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Guaranteed optimal reachability control of reaction-diffusion equations using one-sided Lipschitz constants and model reduction

We show that, for any spatially discretized system of reactiondiffusion, the approximate solution given by the explicit Euler timediscretization scheme converges to the exact time-continuous solution, provided that diffusion coefficient be sufficiently large. By "sufficiently large", we mean that the diffusion coefficient value makes the one-sided Lipschitz constant of the reaction-diffusion system negative. We apply this result to solve a finite horizon control problem for a 1D reactiondiffusion example. We also explain how to perform model reduction in order to improve the efficiency of the method.

Introduction

Guaranteed reachability analysis

Given a system of Ordinary Differential equations (ODEs) of dimension n satisfying standard conditions of existence and uniqueness of the solution, the area of Numerical Analysis makes use of numerical tools in order to compute the approximate value of the solution, starting at an initial point of R n , with high accuracy: 1st order methods (explicit/implicit Euler method, trapezoid rule), higher-order Runge-Kutta methods, etc. In contrast, the area of Guaranteed (or Symbolic) Analysis is devoted to the construction of an overapproximation of the set of solutions that start, not at a single point of R n , but from a dense compact set of initial points. Guaranteed analysis, in its modern form, has been initiated in the 60's by R.E. Moore and his creation of Interval Arithmetic [START_REF] Moore | Interval Analysis[END_REF]: the set of solutions (or trajectories) are overapproximated by a sequence of "rectangular sets", i.e., cross-product of intervals of R. A set of arithmetic and differential calculus has been created for manipulating such sets. An overapproximation of the set of trajectories is computed using a Taylor development up to some order and an overestimation of the "Lagrange remainder". The method has been considerably refined in the 90's [START_REF] Berz | Computation and application of taylor polynomials with interval remainder bounds[END_REF][START_REF] Berz | Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models[END_REF][START_REF] Lohner | Enclosing the solutions of ordinary initial and boundary value problems[END_REF][START_REF] Nedialko | Validated solutions of initial value problems for ordinary differential equations[END_REF][START_REF] Nedialko | Interval arithmetic, affine arithmetic, taylor series methods: Why, what next?[END_REF]. These recent techniques make use of different convex data structures such as parallelepipeds [START_REF] Lohner | Enclosing the solutions of ordinary initial and boundary value problems[END_REF] or zonotopes [START_REF] Girard | Reachability of uncertain linear systems using zonotopes[END_REF][START_REF] Kühn | Rigorously computed orbits of dynamical systems without the wrapping effect[END_REF] instead of rectangular sets in order to enclose the flow of ODEs.

Such methods are typically applied to the formal proof of correctness of ODE integration, and more generally, to guarantee that the solutions of the ODEs satisfy some desired properties. Guaranteed reachability analysis generally treats linear systems. Extensions to nonlinear systems have been proposed, e.g., in [4], using local linearizations (see also [START_REF] Mitchell | Validating a hamiltonjacobi approximation to hybrid system reachable sets[END_REF][START_REF] Mitchell | Overapproximating reachable sets by hamiltonjacobi projections[END_REF]).

