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Abstract. We show that, for any spatially discretized system of reaction-
diffusion, the approximate solution given by the explicit Euler time-
discretization scheme converges to the exact time-continuous solution,
provided that diffusion coefficient be sufficiently large. By “sufficiently
large”, we mean that the diffusion coefficient value makes the one-sided
Lipschitz constant of the reaction-diffusion system negative. We apply
this result to solve a finite horizon control problem for a 1D reaction-
diffusion example. We also explain how to perform model reduction in
order to improve the efficiency of the method.

1 Introduction

1.1 Guaranteed reachability analysis

Given a system of Ordinary Differential equations (ODEs) of dimension n satis-
fying standard conditions of existence and uniqueness of the solution, the area
of Numerical Analysis makes use of numerical tools in order to compute the
approximate value of the solution, starting at an initial point of Rn, with high
accuracy: 1st order methods (explicit/implicit Euler method, trapezoid rule),
higher-order Runge-Kutta methods, etc. In contrast, the area of Guaranteed (or
Symbolic) Analysis is devoted to the construction of an overapproximation of the
set of solutions that start, not at a single point of Rn, but from a dense compact
set of initial points. Guaranteed analysis, in its modern form, has been initiated
in the 60’s by R.E. Moore and his creation of Interval Arithmetic [40]: the set of
solutions (or trajectories) are overapproximated by a sequence of “rectangular
sets”, i.e., cross-product of intervals of R. A set of arithmetic and differential
calculus has been created for manipulating such sets. An overapproximation of
the set of trajectories is computed using a Taylor development up to some or-
der and an overestimation of the “Lagrange remainder”. The method has been
considerably refined in the 90’s [11, 12, 35, 43, 44]. These recent techniques make



use of different convex data structures such as parallelepipeds [35] or zonotopes
[21, 29] instead of rectangular sets in order to enclose the flow of ODEs.

Such methods are typically applied to the formal proof of correctness of ODE
integration, and more generally, to guarantee that the solutions of the ODEs
satisfy some desired properties. Guaranteed reachability analysis generally treats
linear systems. Extensions to nonlinear systems have been proposed, e.g., in [4],
using local linearizations (see also [38, 39]).

1.2 Guaranteed optimal control

In presence of inputs, we can use guaranteed analysis to describe a law that
allows the system to satisfy a desired property. This corresponds to the topic of
guaranteed (or correct-by-design) control synthesis. Several works have reecently
applied guaranteed analysis to optimal control synthesis. Thus, in [49, 50], the
authors focus on a (finite time-horizon) optimal control procedure with a formal
guarantee of safety constraint satisfaction, using zonotopes as state set represen-
tations. In [16], the authors focus on (periodically) sampled systems, and perform
reachability analysis using convex polytopes as state set representations. In [27,
37, 19, 46, 47], the authors construct an over-approximation of the set of trajec-
tories using a growth bound (bounding the distance of neighboring trajectories)
exploiting the notion of one-sided Lipschitz constant (also called “logarithmic
norm” or “matrix norm”). The notion of “one-sided Lipschitz (OSL) constant”
has been introduced independently by Dahlquist [17] and Lozinskii [36] in order
to derive error bounds in initial value problems (see survey in [51]). We used
ourselves OSL constants in the context of symbolic optimal control in [14]. The
main difference with previous work [27, 37, 19, 46, 47] is that our method makes
use of explicit Euler’s algorithm for ODE integration (cf. [32, 33]) instead of so-
phisticated algorithms such as Lohner’s algorithm [27] or interval Taylor series
methods [44]. This leads us to a simple implementation of just a few hundred
lines of Octave (see [31]).

As explained in [48], using the Dynamic Programming (DP) [10] one can ap-
proximate the “value” of the solution of Hamilton-Jacobi-Bellman (HJB) equa-
tions. In [18, 48], the authors thus show how to use finite difference schemes,
Euler time integration and DP for solving finite horizon control problems. Fur-
thermore, they give a priori errors estimates which are first-order in the size ∆t
of the time discretization step; however, the error involves a constant CpT q which
depends exponentially on the length T of the finite horizon3. We solve here finite
horizon control problems along the same lines (using finite difference, explicit
Euler and DP) but, under the hypothesis of OSL negativity (see section 1.3), we
obtain an error upper bound that is linear in T (see Section 2.4, Theorem 2).

1.3 Reaction-diffusion equations

It is natural to adapt the optimal control methods of ODEs to the control of Par-
tial Differential Equations (PDEs). This can be done by transforming the PDE

3 CpT q “ OpeLfT q where Lf is the Lipschitz constant associated with vector field f .



into (a vast system of) ODEs, using space discretization techniques such as finite
difference or finite element methods. In the present work, we focus on a partic-
ular class of non-linear PDEs called “reaction-diffusion” equations. Reaction-
diffusion equations cover a variety of particular cases with important appli-
cations in mathematical physics, and in biological models such as the Schlögl
model or the FitzHugh-Nagumo system [13]. The problem of optimal control
of reaction-diffusion equations has been recently the topic of many works of
(classical) numerical analysis: see, e.g., [9, 15, 20, 22, 41, 42].

