estimate the field u

solely from the input digitized surface ∂hX. We will use several normal vector
estimators in the experiments, in order to show the importance of having a
convergent estimator but also to show that our method gives stable results for
any convergent u:

• Trivial Normal estimator (TN): this estimator just replicates n (i.e. u =
n). We use it in experiments since our measures become then equivalent
to the normal cycle [34, 36, 8, 9].

• Digital Integral Invariant normal estimator (II): this estimator provides a
convergent normal vector field u for a certain family of parameters [19]. It
depends on a radius of integration parameter r := khα. As shown by our
experiments, the values α = 0.5 and r = 3 provide both good and stable
results.

• Voronoi Covariance Measure normal estimator (VCM): this estimator pro-
vides a convergent normal vector field u for a certain family of parameters
[11, 10]. It depends on a radius of integration parameter r := khα, which
we set exactly as parameter r of II, and on a distance of computation
R := Khα, where K = 10 gives good results.

Estimated curvatures. We will estimate the accuracy and stability of the
following curvatures estimators:

• Normalized corrected mean curvature (Ĥu) and Gaussian curvature (Ĝu):
since they are ratios of measures, we must choose a Borel set on which
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measures are computed. For any point p ∈ ∂hX, we simply compute
Ĥu(p) := Ĥ(Bρ(p)) = µ1(Bρ(p))/µ0(Bρ(p)) and Ĝu(p) := Ĝ(Bρ(p)) =
µ2(Bρ(p))/µ0(Bρ(p)), where ρ := mhβ . As shown by our experiments,
the values β = 1

2 and m = 3 provide both good and stable results. We use
the corrected normal field u given either by II or VCM normal estimators
(in both cases, r = 3h

1

2 is used).

• Digital integral invariant mean and Gaussian curvature estimators (ĤII)
and (ĜII): both are parameterized by the radius r′ of integration. Ex-
periments show that for r′ = k′hα

′

, we must set α′ = 1
3 (and no greater

value) to get convergence and set k′ = 6 to minimize estimation errors.

• Normal Cycle mean and Gaussian curvatures (ĤNC) and (ĜNC): they are
defined similarly with Ĥu and Ĝu except that we use the Trivial Normal
estimator to compute u, i.e. ĤNC := Ĥn and ĜNC := Ĝn.

Measuring ℓ2- and ℓ∞-errors. Curvatures are estimated at the centroid p
of each surfel element (the squares that form the digitized shape boundary),
and are compared to the curvatures of the point q ∈ ∂X that is closest to p.
Note that q = π(p) since p is in the reach of ∂X. For instance, letting σ be the
set of centroids of the surfel of ∂hX, we define the errors between Ĥ and H as:

ℓ2(Ĥ
u) :=

√

1

|σ|
∑

p∈σ
(Ĥu(p)−H(π(p)))2

ℓ∞(Ĥu) := max
p∈σ

|Ĥu(p)−H(π(p))|.

Note that when ℓ∞-error tends to zero as h tends to zero implies the classical
multigrid convergence. It also implies that ℓ2-error tends to zero.

Robustness to noise. In practical application, input data are rarely perfect
digitizations and may be corrupted by noise. We have used a noise model
parameterized by a probability p, which perturbates the input voxels according
to their distance to the exact digitized boundary. More precisely, if δ is the
discrete distance of the voxel to its nearest boundary point (minimum distance
is 1), then this voxel has a probability of pδ to be flipped inside/out.

6.2 Evaluation of mean curvature estimator Ĥ
u

Asymptotic behavior of Ĥu and normal cycle ĤNC . First we measure
both the ℓ∞- and ℓ2-errors of our proposed mean curvature estimator Ĥu. We
further test several normal estimators for u: II, VCM, and TN. Results are
displayed on Fig. 8. Graphs show an experimental convergence speed of O(h

2

3 ),
II and VCM normals. It shows also that the normal cycle method is not con-
vergent, since Ĥu with TN corresponds to the normal cycle mean curvature
ĤNC .
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Figure 8: (Left) Asymptotic errors of mean curvature estimations by Ĥu

along the “goursat” shape, when changing the digital normal vector estimator:
II and VCM are convergent normal estimators (see text), TN is the canonical
normal vector, and it corresponds to the Normal Cycle mean curvature estimator
(ĤNC). (Right) Respective asymptotic errors of mean curvature estimations by
Ĥu and ĤII along the “goursat” shape. In both figures, ℓ∞-errors are drawn
with thick lines, ℓ2-errors are drawn with thin lines.