Guaranteed optimal control

In presence of inputs, we can use guaranteed analysis to describe a law that allows the system to satisfy a desired property. This corresponds to the topic of guaranteed (or correct-by-design) control synthesis. Several works have reecently applied guaranteed analysis to optimal control synthesis. Thus, in [START_REF] Schürmann | Optimal control of sets of solutions to formally guarantee constraints of disturbed linear systems[END_REF][START_REF] Schürmann | Reachset model predictive control for disturbed nonlinear systems[END_REF], the authors focus on a (finite time-horizon) optimal control procedure with a formal guarantee of safety constraint satisfaction, using zonotopes as state set representations. In [START_REF] Silva | Synthesis of safe controllers for nonlinear systems using dynamic programming techniques[END_REF], the authors focus on (periodically) sampled systems, and perform reachability analysis using convex polytopes as state set representations. In [START_REF] Kapela | A lohner-type algorithm for control systems and ordinary differential inclusions[END_REF][START_REF] Maidens | Reachability analysis of nonlinear systems using matrix measures[END_REF][START_REF] Fan | Simulation-driven reachability using matrix measures[END_REF][START_REF] Reissig | Symbolic optimal control[END_REF][START_REF] Rungger | Arbitrarily precise abstractions for optimal controller synthesis[END_REF], the authors construct an over-approximation of the set of trajectories using a growth bound (bounding the distance of neighboring trajectories) exploiting the notion of one-sided Lipschitz constant (also called "logarithmic norm" or "matrix norm"). The notion of "one-sided Lipschitz (OSL) constant" has been introduced independently by Dahlquist [START_REF] Dahlquist | Stability and error bounds in the numerical integration of ordinary differential equations[END_REF] and Lozinskii [START_REF] Mikhailovich | Error estimate for numerical integration of ordinary differential equations. i[END_REF] in order to derive error bounds in initial value problems (see survey in [START_REF] Söderlind | The logarithmic norm. history and modern theory[END_REF]). We used ourselves OSL constants in the context of symbolic optimal control in [START_REF] Le | Guaranteed control of sampled switched systems using semi-Lagrangian schemes and one-sided Lipschitz constants[END_REF]. The main difference with previous work [START_REF] Kapela | A lohner-type algorithm for control systems and ordinary differential inclusions[END_REF][START_REF] Maidens | Reachability analysis of nonlinear systems using matrix measures[END_REF][START_REF] Fan | Simulation-driven reachability using matrix measures[END_REF][START_REF] Reissig | Symbolic optimal control[END_REF][START_REF] Rungger | Arbitrarily precise abstractions for optimal controller synthesis[END_REF] is that our method makes use of explicit Euler's algorithm for ODE integration (cf. [START_REF] Le Coënt | Distributed control synthesis using Euler's method[END_REF][START_REF] Le Coënt | Control synthesis of nonlinear sampled switched systems using Euler's method[END_REF]) instead of sophisticated algorithms such as Lohner's algorithm [START_REF] Kapela | A lohner-type algorithm for control systems and ordinary differential inclusions[END_REF] or interval Taylor series methods [START_REF] Nedialko | Interval arithmetic, affine arithmetic, taylor series methods: Why, what next?[END_REF]. This leads us to a simple implementation of just a few hundred lines of Octave (see [START_REF] Le | OSLator 1.0[END_REF]).

As explained in [START_REF] Saluzzi | Error estimates for a tree structure algorithm solving finite horizon control problems[END_REF], using the Dynamic Programming (DP) [START_REF] Bellman | Dynamic Programming[END_REF] one can approximate the "value" of the solution of Hamilton-Jacobi-Bellman (HJB) equations. In [START_REF] Falcone | An approximation scheme for evolutive hamilton-jacobi equations[END_REF][START_REF] Saluzzi | Error estimates for a tree structure algorithm solving finite horizon control problems[END_REF], the authors thus show how to use finite difference schemes, Euler time integration and DP for solving finite horizon control problems. Furthermore, they give a priori errors estimates which are first-order in the size ∆t of the time discretization step; however, the error involves a constant CpT q which depends exponentially on the length T of the finite horizon3 . We solve here finite horizon control problems along the same lines (using finite difference, explicit Euler and DP) but, under the hypothesis of OSL negativity (see section 1.3), we obtain an error upper bound that is linear in T (see Section 2.4, Theorem 2).