The notion OSL constant can be naturally extended to PDEs and reaction-
diffusion equations in particular, as shown in [8, 6, 5, 7]. In these works, the au-
thors focus on the case where the OSL constant associated with the reaction-
diffusion equation is negative. In this case, the system has a contractivity (or
“incremental stability”) property which expresses the fact that all solutions con-
verge exponentially to each other (see [52]).

In this work, we also study reaction-diffusion equations with negative OSL
constants, but the equations are equipped with control inputs, and the problem
of controlling these inputs in an optimal way is here considered.

1.4 Model reduction

In order to reduce the large dimension of ODE systems originating from the
PDE space discretization, Model Order Reduction (MOR) techniques are often
used in conjunction with the analysis of ODE systems. The idea is to first in-
fer the optimal control at a reduced level, then apply it at the original level. In
the field of guaranteed analysis, the MOR technique of “balanced truncation”
was used to treat linear systems (e.g., [3, 23, 24, 34]). In [25], a MOR technique
based on spectral element method was coupled to an HJB approach for applica-
tion to advection-reaction-diffusion systems (cf. [26] for application to semilinear
parabolic PDEs). The MOR technique of “Proper Orthogonal Decomposition
(POD)” was coupled to an HJB approach in [1, 2, 30]. Here, we couple our HJB-
based method to a simple ad hoc reduction method (see Section 2.5).

The plan of the paper is as follows: We explain how to convert the reaction-
diffusion equation into a system of ODEs by domain discretization in Section 2.1,
and how to approximate the solution of the latter system using the explicit Euler
scheme of time integration in Section 2.2. Our procedure for solving finite horizon
control problems is explained in Section 2.3. In Section 2.4, we give an upper
bound to the error between the approximate value thus computed and the exact
optimal value. In Section 2.5, we explain how to perform MOR in order to treat
systems of larger dimension. We conclude in Section 3.

2 Optimal Reachability Control of Reaction-Diffusion
Equations

Let us consider the special class of PDEs called “reaction-diffusion” equations.
For the sake of notation simplicity, we focus on 1D reaction-diffusion equations



with Dirichlet boundary conditions (the domain Ω is of the form r0, Ls Ă R), but
the method applies to 2D or 3D reaction-diffusion equations with other boundary
conditions. A 1D reaction-diffusion system with Dirichlet boundary conditions
is of the form:

Bypt, xq

Bt
“ σ

B2ypt, xq

Bx2
` fpypt, xqq, t P r0, T s, x P Ω ” r0, Ls.

ypt, 0q “ u0ptq, ypt, Lq “ uLptq, t P r0, T s,

yp0, xq “ y0pxq, x P Ω ” r0, Ls.

Here, y “ ypt, xq is an R-valued unknown function, Ω is a bounded domain in R
with boundary BΩ :“ t0, Lu, and f is a function from r0, T s ˆ Ω to r0, 1s. Also
y0pxq is a given function called “initial condition”, and σ a positive constant,
called “diffusion constant”.

The boundary control up¨q :“ pu0p¨q, uLp¨qq that we consider here, is a piece-
wise constant (or “staircase”) function from r0, T s to a finite set U Ă r0, 1s ˆ
r0, 1s.The control uptq changes its value periodically at t “ τ, 2τ, . . . . We assume
that T “ kτ for some positive integer k. The constant τ is called the “switching
(or sampling) period”.

Given an initial condition y0p¨q such that y0pxq P r0, 1s for all x P r0, Ls,
we assume that, for any boundary control up¨q, the solution yp¨, ¨q of the system
exists, is unique, and ypt, xq P r0, 1s for all pt, xq P r0, T s ˆ r0, Ls.

2.1 Domain discretization

A well-known approach in numerical analysis of PDEs (see, e.g., [28]) is to dis-
cretize in space by finite difference or finite element methods in order to trans-
form the PDE into a system of ODEs.

Let M be a positive integer, h “ L{pM`1q, and let Ωh be a uniform grid with
nodes xj “ jh, j “ 1, . . . ,M . By replacing the 2nd order spatial derivative with
the second order centered difference, we obtain a space-discrete approximation:

dy

dt
“ σLhy ` σϕhpt, uq ` fpt, yq,

with yptq “ ry1ptq, . . . , yM ptqsT , yjptq « ypt, xjq, and

Lh “
1

h2

»

—

—

—

—

–

´2 1 0 ¨ ¨ ¨ 0
1 ´2 1 ¨ ¨ ¨ 0
0 1 ´2 ¨ ¨ ¨ 0

¨ ¨ ¨

0 0 ¨ ¨ ¨ 1 ´2

fi

ffi

ffi

ffi

ffi

fl

ϕhpt, uq “
1

h2
ru0ptq, 0, . . . , 0, uLptqs

J.

The point yptq, often abbreviated as y, is thus an element of S “ r0, 1sM .



2.2 Explicit Euler time integration

Let us abbreviate the equation

dy

dt
“ σLhy ` σϕhpt, uq ` fpt, yq

by:
dy

dt
“ fupt, yq.

We denote by Y ut,y0 , the solution y of the system at time t P r0, τq controlled by
mode u P U , for initial condition y0. Given a sequence of modes (or “pattern”)
π :“ uk ¨ ¨ ¨u1 P U

k, we denote by Y πt,y0 the solution of the system for mode uk
on t P r0, τq with initial condition y0, extended continuously with the solution
of the system for mode uk´1 on t P rτ, 2τq, and so on iteratively until mode u1
on t P rpk ´ 1qτ, kτ s.