Comparative evaluation of Ĥu and ĤII . We now compare the ℓ∞- and
ℓ2-errors of Ĥu with the ones of ĤII , which is the state-of-the-art method for
digital surface curvature estimation. We use the II normal estimator for Ĥu

with r = 3h
1

2 . Results are shown on Fig. 8. First it confirms that ĤII is not
convergent if its parameter r follows some Θ(h

1

2 ). Secondly we do obtain a

convergence speed of Θ(h
1

3 ) for bigger radii r = Θ(h
1

3 ). Last our new estimator

Ĥu has a much faster convergence, approximately Θ(h
2

3 ), despite the fact that
both the integration radius r for u and the integration radius ρ for Ĥu are much
smaller, i.e. 3h

1

2 .
We further illustrate the differences of the two estimators Ĥu and ĤII by

displaying the estimated mean curvatures and the localization of errors on sev-
eral digitizations of “Goursat” on Fig. 9. It is clear that errors are mostly
localized on places of extremal curvatures, but our estimator converges much
faster everywhere visibly and does not oscillate around the correct value.

Last, we measure the stability of both estimators with respect to their pa-
rameters. For Ĥu, we measure the ℓ∞-error when changing k in the radius
r := kh

1

2 and changing m in the radius ρ := mh
1

2 . For ĤII we simply change
k in the radius r := kh

1

3 . See Figure 10. First, the results show that the
exponents chosen for the gridstep are consistent (best results are achieved for
the same constant at a finer scale). It confirms that integral invariant methods
require a radius of integration that is much larger asymptotically. Secondly it
shows that our method is more stable with respect to parameter settings. We
have almost the same errors in the range (k,m) ∈ [2.5, 4]× [2.5, 6].
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Figure 9: Illustration of the accuracy of mean curvature estimators Ĥu and ĤII

at different resolutions: 1st row is ground-truth H, 2nd row is our approach
Ĥu, 3rd row is its local estimation error |Ĥu −H|, 4th row is integral invariant
approach ĤII , 5th row is its local estimation error |ĤII −H|. Curvatures are
displayed with colors from dark blue (-0.3) to white to red (0.3), except a black
band at [−0.01; 0.01]. Errors are displayed with colors from white (0) to red
(0.025) to black (0.05).
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Figure 10: Stability of Ĥu and ĤII with respect to parameters and gridstep.
Estimator Ĥu is parameterized by the integration radius r := kh

1

2 of its normal
estimator u=II and by the measure radius ρ := mh

1

2 . We plot ℓ2- and ℓ∞-
errors of Ĥu −H as a function of k and m. Estimator ĤII is parameterized by
the integration radius r′ := k′h

1

3 . We plot ℓ2- and ℓ∞-errors of ĤII − H as a
function of k′ (displayed as 2d plot to make easier the comparison).
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d
ra
g
o
n
2
5
6
3

d
ra
go
n
51
2
3

Figure 11: Comparison of mean curvature estimators Ĥu, ĤNC and ĤII on
classical digital shapes at two different resolutions. We choose parameters ac-
cording to section 6.1, setting h = 1 for “dragon 2563” and naturally h = 0.5
for “dragon 5123”. Curvatures are displayed with colors from dark blue (-0.3)
to white to red (0.3), except a black band at [−0.01; 0.01].

Evaluation of Ĥu on digital shapes We also run our method on digiti-
zations of classical shapes (“dragon” and “octaflower”), trying several parame-
ters (here we checked several initial gridsteps) such that Integral Invariant and
Normal Cycle methods give the best possible results. Outputs are displayed on
Figure 11 and Figure 12. It is clear that both ĤNC and ĤII oscillate around the
correct solution (see black random or moiré patterns on both figures, whichever
the resolution). On the contrary, Ĥu is stable in zero=curvature regions (like on
octaflower) while accurately delineating the small scales of the chinese dragon.