Reaction-diffusion equations

It is natural to adapt the optimal control methods of ODEs to the control of Partial Differential Equations (PDEs). This can be done by transforming the PDE into (a vast system of) ODEs, using space discretization techniques such as finite difference or finite element methods. In the present work, we focus on a particular class of non-linear PDEs called "reaction-diffusion" equations. Reactiondiffusion equations cover a variety of particular cases with important applications in mathematical physics, and in biological models such as the Schlögl model or the FitzHugh-Nagumo system [START_REF] Casas | Optimal control of a class of reaction-diffusion systems[END_REF]. The problem of optimal control of reaction-diffusion equations has been recently the topic of many works of (classical) numerical analysis: see, e.g., [START_REF] Barthel | Optimal boundary control of a system of reaction diffusion equations[END_REF][START_REF] Court | Hybrid optimal control problems for a class of semilinear parabolic equations[END_REF][START_REF] Finotti | Optimal control of advective direction in reaction-diffusion population models[END_REF][START_REF] Griesse | A primal-dual active set strategy for optimal boundary control of a nonlinear reaction-diffusion system[END_REF][START_REF] Moura | Optimal boundary control & estimation of diffusion-reaction pdes[END_REF][START_REF] Moura | Optimal boundary control of reactiondiffusion partial differential equations via weak variations[END_REF].

The notion OSL constant can be naturally extended to PDEs and reactiondiffusion equations in particular, as shown in [START_REF] Arcak | Certifying spatially uniform behavior in reaction-diffusion pde and compartmental ode systems[END_REF][START_REF] Aminzare | Logarithmic lipschitz norms and diffusioninduced instability[END_REF][START_REF] Aminzare | Guaranteeing spatial uniformity in reaction-diffusion systems using weighted l 2 norm contractions[END_REF][START_REF] Aminzare | Some remarks on spatial uniformity of solutions of reaction-diffusion pdes[END_REF]. In these works, the authors focus on the case where the OSL constant associated with the reactiondiffusion equation is negative. In this case, the system has a contractivity (or "incremental stability") property which expresses the fact that all solutions converge exponentially to each other (see [START_REF] Sontag | Contractive systems with inputs[END_REF]).

In this work, we also study reaction-diffusion equations with negative OSL constants, but the equations are equipped with control inputs, and the problem of controlling these inputs in an optimal way is here considered.

Model reduction

In order to reduce the large dimension of ODE systems originating from the PDE space discretization, Model Order Reduction (MOR) techniques are often used in conjunction with the analysis of ODE systems. The idea is to first infer the optimal control at a reduced level, then apply it at the original level. In the field of guaranteed analysis, the MOR technique of "balanced truncation" was used to treat linear systems (e.g., [3,[START_REF] Han | Reachability analysis of hybrid control systems using reduced-order models[END_REF][START_REF] Han | Reachability analysis of large-scale affine systems using low-dimensional polytopes[END_REF][START_REF] Le Coënt | Guaranteed control synthesis of switched control systems using model order reduction and state-space bisection[END_REF]). In [START_REF] Kalise | Reduced-order minimum time control of advectionreaction-diffusion systems via dynamic programming[END_REF], a MOR technique based on spectral element method was coupled to an HJB approach for application to advection-reaction-diffusion systems (cf. [START_REF] Kalise | Polynomial approximation of high-dimensional hamilton-jacobi-bellman equations and applications to feedback control of semilinear parabolic pdes[END_REF] for application to semilinear parabolic PDEs). The MOR technique of "Proper Orthogonal Decomposition (POD)" was coupled to an HJB approach in [START_REF] Alla | Error analysis for POD approximations of infinite horizon problems via the dynamic programming approach[END_REF][START_REF] Alla | A HJB-POD approach for the control of nonlinear PDEs on a tree structure[END_REF][START_REF] Kunisch | Hjb-pod-based feedback design for the optimal control of evolution problems[END_REF]. Here, we couple our HJBbased method to a simple ad hoc reduction method (see Section 2.5).

The plan of the paper is as follows: We explain how to convert the reactiondiffusion equation into a system of ODEs by domain discretization in Section 2.1, and how to approximate the solution of the latter system using the explicit Euler scheme of time integration in Section 2.2. Our procedure for solving finite horizon control problems is explained in Section 2.3. In Section 2.4, we give an upper bound to the error between the approximate value thus computed and the exact optimal value. In Section 2.5, we explain how to perform MOR in order to treat systems of larger dimension. We conclude in Section 3.