Let us now approximate the solution of the system by performing time inte-
gration with the explicit Euler scheme. This yields:

yn`1 “ yn ` τfuptn, ynq,

Here yn is an approximate value of yptnq. Given a starting point z P X and
a mode u P U , we denote by Ỹ ut,z the Euler-based image of z at time t via u

for t P r0, τq. We have: Ỹ ut,z :“ z ` t fupzq. We denote similarly by Ỹ πt,z the

Euler-based image of z via pattern π P Uk at time t P r0, kτ s.

2.3 Finite horizon control problems

Let us now explain the principle of the method of optimal control of ODEs used
in [14], in the present context. We consider the cost function: Jk : r0, 1sMˆUk Ñ
Rě0 defined by:

Jkpy, πq “ }Y
π
kτ,y ´ yf },

where }¨} denotes the Euclidean norm in RM , and yf P r0, 1s
M is a given “target”

state.
We consider the value function vk : r0, 1sM Ñ Rě0 defined by:

vkpyq :“ min
πPUk

tJkpy, πqu ” min
πPUk

t}Y πkτ,y ´ yf }u.

Given k P N and τ P Rą0, we consider the following finite time horizon
optimal control problem: Find for each y P r0, 1sM

– the value vkpyq, i.e.
min
πPUk

t}Y πkτ,y ´ yf }u,

– and an optimal pattern:

πkpyq :“ arg min
πPUk

t}Y πkτ,y ´ yf }u.



In order to solve such optimal control problems, a classical “direct” method
consists in spatially discretizing the state space S “ r0, 1sM (i.e., the space of
values of y). We consider here a uniform partition of S into a finite number
N of cells of equal size: in our case , this means that interval r0, 1s is divided
into K subintervals of equal size, and N “ KM . A cell thus corresponds to a
M -tuple of subintervals. The center of a cell coresponds to the M -tuple of the
subinterval midpoints. The associated grid X is the set of centers of the cells
of S. The center z P X of a cell C is considered as the ε-representative of all
the points of C. We suppose that the cell size is such that }y ´ z} ď ε, for all
y P C (i.e. K ě

?
M{2ε). In this context, the direct method proceeds as follows

(cf. [14]): we consider the points of X as the vertices of a finite oriented graph;
there is a connection from z P X to z1 P X if z1 is the ε-representative of the
Euler-based image pz ` τfupzqq of z, for some u P U . We then compute using
dynamic programming the “path of length k with minimal cost” starting at z:
such a path is a sequence of k` 1 connected points z zk zk´1 ¨ ¨ ¨ z1 of X which
minimizes the distance }z1´yf }. This procedure allows us to compute a pattern
πεkpzq of length k, which approximates the optimal pattern πkpyq.

Definition 1. The function nextu : X Ñ X is defined by:

– nextupzq “ z1, where z1 is the ε-representative of Ỹ uτ,z.

Definition 2. For all point x P X , the spatially discrete value function vεk :
X Ñ Rě0 is defined by:

– for k “ 0, vεkpzq “ }z ´ yf },

– for k ě 1, vεkpzq “ minuPUtv
ε
k´1pnext

upzqqu.

Definition 3. The approximate optimal pattern of length k associated to z P X ,
denoted by πεkpzq P U

k, is defined by:

– if k “ 0, πεkpzq “ nil,

– if k ě 1, πεkpzq “ ukpzq ¨ π
1 where

ukpzq “ argmin
uPU

tvεk´1pnext
upzqqu

and π1 “ πεk´1pz
1q with z1 “ nextukpzqpzq.

It is easy to construct a procedure PROCεk which takes a point z P X as input,
and returns an approximate optimal pattern πεk P U

k.

Remark 1. The complexity of PROCεk is Opmˆ kˆNq where m is the number
of modes (|U | “ m), k the time-horizon length (T “ kτ) and N the number of
cells of X (N “ KM with K “

?
M{2ε).



2.4 Error upper bound

Given a point y P S of ε-representative z P X , and a pattern πεk returned

by PROCεkpzq, we are now going to show that the distance }Ỹ
πε
k

kτ,z ´ yf } con-

verges to vkpyq as ε Ñ 0. We first consider the ODE: dy
dt “ fupyq, and give an

upper bound to the error between the exact solution of the ODE and its Euler
approximation (see [33]).

Definition 4. Let µ be a given positive constant. Let us define, for all u P U
and t P r0, τ s, δut,µ as follows:

if λu ă 0 : δut,µ “

ˆ

µ2eλut `
C2
u

λ2u

ˆ

t2 `
2t

λu
`

2

λ2u

`

1´ eλut
˘

˙˙

1
2

if λu “ 0 : δut,µ “
`

µ2et ` C2
up´t

2 ´ 2t` 2pet ´ 1qq
˘

1
2

if λu ą 0 : δut,µ “

ˆ

µ2e3λut `
C2
u

3λ2u

ˆ

´t2 ´
2t

3λu
`

2

9λ2u

`

e3λut ´ 1
˘

˙˙

1
2

where Cu and λu are real constants specific to function fu, defined as follows:

Cu “ sup
yPS

Lu}fupyq},

where Lu denotes the Lipschitz constant for fu, and λu is the OSL constant
associated to fu, i.e., the minimal constant such that, for all y1, y2 P S:

xfupy1q ´ fupy2q, y1 ´ y2y ď λu}y1 ´ y2}
2,

where x¨, ¨y denotes the scalar product of two vectors of S.