Robustness to noise of Ĥu. Last we have checked the robustness to noise
of our mean curvature estimator Ĥu. Experiments show that our method is
mostly sensitive to the quality of the input corrected normal vector field u. On
the one hand VCM normal estimator is relatively accurate but more unstable
than II normal estimator. On the other hand, II normal estimator is inaccurate
at places with sharp features (as one can see on the outer parts of the screw of
“octaflower”). We should certainly in this case use smarter normal estimators,
like the AT normal vector method of [6], which is able to compute piecewise
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Figure 12: Comparison of mean curvature estimators Ĥu, ĤNC and ĤII on clas-
sical digital shapes at two different resolutions. We choose parameters according
to section 6.1, setting h = 0.5 for “octaflower 2563” and naturally h = 0.25 for
“octaflower 5123”. Curvatures are displayed with colors from dark blue (-0.2)
to white to red (0.2), except a black band at [−0.005; 0.005].
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smooth normal vector field, or a normal estimator which takes into account the
digital nature of the input shape, like the plane-probe algorithms of [20, 21].

6.3 Evaluation of Gaussian curvature estimator Ĝ
u

Asymptotic behavior of Ĝu and normal cycle ĜNC . Then we measure
both the ℓ∞- and ℓ2-errors of our proposed Gaussian curvature estimator Ĝu.
We further test several normal estimators for u: II, VCM, and TN. Results are
displayed on Fig. 14. Graphs show again an experimental convergence speed of
O(h

2

3 ) for II and VCM normals. It shows also that the normal cycle method
is not convergent, since Ĝu with TN corresponds to the normal cycle Gaussian
curvature ĜNC .

Comparative evaluation of Ĝu and ĜII . We compare the ℓ∞- and ℓ2-
errors of Ĝu with the ones of ĜII , which is also the state-of-the-art method for
digital surface curvature estimation. We pick the same parameterization as in
the previous paragraph for all estimators. We observe the same behaviour of
Ĝu with respect to ĜII : much faster convergence speed with small integration
radii.

We further illustrate the differences of the two estimators Ĝu and ĜII by
displaying the estimated Gauss curvatures and the localization of errors on
several digitizations of “goursat” on Fig. 15. It is clear that errors are mostly
localized on places of extremal curvatures, but our estimator converges much
faster everywhere visibly and does not oscillate around the correct value.

Evaluation of Ĝu on digital shapes We also check Gaussian curvature
estimators Ĝu, ĜNC and ĜII on the same classical shapes as in the previous
subsection. Results are displayed on Figure 16 and Figure 17; keeping the same
parameters as above. We also observe the oscillations and moiré patterns in ĤII

estimations. Furthermore the Normal Cycle estimator ĜNC is clearly incorrect
and gives only extremal results. This is because ĜNC takes into account solely
six possible normals.

Robustness to noise of Ĝu. Last we have checked the robustness to noise
of our Gaussian curvature estimator Ĝu. Experiments show that our method is
mostly sensitive to the quality of the input corrected normal vector field u. On
the one hand VCM normal estimator is relatively accurate but more unstable
than II normal estimator. On the other hand, II normal estimator may be
inaccurate at places with sharp features (as one can see on the outer parts of
the screw of “octaflower”). As already said in the previous section, we should
certainly in this case use smarter normal estimators [6, 20, 21].
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Figure 13: Robustness to noise of our mean curvature estimator Ĥu. Noise with
parameter p (see text) was added to the digital shape“octaflower 2563”. The
gridstep was set to h = 0.5 for parameterizing the estimators. Curvatures are
displayed with colors from dark blue (-0.2) to white to red (0.2), except a black
band at [−0.005; 0.005].
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Figure 14: (Left) Asymptotic errors of Gaussian curvature estimations by Ĝu

along the “goursat” shape, when changing the digital normal vector estimator:
II and VCM are convergent normal estimators (see text), TN is the canonical
normal vector, and it corresponds to the Normal Cycle Gaussian curvature
estimator (ĜNC). (Right) Respective asymptotic errors of Gaussian curvature
estimations by Ĝu and ĜII along the “goursat” shape. In both figures, ℓ∞-errors
are drawn with thick lines, ℓ2-errors are drawn with thin lines.

6.4 Practical computation times of our curvature estima-

tors.