Optimal Reachability Control of Reaction-Diffusion Equations

Let us consider the special class of PDEs called "reaction-diffusion" equations.

For the sake of notation simplicity, we focus on 1D reaction-diffusion equations with Dirichlet boundary conditions (the domain Ω is of the form r0, Ls Ă R), but the method applies to 2D or 3D reaction-diffusion equations with other boundary conditions. A 1D reaction-diffusion system with Dirichlet boundary conditions is of the form:

Bypt, xq Bt " σ B 2 ypt, xq Bx 2 `f pypt, xqq, t P r0, T s, x P Ω " r0, Ls. ypt, 0q " u 0 ptq, ypt, Lq " u L ptq, t P r0, T s, yp0, xq " y 0 pxq, x P Ω " r0, Ls.
Here, y " ypt, xq is an R-valued unknown function, Ω is a bounded domain in R with boundary BΩ :" t0, Lu, and f is a function from r0, T s ˆΩ to r0, 1s. Also y 0 pxq is a given function called "initial condition", and σ a positive constant, called "diffusion constant".

The boundary control up¨q :" pu 0 p¨q, u L p¨qq that we consider here, is a piecewise constant (or "staircase") function from r0, T s to a finite set U Ă r0, 1s r0, 1s.The control uptq changes its value periodically at t " τ, 2τ, . . . . We assume that T " kτ for some positive integer k. The constant τ is called the "switching (or sampling) period".

Given an initial condition y 0 p¨q such that y 0 pxq P r0, 1s for all x P r0, Ls, we assume that, for any boundary control up¨q, the solution yp¨, ¨q of the system exists, is unique, and ypt, xq P r0, 1s for all pt, xq P r0, T s ˆr0, Ls.

Domain discretization

A well-known approach in numerical analysis of PDEs (see, e.g., [START_REF] Koto | IMEX Runge-Kutta schemes for reaction-diffusion equations[END_REF]) is to discretize in space by finite difference or finite element methods in order to transform the PDE into a system of ODEs.

Let M be a positive integer, h " L{pM `1q, and let Ω h be a uniform grid with nodes x j " jh, j " 1, . . . , M . By replacing the 2nd order spatial derivative with the second order centered difference, we obtain a space-discrete approximation:

dy dt " σL h y `σϕ h pt, uq `f pt, yq,
with yptq " ry 1 ptq, . . . , y M ptqs T , y j ptq « ypt, x j q, and

L h " 1 h 2 » - - - - - ´2 1 0 ¨¨¨0 1 ´2 1 ¨¨¨0 0 1 ´2 ¨¨¨0 ¨¨0 0 ¨¨¨1 ´2fi ffi ffi ffi ffi fl ϕ h pt, uq " 1 h 2 ru 0 ptq, 0, . . . , 0, u L ptqs J .
The point yptq, often abbreviated as y, is thus an element of S " r0, 1s M .

Explicit Euler time integration

Let us abbreviate the equation dy dt " σL h y `σϕ h pt, uq `f pt, yq by: dy dt " f u pt, yq.

We denote by Y u t,y0 , the solution y of the system at time t P r0, τ q controlled by mode u P U , for initial condition y 0 . Given a sequence of modes (or "pattern") π :" u k ¨¨¨u 1 P U k , we denote by Y π t,y0 the solution of the system for mode u k on t P r0, τ q with initial condition y 0 , extended continuously with the solution of the system for mode u k´1 on t P rτ, 2τ q, and so on iteratively until mode u 1 on t P rpk ´1qτ, kτ s.