Proposition 1. [33] Consider the solution Y ut,y0 of dy
dt “ fupyq with initial con-

dition y0 of ε-representative z0 (hence such that }y0 ´ z0} ď ε), and the ap-
proximate solution Ỹ ut,z0 given by the explicit Euler scheme. For all t P r0, τ s, we
have:

}Y ut,y0 ´ Ỹ
u
t,z0} ď δut,ε.

Proposition 2. Consider the system dy
dt “ fupyq with fupyq :“ σLhy`σϕhpt, uq`

fpyq. For a diffusion coefficient σ ą 0 sufficiently large, the OSL constant λu
associated to fu is such that: λu ă 0.

Proof. Consider the ODE: dydt “ fupyq “ σLhy`σϕhpt, uq`fpyq. For all y1, y2 P
S, we have: xfpy2q´fpy1q, y2´y1y ď λf }y2´y1}

2, where λf is the OSL constant
of f . Hence:

xfupy2q ´ fupy1q, y2 ´ y1y “ xσLhpy2 ´ y1q ` fpy2q ´ fpy1q, y2 ´ y1y
ď py2 ´ y1q

JpσLh ` λf qpy2 ´ y1q.



Since yJLhy ă 0 for all y P S (negativity of the quadratic form associated
to Lh), we have:

λu}y1 ´ y2}
2 ď py2 ´ y1q

T pσLh ` λf qpy2 ´ y1q ă 0,

for σ ą 0 sufficiently large. Hence λu ă 0. l

Lemma 1. Consider the system dy
dt “ fupyq where the OSL constant λu associ-

ated to fu is negative, and initial error e0 :“ }y0 ´ z0} ą 0. Let Gu :“
?
3e0|λu|

Cu
.

Consider the (smallest) positive root

αu :“ 1` |λu|Gu{4´
a

1` pλuGu{4q2

of equation: ´ 1
2 |λu|Gu ` p2`

1
2 |λu|Guqα´ α

2 “ 0.

Suppose: |λu|Gu

4 ă 1.Then we have 0 ă αu ă 1, and, for all t P r0, τ s with
τ ď Gup1´ αuq:

δue0ptq ď e0.

Proof. See Appendix 1.

Remark 2. In practical case studies |λu| is often small, and the term pλuGu{4q
2

can be neglected, leading to αu « |λu|Gu{4 and Gup1´αuq « Gup1´
|λu|Gu

4 q «

Gu.

Remark 3. It follows that, for τ ď Gup1´αuq, the Euler explicit scheme is stable,
in the sense that initial errors are damped out.

Remark 4. If τ ą Gup1´αuq, we can make use of subsampling, i.e., decompose τ
into a sequence of elementary time steps ∆t with ∆t ď Gup1 ´ αuq in order to
be still able to apply Lemma 1 (see Example 1). Let us point out that Lemma 1
(and the use of subsampling) allows to ensure set-based reachability with the use
of procedure PROCεk. Indeed, in this setting, the explicit Euler scheme leads to
decreasing errors, and thus, point based computations performed with the center
of a cell can be applied to the entire cell.

We suppose henceforth that the system dy
dt “ fupyq satisfies:

pHq : λu ă 0,
|λu|Gu

4
ă 1 and τ ď Gup1´ αuq, for all u P U.

From Proposition 1 and Lemma 1, it easily follows:

Theorem 1. Consider a system dy
dt “ fupyq satisfying pHq, and a point y P S

of ε-representative z P X . We have:

}Y πt,y ´ Ỹ
π
t,z} ď ε, for all π P Uk and t P r0, kτ s.

Proposition 3. Let z P X and πεk be the pattern of Uk returned by PROCεkpzq.
For all π P Uk, we have:

}Ỹ
πε
k

kτ,z ´ yf } ď }Ỹ
π
kτ,z ´ yf } ` 2kε.



Proof. W.l.o.g., let us suppose that yf is the origin O. Let us prove by induction
on k:

}Ỹ
πε
k

kτ,z} ď }Ỹ
π
kτ,z} ` 2kε.

Let πεk :“ uk ¨ ¨ ¨u1. The base case k “ 1 is easy. For k ě 2, we have:

}Ỹ
πε
k

kτ,z} “ }Ỹ
uk´1¨¨¨u1

pk´1qτ,zk
} with zk “ Ỹ uk

τ,z with uk “ argminuPUtv
ε
k´1pnext

upzqqu

ď }Ỹ
uk´1¨¨¨u1

pk´1qτ,nextuk pzkq
} ` ε

ď }Ỹ π
1

pk´1qτ,nextuk pzkq
} ` p2k ´ 1qε for all π1 P Uk´1 by induction hypothesis,

ď }Ỹ π
1

pk´1qτ,z1} ` 2kε for all π1 P Uk´1 and all z1 P tnextupzq |u P Uu

ď }Ỹ πτ,z} ` 2kε for all π P Uk.

l

Theorem 2. Let y P S be a point of ε-representative z P X . Let πεk be the pattern
returned by PROCεkpzq, and π˚ :“ argminπPUk

}Y πkτ,y ´ yf }. The discretization

error EεpT q :“ |}Ỹ
πε
k

kτ,z ´ yf } ´ vkpyq|, with vkpyq :“ }Y π
˚

kτ,y ´ yf } and T “ kτ ,
satisfies:

EεpT q ď p2k ` 1qε.