We note first that the computation times of the measures µ0, µ1, µ2, µΩ and
µX,Y per cell are linear with the number of cells and are extremely fast. Their
running times are negligible with respect to the estimation of corrected normal
vector field or their integration in a ball a radius ρ (2% when N ≈ 1e3, 0.01%
when N ≈ 4e6). Secondly computation times for Gaussian curvature estimator
Ĝu or principal directions is almost the same as the one of Ĥu and ĜII , and
are thus not displayed.

We have plotted the measured computation times of our mean curvature esti-
mator Ĥu, first as a function of the number of surfels of the digitized boundary,
and after as a function of the accuracy (see Fig. 19). Running times for all
estimators were measured with a mono-threaded CPU implementation on an
average server (Intel Xeon Gold 6128 processor, 3.4 GHz, cache memory 19.25
Mb, each thread is evaluated at 6785.92 bogomips). In both cases, our approach
clearly outperforms the digital Integral Invariant approach of [7, 19]. We have
not compared with the execution times of Normal Cycle method, since ĤNC

is not accurate. Note that using VCM normal estimator instead of II normal
estimator to compute u is faster for large digital shapes, but requires more
memory.

To sum up, our method has an experimental complexity in Θ(n
3

2 ) compared
to Integral Invariant method that has an experimental complexity in Θ(n2).
Our code could be further optimized in the integration step of the measures µk
by reusing the results of a neighboring point, as it is already done in Integral
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Figure 15: Illustration of the accuracy of Gaussian curvature estimators Ĝu and
ĜII at different resolutions: 1st row is ground-truth G, 2nd row is our approach
Ĝu, 3rd row is its local estimation error |Ĝu −G|, 4th row is integral invariant
approach ĜII , 5th row is its local estimation error |ĜII − G|. Curvatures are
displayed with colors from dark blue (-0.1) to white to red (0.1), except a black
band at [−0.002; 0.002]. Errors are displayed with colors from white (0) to red
(0.0125) to black (0.025).
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Figure 16: Comparison of Gaussian curvature estimators Ĝu, ĜNC and ĜII

on classical digital shapes at two different resolutions. We choose parameters
according to section 6.1, setting h = 1 for “dragon 2563” and naturally h = 0.5
for “dragon 5123”. Curvatures are displayed with colors from dark blue (-0.05)
to white to red (0.05), except a black band at [−0.0005; 0.0005].
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o
ct
afl

ow
er

25
63

o
ct
afl

ow
er

51
23

Figure 17: Comparison of Gaussian curvature estimators Ĝu, ĜNC and ĜII

on classical digital shapes at two different resolutions. We choose parameters
according to section 6.1, setting h = 0.5 for “octaflower 2563” and naturally
h = 0.25 for “octaflower 5123”. Curvatures are displayed with colors from dark
blue (-0.05) to white to red (0.05), except a black band at [−0.0005; 0.0005].
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Figure 18: Robustness to noise of our Gaussian curvature estimator Ĝu. Noise
with parameter p (see text) was added to the digital shape“octaflower 2563”.
The gridstep was set to h = 0.5 for parameterizing the estimators. Curvatures
are displayed with colors from dark blue (-0.05) to white to red (0.05), except
a black band at [−0.0005; 0.0005].
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Figure 19: Computation times of curvature estimators Ĥu and ĤII as a function
of the number of surfels of the input digitized boundary (left) or as a function
of the ℓ2-error (right).

Invariant method. Last, for a given accuracy, our method is even much faster
(5000 times faster than II to achieve 0.0065 ℓ2-accuracy).

7 Conclusion

We have proposed a sound mathematical framework for defining area and cur-
vature measures over rather general surfaces. We have also shown that these
measures are stable with an error proportional to the sum of the position error
and the normal error. This framework induce sound definitions of curvatures
on polyhedral surfaces, which are easy and fast to compute. We have evaluated
extensively the numerical accuracy of our approach on digital surfaces, which
are polyhedral surfaces with bad naive normals. It shows that our method is
also effective and accurate in practice.

We are currently adapting the anisotropic curvature measures introduced
in [8, 9] (see also textbook [26]) to our framework. These new measures give
estimates of principal curvatures and principal directions, which are also sta-
ble and convergent by the same principles stated in Section 4. These works
will be the focus of a forthcoming paper. Preliminary results are displayed on
Figure 20. We are also currently investigating smooth corrected normal vec-
tor field obtained by interpolation, which may reveal to be even more accurate
than piecewise constant corrected normal vector field, both theoretically and
practically.
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