Let us now approximate the solution of the system by performing time integration with the explicit Euler scheme. This yields:

y n`1 " y n `τ f u pt n , y n q,
Here y n is an approximate value of ypt n q. Given a starting point z P X and a mode u P U , we denote by Ỹ u t,z the Euler-based image of z at time t via u for t P r0, τ q. We have: Ỹ u t,z :" z `t f u pzq. We denote similarly by Ỹ π t,z the Euler-based image of z via pattern π P U k at time t P r0, kτ s.

Finite horizon control problems

Let us now explain the principle of the method of optimal control of ODEs used in [START_REF] Le | Guaranteed control of sampled switched systems using semi-Lagrangian schemes and one-sided Lipschitz constants[END_REF], in the present context. We consider the cost function: J k : r0, 1s M ˆU k Ñ R ě0 defined by: J k py, πq " }Y π kτ,y ´yf }, where }¨} denotes the Euclidean norm in R M , and y f P r0, 1s M is a given "target" state.

We consider the value function v k : r0, 1s M Ñ R ě0 defined by:

v k pyq :" min πPU k tJ k py, πqu " min πPU k t}Y π kτ,y ´yf }u.
Given k P N and τ P R ą0 , we consider the following finite time horizon optimal control problem: Find for each y P r0, 1s M the value v k pyq, i.e. min πPU k t}Y π kτ,y ´yf }u,

and an optimal pattern:

π k pyq :" arg min πPU k t}Y π kτ,y ´yf }u.
In order to solve such optimal control problems, a classical "direct" method consists in spatially discretizing the state space S " r0, 1s M (i.e., the space of values of y). We consider here a uniform partition of S into a finite number N of cells of equal size: in our case , this means that interval r0, 1s is divided into K subintervals of equal size, and N " K M . A cell thus corresponds to a M -tuple of subintervals. The center of a cell coresponds to the M -tuple of the subinterval midpoints. The associated grid X is the set of centers of the cells of S. The center z P X of a cell C is considered as the ε-representative of all the points of C. We suppose that the cell size is such that }y ´z} ď ε, for all y P C (i.e. K ě ? M {2ε). In this context, the direct method proceeds as follows (cf. [START_REF] Le | Guaranteed control of sampled switched systems using semi-Lagrangian schemes and one-sided Lipschitz constants[END_REF]): we consider the points of X as the vertices of a finite oriented graph; there is a connection from z P X to z 1 P X if z 1 is the ε-representative of the Euler-based image pz `τ f u pzqq of z, for some u P U . We then compute using dynamic programming the "path of length k with minimal cost" starting at z: such a path is a sequence of k `1 connected points z z k z k´1 ¨¨¨z 1 of X which minimizes the distance }z 1 ´yf }. This procedure allows us to compute a pattern π ε k pzq of length k, which approximates the optimal pattern π k pyq.

Definition 1. The function next u : X Ñ X is defined by:

-next u pzq " z 1 , where z 1 is the ε-representative of Ỹ u τ,z .
Definition 2. For all point x P X , the spatially discrete value function v ε k : X Ñ R ě0 is defined by: for k " 0, v ε k pzq " }z ´yf }, for k ě 1, v ε k pzq " min uPU tv ε k´1 pnext u pzqqu.

Definition 3. The approximate optimal pattern of length k associated to z P X , denoted by π ε k pzq P U k , is defined by:

-if k " 0, π ε k pzq " nil, -if k ě 1, π ε k pzq " u k pzq ¨π1 where u k pzq " arg min uPU tv ε k´1 pnext u pzqqu and π 1 " π ε k´1 pz 1 q with z 1 " next u k pzq pzq.
It is easy to construct a procedure P ROC ε k which takes a point z P X as input, and returns an approximate optimal pattern π ε k P U k .

Remark 1. The complexity of P ROC ε k is Opm ˆk ˆN q where m is the number of modes (|U | " m), k the time-horizon length (T " kτ ) and N the number of cells of X (N " K M with K " ? M {2ε).