It follows that }Ỹ
πε
k

kτ,z ´ yf } converges to vkpyq as εÑ 0.

Proof. W.l.o.g., let us suppose that yf is the origin O. For all π P Uk, we have
by Proposition 3 and Theorem 1:

}Ỹ
πε
k

kτ,z} ď }Ỹ
π
kτ,z} ` 2kε ď }Y πkτ,y} ` p2k ` 1qε.

Hence

}Ỹ
πε
k

kτ,z} ď min
πPUk

}Y πkτ,y} ` p2k ` 1qε “ }Y π
˚

kτ,y} ` p2k ` 1qε.

On the other hand, for all π P Uk, it follows from Theorem 1:

}Y π
˚

kτ,y} ď }Y
π
kτ,y} ď }Ỹ

π
kτ,z} ` ε.

Hence:

}Y π
˚

kτ,y} ď }Ỹ
πε
k

kτ,z} ` ε.

Therefore we have: |}Ỹ
πε
k

kτ,z} ´ }Y
π˚

kτ,y}| ď p2k ` 1qε. l

Remark 5. The error bound EεpT q is thus linear in k “ T {τ . In order to de-
crease k, one can apply consecutively p ě 2 modes in a row (without inter-
mediate ε-approximation); this is equivalent to divide k by p, at the price of
considering mp “extended” modes instead of just m modes. (see Example 1,
Figure 2). An alternative for decreasing k is to increase τ (which may require in
turn to decrease ∆t for preserving assumption ∆t ď Gup1´αuq, see Remark 4).



Example 1. Consider the 1D reaction-diffusion system with Dirichlet boundary
condition (see [45], bistable case):

Bypt, xq

Bt
“ σ

B2ypt, xq

Bx2
` fpypt, xqq, t P r0, T s, x P r0, Ls

ypt, 0q “ u0, ypt, Lq “ uL,

yp0, xq “ y0pxq, x P r0, Ls

with σ “ 1, L “ 4 and fpyq “ yp1´yqpy´θq with θ “ 0.3. The control switching
period is τ “ 0.1. The values of the boundary control u “ pu0, uLq are in

U “ tp0, 0q, p0.2, 0.2q, p0.4, 0.4q, p0.6, 0.6q, p0.8.0.8q, p1, 1qu.4

We discretize the domain Ω “ r0, Ls of the system with M1 “ 5 discrete points,
using a finite difference scheme. Our program returns an OSL constant λu “
´0.322 for all u P U . Constant Cu varies between 10.33 and 11.85 depending on
the values of u.

We then discretize each interval component of the space S “ r0, 1sM1 of values
of y into 15 points with spacing η “ 1{15 « 0.066. The grid X is of the form
t0, η, 2η, . . . , 15ηuM1 , and the initial error e0 equal to ε “

?
M1η{2. This leads

to Gu varying between 0.00155 and 0.00178 depending on the value of u P U .

One checks: |λu|Gu

4 ă 1 for all u P U . The time step upper bound required by
Theorem 1 for ensuring numeric stability is 0.00155. Since the switching period
is τ “ 0.1, we perform subsampling (see, e.g., [33]) by decomposing every time
step riτ, pi ` 1qτq (1 ď i ď k ´ 1) into a sequence of elementary Euler steps of
length ∆t “ τ{100 ă 0.00155. This ensures that the system satisfies pHq, hence,
by Theorem 1, the explicit Euler scheme is stable and error }Y πt,y0 ´ Ỹ

π
t,z0} never

exceeds ε.
For objective with yf “ p0.3, 0.3, 0.3, 0.3, 0.3q and horizon time T “ kτ “ 2

(i.e., k “ 20), our program5 returns an approximate optimal controller in 2
minutes. Let z0 be the ε-representative of y0 “ 0.8x{L ` 0.1p1 ´ x{Lq. Let πεk
be the pattern output by PROCεkpz0q. A simulation of zptq :“ Ỹ

πε
k

t,z0 is given in
Figure 1 with T “ 2, τ “ 0.1 (k “ 20), ∆t “ τ

100 . We have }zpT q ´ yf} « 0.276.
The simulation presents some similarity with simulations displayed in [45] (see,
e.g., lower part of Figure 6), with a phase control u0 “ uL ą θ (here, u0 “ uL “
0.4) alternating with a phase control u0 “ uL ă θ (here, u0 “ uL “ 0.2). The
discretization error EεpT q is smaller than p2k ` 1qε “ 41

?
5{30 ă 3.1.

4 Note that, in [45], the values of the boundary control are in the full interval r0, 1s,
not in a finite set U as here. In [45], they focus, not on the bounding of computation
errors during integration as here, but on a formal proof that the objective state
yf “ θ (0 ă θ ă 1) is reachable in finite time iff L ă L˚ for some threshold
value L˚.

5 The program, called “OSLator” [31], is implemented in Octave. It is composed of
10 functions and a main script totalling 600 lines of code. The computations are
realised in a virtual machine running Ubuntu 18.06 LTS, having access to one core
of a 2.3GHz Intel Core i5, associated to 3.5 GB of RAM memory.



Fig. 1. Simulation of the system of Example 1 discretized with M1 “ 5 points, for
initial condition y0 “ 0.8x{L`0.1p1´x{Lq, objective yf “ 0.3 and horizon time T “ 2
(τ “ 0.1, ∆t “ τ

100
).

Let us now proceed with extended modes of length p “ 2 and p “ 4, as
explained in Remark 5. For p “ 2 (i.e., k “ 10), the control is synthesized in
7mn of CPU time. The controller simulation is given in the left part of Figure 2;
we have: }zpT q ´ yf } « 0.445 with EεpT q ă 1.57. For p “ 4 (i.e., k “ 5),
the computation of the control requires 8h of CPU time. The corresponding
simulation is given in the right part of Figure 2; we now have: }zpT q´yf } « 0.164
with EεpT q ă 0.82.

2.5 Model reduction

Let us consider the system S2 on space Sh2 “ r0, 1sM2 (with M2 even). The
differential equation can be written under the form:

dy2
dt

“ σLh2
y2 ` ϕh2

puq ` fpy2q.

where Lh2 corresponds to the pM2 ˆM2q Laplacian matrix, and h2 “
L

M2`1 .

Let us consider the “reduced” system S1 defined on Sh1
“ r0, 1sM1 with

M1 “M2{2, defined by:

dy1
dt

“ σLh1y1 ` ϕh1puq ` fpy1q,

where Lh1
is the pM1 ˆM1q Laplacian matrix and h1 “

L
M1`1 .



With M1 “ M2{2, we have h2 “
L

2M1`1 (“ h1pM1`1q
2M1`1 ). Let us consider the

pM1 ˆM2q reduction matrix:

Π :“
1
?

2

»

—

—

–

1 1 0 ¨ ¨ ¨ 0 0
0 0 1 1 ¨ ¨ ¨ 0

¨ ¨ ¨

0 0 ¨ ¨ ¨ 0 1 1

fi

ffi

ffi

fl

Note that ΠΠJ “ IM . Let us consider a point w0 P Sh2
, and let z0 “ Πw0 P Sh1

.

Theorem 3. Consider the system S2 and a point w0 P Sh2
, and let z0 “ Πw0 P

Sh1 . Let Y h2
w0

and Y h1
z0 be the solutions of S2 and S1 with initial conditions w0 P

Sh2 and z0 P Sh1 respectively. We have:

@t ě 0 }ΠY h2
w0
ptq ´ Y h1

z0 ptq} ď
K2σ

|λh1
|
,

where

K2 :“ sup
wPSh2

}pΠLh2
´ Lh1

Πqw},

and Lh2
(resp. Lh1

) is the Laplacian matrix of size M2 ˆM2 (resp. M1 ˆM1).

Proof. Let us consider the system S2:

dy2
dt

“ σLh2
y2 ` ϕh2

puq ` fpy2q.

By application of the projection matrix Π, we get:

dΠy2
dt

“ σΠLh2
y2 ` ϕh1

puq ` fpΠy2q.

By substracting pairwise with the sides of S1, we have:

dΠy2
dt

´
dy1
dt

“ σpΠLh2
y2 ´ Lh1

y1q ` fpΠy2q ´ fpy1q

“ Fh1
pΠy2q ´ Fh1

py1q ` σpΠLh2
´ Lh1

Πqy2,

where Fh1
pyq “ σLh1

pyq ` fpyq for y P Sh1
. On the other hand, we have:

1
2
d
dt p}Πy2 ´ y1}

2q “ x ddt pΠy2 ´ y1q, Πy2 ´ y1y
“ xFh1

pΠy2q ´ Fh1
py1q ` σpΠLh2

´ Lh1
Πqy2, Πy2 ´ y1y

“ xFh1pΠy2q ´ Fh1py1q, Πy2 ´ y1y
`σxpΠLh2 ´ Lh1Πqy2, Πy2 ´ y1y

ď λh1}Πy2 ´ y1}
2 ` σxpΠLh2 ´ Lh1Πqy2, Πy2 ´ y1y

ď λh1}Πy2 ´ y1}
2 `K2σ}Πy2 ´ y1}

with K2 :“ sup
wPSh2

}pΠLh2
´ Lh1

Πqw}



ď λh1
}Πy2 ´ y1}

2 `K2σ
1
2 pα}Πy2 ´ y1}

2 ` 1
α q,

for all α ą 0. Choosing α ą 0 such that K2σα “ ´λh1
, i.e.: α “ ´

λh1

K2σ
, we have:

1

2

d

dt
p}Πy2 ´ y1}

2q ď
λh1

2
}Πy2 ´ y1}

2 ´
pK2σq

2

2λh1

.

Since y2p0q “ w0 and y1p0q “ z0, we get by integration:

}Πy2ptq ´ y1ptq}
2 ď

pK2σq
2

λ2h1

p1´ eλh1
tq ď

pK2σq
2

λ2h1

.