Error upper bound

Given a point y P S of ε-representative z P X , and a pattern π ε k returned by P ROC ε k pzq, we are now going to show that the distance } Ỹ π ε k kτ,z ´yf } converges to v k pyq as ε Ñ 0. We first consider the ODE: dy dt " f u pyq, and give an upper bound to the error between the exact solution of the ODE and its Euler approximation (see [START_REF] Le Coënt | Control synthesis of nonlinear sampled switched systems using Euler's method[END_REF]). Definition 4. Let µ be a given positive constant. Let us define, for all u P U and t P r0, τ s, δ u t,µ as follows:

if λ u ă 0 : δ u t,µ " ˆµ2 e λut `C2 u λ 2 u ˆt2 `2t λ u `2 λ 2 u `1 ´eλut ˘˙˙1 2 if λ u " 0 : δ u t,µ " `µ2 e t `C2 u p´t 2 ´2t `2pe t ´1qq ˘1 2 if λ u ą 0 : δ u t,µ " ˆµ2 e 3λut `C2 u 3λ 2 u ˆ´t 2 ´2t 3λ u `2 9λ 2 u `e3λut ´1˘˙˙1 2
where C u and λ u are real constants specific to function f u , defined as follows:

C u " sup yPS L u }f u pyq},
where L u denotes the Lipschitz constant for f u , and λ u is the OSL constant associated to f u , i.e., the minimal constant such that, for all y 1 , y 2 P S:

xf u py 1 q ´fu py 2 q, y 1 ´y2 y ď λ u }y 1 ´y2 } 2 , where x¨, ¨y denotes the scalar product of two vectors of S.

Proposition 1. [START_REF] Le Coënt | Control synthesis of nonlinear sampled switched systems using Euler's method[END_REF] Consider the solution Y u t,y0 of dy dt " f u pyq with initial condition y 0 of ε-representative z 0 (hence such that }y 0 ´z0 } ď ε), and the approximate solution Ỹ u t,z0 given by the explicit Euler scheme. For all t P r0, τ s, we have:

}Y u t,y0 ´Ỹ u t,z0 } ď δ u t,ε .
Proposition 2. Consider the system dy dt " f u pyq with f u pyq :" σL h y`σϕ h pt, uqf pyq. For a diffusion coefficient σ ą 0 sufficiently large, the OSL constant λ u associated to f u is such that: λ u ă 0.

Proof. Consider the ODE: dy dt " f u pyq " σL h y `σϕ h pt, uq `f pyq. For all y 1 , y 2 P S, we have: xf py 2 q´f py 1 q, y 2 ´y1 y ď λ f }y 2 ´y1 } 2 , where λ f is the OSL constant of f . Hence: xf u py 2 q ´fu py 1 q, y 2 ´y1 y " xσL h py 2 ´y1 q `f py 2 q ´f py 1 q, y 2 ´y1 y ď py 2 ´y1 q J pσL h `λf qpy 2 ´y1 q.

Since y J L h y ă 0 for all y P S (negativity of the quadratic form associated to L h ), we have: λ u }y 1 ´y2 } 2 ď py 2 ´y1 q T pσL h `λf qpy 2 ´y1 q ă 0, for σ ą 0 sufficiently large. Hence λ u ă 0. l Lemma 1. Consider the system dy dt " f u pyq where the OSL constant λ u associated to f u is negative, and initial error e 0 :" }y 0 ´z0 } ą 0. Let G u :"

? 3e0|λu| Cu
. Consider the (smallest) positive root

α u :" 1 `|λ u |G u {4 ´a1 `pλ u G u {4q 2 of equation: ´1 2 |λ u |G u `p2 `1 2 |λ u |G u qα ´α2 " 0. Suppose: |λu|Gu 4 ă 1.
Then we have 0 ă α u ă 1, and, for all t P r0, τ s with τ ď G u p1 ´αu q: δ u e0 ptq ď e 0 . Proof. See Appendix 1.