Hence: }ΠY h2
w0
ptq ´ Y h1

z0 ptq} ď
K2σ
|λh1

|
for all t ě 0. l

This proposition expresses that the reduction error is bounded by constant K2σ
|λh1

|

when the same control modes are applied to both systems.6

Let y02 P S2 and yf2 P S2 be an initial and objective point respectively. Let

y01 :“ Πy02 P S1 and yf1 :“ Πyf2 P S1 denote their projections. Suppose that πε

is the pattern returned by PROCεkpy
0
1q for the reduced system S1. Then, from

Theorem 3, it follows that, when the same control πε is applied to the original
system S2 with y2p0q “ y02 P S2, it makes the projection Πyπ

ε

2 ptq P S1 reach a

neighborhood of yf1 at time t “ T . Formally, we have:

}Pyπ
ε

2 pT q ´ y
f
1 } ď }y

πε

1 pT q ´ y
f
1 } `

K2σ

|λh1 |
.

Example 2. Let us take the system defined in Example 1 as reduced system S1

(M1 “ 5), and let us take as “full-size” system S2 the system corresponding to
M2 “ 10. Since the size of the grid X2 associated to S2 is exponential in M2, the
size X2 is multiplied by p1{ηqM2´M1 “ 155 « 7.6 ¨ 105 w.r.t. the size of the grid
X1 associated to S1. The complexity for synthesizing directly the optimal control
of S2 thus becomes intractable. On the other hand, if we apply to S2 the optimal
strategy πε P Uk found for S1 in Example 1, we obtain a simulation depicted
in Figure 3 for extended mode of length 1, which is the counterpart of Figure 1
with M2 “ 10 (instead of M1 “ 5), and has a very similar form. Likewise, if we
apply to S2 the optimal strategy πε P Uk found for S1 in Example 1, we obtain
a simulation depicted in Figure 4 for extended modes of length 2 and 4, which
is the counterpart of Figure 2, and very similar to it. As seen above, we have:

}Πyπ
ε

2 pT q ´ y
f
1 } ď }y

πε

1 pT q ´ y
f
1 } `

K2σ

|λh1
|
,

where yf1 “ p0.3, 0.3, 0.3, 0.3, 0.3q, and the reduction error is bounded by K2σ
|λh1

|
“

17.9 σ.

6 By comparison, in [2], the error term originating from the POD model reduction is
exponential in T (see C1pT, |x|q in the proof of Theorem 5.1).



Fig. 2. Simulation of the system of Example 1 discretized with M1 “ 5 points, with
extended modes of length 2 (left) and extended modes of length 4 (right).

The subexpression }yπ
ε

1 pT q´y
f
1 } can be computed a posteriori by simulation:

see Table 1 of Appendix 2, with σ “ 1, σ “ 0.5. The value of }yπ
ε

2 pT q´y
f
2 } for S2

is also given in Table 1 for comparison.
The upper bound }yπ

ε

1 pT q ´ yf1 } `
K2σ
|λh1

|
of the distance }Pyπ

ε

2 pT q ´ yf1 } is

very conservative, due to a priori error bound K2σ
|λh1

|
. On can obtain a posteriori a

much sharper estimate of }Pyπ
ε

2 pT q´y
f
1 } by simulation: see Table 2, Appendix 2.

3 Final Remarks

Using the notion of OSL constant, we have shown how to use the finite difference
and explicit Euler methods in order to solve finite horizon control problems for
reaction-diffusion equations. Furthermore, we have quantified the deviation of
this control with the optimal strategy, and proved that the error upper bound
is linear in the horizon length. We have applied the method to a 1D bi-stable
reaction-diffusion equation, and have found experimental results similar to those
of [45]. We have also given a simple and specific model reduction method which
allows to apply the method to equations of larger size. In future work, we plan
to apply the method to 2D reaction-diffusion equations (e.g., Test 1 of [2]).
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27. Tomasz Kapela and Piotr Zgliczyński. A lohner-type algorithm for control systems
and ordinary differential inclusions. Discrete & Continuous Dynamical Systems-B,
11(2):365–385, 2009.

28. Toshiyuki Koto. IMEX Runge-Kutta schemes for reaction-diffusion equations.
Journal of Computational and Applied Mathematics, 215(1):182–195, 2008.
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Appendix 1: Proof of Lemma 1

Proof. It is easy to check that 0 ă αu ă 1 when |λu|Gu

4 ă 1.
Let t˚ :“ Gup1´ αuq. Let us first prove δe0ptq ď e0 for t “ t˚. We have:

´
1

2
|λu|Gu ` p2`

1

2
|λu|Guqαu ´ α

2
u “ 0.

Hence:

1

2Gup1´ αuq
λuG

2
up1´ αuq

2 ` 2αu ´ α
2
u “ 0,

i.e.

1

2t˚
λupt

˚q2 ` 2αu ´ α
2
u “ 0.

We have: ´ 1
4G2

ut
˚λupt

˚q4eλut
˚

ě 0. It follows:

1

2t˚
λupt

˚q2 ` 2αu ´ α
2
u ´

1

4G2
ut
˚
λupt

˚q4eλut
˚

ě 0.

Hence:

1`
1

2t˚
λupt

˚q2 ´
1

G2
u

ppt˚q2 `
1

4t˚
λupt

˚q4eλut
˚

q ě 0.

By multiplying by t˚:

pt˚ `
1

2
λupt

˚q2q ´
1

G2
u

ppt˚q3 `
1

4
λupt

˚q4eλut
˚

q ě 0.

Since G “
?

3|λu|e0{Cu:

e20pt
˚ `

1

2
λupt

˚q2q `
C2
u

λ2u
p´

1

3
pt˚q3 ´

1

12
λupt

˚q4eλut
˚

q ě 0.

By multiplying by λu:

e20pλut
˚ `

1

2
λ2upt

˚q2q `
C2
u

λ2u
p´

1

3
λupt

˚q3 ´
1

12
λ2upt

˚q4eλut
˚

q ď 0.

Note that, in the above formula, the subexpression λut
˚ ` 1

2λ
2
upt

˚q2 is such
that:

λut
˚ `

1

2
λ2upt

˚q2 ě eλut
˚

´ 1

since eλut
˚

´ 1 “ λut
˚ ` 1

2λ
2
upt

˚q2eλθ ď λut
˚ ` 1

2λ
2
upt

˚q2.

On the other hand, the subexpression ´ 1
3λupt

˚q3 ´ 1
12λ

2
upt

˚q4eλut
˚

is such
that:



´
1

3
λupt

˚q3 ´
1

12
λ2upt

˚q4eλut
˚

ě
2t˚

λu
` pt˚q2 `

2

λ2u
p1´ eλut

˚

q

since
2t˚

λu
` pt˚q2 ` 2

λ2
u
p1´ eλut

˚

q

“ 2t˚

λu
` pt˚q2 ` 2

λ2
u
p´λut

˚ ´ 1
2λ

2
upt

˚q2 ´ 1
6λ

3
upt

˚q3 ´ 1
24λ

4
upt

˚q4eλuθ

“ 2
λ2
u
p´ 1

6λ
3
upt

˚q3 ´ 1
24λ

4
upt

˚q4eλuθq for some 0 ď θ ď t˚

“ ´ 1
3λupt

˚q3 ´ 1
12λ

2
upt

˚q4eλuθ

ď ´ 1
3λupt

˚q3 ´ 1
12λ

2
upt

˚q4eλut
˚

.

It follows:

e20pe
λut

˚

´ 1q `
C2
u

λ2u
p
2t˚

λu
` pt˚q2 `

2

λ2u
p1´ eλut

˚

qq ď 0.

e20e
λut

˚

`
C2
u

λ2u
p
2t˚

λu
` pt˚q2 `

2

λ2u
p1´ eλut

˚

qq ď e20.

i.e.

pδue0pt
˚qq2 ď e20.

Hence: δue0pt
˚q ď e0. It remains to show: δue0ptq ď e0 for t P r0, t˚s.

Consider the 1rst and 2nd derivative δ1p¨q and δ2p¨q of δp¨q. We have:

δ1ptq “ λue
2
0e
λut `

C2
u

λ2
u
p2t` 2

λu
´ 2

λu
eλutq

δ2ptq “ λ2ue
2
0e
λut `

C2
u

λ2
u
p2´ 2eλutq.

Hence δ2ptq ą 0 for all t ě 0. On the other hand, for t “ 0, δ1ptq “ λue
2
0 ă 0,

and for t sufficiently large, δ1ptq ą 0. Hence, δ1p¨q is strictly increasing and has a
unique root. It follows that the equation δptq “ e0 has a unique solution t˚˚ for
t ą 0. Besides, δptq ď e0 for t P r0, t˚˚s, and δptq ě e0 for t P rt˚˚,`8q. Since
we have shown: δpt˚q ď e0, it follows t˚ ď t˚˚ and δptq ď e0 for t P r0, t˚s.

l



Appendix 2: Numerical results

Dimension Extended mode length }yπ
ε

i pT q ´ y
f
i } for σ “ 1 }yπ

ε

i pT q ´ y
f
i } for σ “ 0.5

i “ 1 pMi “ 5q 1 0.27642 0.33869
2 0.44496 0.39068
4 0.15294 0.22024

i “ 2 pMi “ 10q 1 0.39904 0.50251
2 0.50092 0.58500
4 0.16738 0.31440

Table 1. Value }yπ
ε

i pT q ´ y
f
i } for σ “ 1 and σ “ 0.5 (T “ 2, i “ 1, 2).

Extended mode length }Pyπ
ε

2 pT q ´ y
f
1 } for σ “ 1 }Pyπ

ε

2 pT q ´ y
f
1 } for σ “ 0.5

1 0.67429 0.77322

2 0.27501 0.72322

4 0.31385 0.21481

Table 2. Projection value }Pyπ
ε

2 pT q ´ y
f
1 } for σ “ 1, σ “ 0.5 (T “ 2).



Length 1, M1 “ 5 Length 1, M2 “ 10

Length 2, M1 “ 5 Length 2, M2 “ 10

Length 4, M1 “ 5 Length 4, M2 “ 10

Fig. 5. Simulation of the controllers for σ “ 1.



Length 1, M1 “ 5 Length 1, M2 “ 10

Length 2, M1 “ 5 Length 2, M2 “ 10

Length 4, M1 “ 5 Length 4, M2 “ 10

Fig. 6. Simulation of the controllers for σ “ 0.5.