Remark 2. In practical case studies |λ u | is often small, and the term pλ u G u {4q 2 can be neglected, leading to α u « |λ u |G u {4 and G u p1 ´αu q « G u p1 ´|λu|Gu

4 q « G u .
Remark 3. It follows that, for τ ď G u p1´α u q, the Euler explicit scheme is stable, in the sense that initial errors are damped out. Remark 4. If τ ą G u p1´α u q, we can make use of subsampling, i.e., decompose τ into a sequence of elementary time steps ∆t with ∆t ď G u p1 ´αu q in order to be still able to apply Lemma 1 (see Example 1). Let us point out that Lemma 1 (and the use of subsampling) allows to ensure set-based reachability with the use of procedure P ROC ε k . Indeed, in this setting, the explicit Euler scheme leads to decreasing errors, and thus, point based computations performed with the center of a cell can be applied to the entire cell.

We suppose henceforth that the system dy dt " f u pyq satisfies:

pHq : λ u ă 0, |λ u |G u 4 ă 1 
and τ ď G u p1 ´αu q, for all u P U.

From Proposition 1 and Lemma 1, it easily follows:

Theorem 1. Consider a system dy dt " f u pyq satisfying pHq, and a point y P S of ε-representative z P X . We have:

}Y π t,y ´Ỹ π t,z } ď ε,
for all π P U k and t P r0, kτ s.

Proposition 3. Let z P X and π ε k be the pattern of U k returned by P ROC ε k pzq. For all π P U k , we have:

} Ỹ π ε k kτ,z ´yf } ď } Ỹ π kτ,z ´yf } `2kε.
Proof. W.l.o.g., let us suppose that y f is the origin O. Let us prove by induction on k:

} Ỹ π ε k kτ,z } ď } Ỹ π kτ,z } `2kε.
Let π ε k :" u k ¨¨¨u 1 . The base case k " 1 is easy. For k ě 2, we have:

} Ỹ π ε k kτ,z } " } Ỹ u k´1 ¨¨¨u1 pk´1qτ,z k } with z k " Ỹ u k τ,z with u k " argmin uPU tv ε k´1 pnext u pzqqu ď } Ỹ u k´1 ¨¨¨u1 pk´1qτ,next u k pz k q } `ε ď } Ỹ π 1 pk´1qτ,next u k pz k q } `p2k ´1qε for all π 1 P U k´1 by induction hypothesis, ď } Ỹ π 1
pk´1qτ,z 1 } `2kε for all π 1 P U k´1 and all z 1 P tnext u pzq |u P U u ď } Ỹ π τ,z } `2kε for all π P U k . l Theorem 2. Let y P S be a point of ε-representative z P X . Let π ε k be the pattern returned by P ROC ε k pzq, and π ˚:" argmin πPU k }Y π kτ,y ´yf }. The discretization error E ε pT q :" |} Ỹ π ε k kτ,z ´yf } ´vk pyq|, with v k pyq :" }Y π kτ,y ´yf } and T " kτ , satisfies:

E ε pT q ď p2k `1qε. It follows that } Ỹ π ε k kτ,z ´yf } converges to v k pyq as ε Ñ 0.
Proof. W.l.o.g., let us suppose that y f is the origin O. For all π P U k , we have by Proposition 3 and Theorem 1:

} Ỹ π ε k kτ,z } ď } Ỹ π kτ,z } `2kε ď }Y π kτ,y } `p2k `1qε. Hence } Ỹ π ε k kτ,z } ď min πPU k }Y π kτ,y } `p2k `1qε " }Y π kτ,y } `p2k `1qε.
On the other hand, for all π P U k , it follows from Theorem 1:

}Y π kτ,y } ď }Y π kτ,y } ď } Ỹ π kτ,z } `ε.
Hence:

}Y π kτ,y } ď } Ỹ π ε k kτ,z } `ε.
Therefore we have:

|} Ỹ π ε k kτ,z } ´}Y π kτ,y }| ď p2k `1qε. l
Remark 5. The error bound E ε pT q is thus linear in k " T {τ . In order to decrease k, one can apply consecutively p ě 2 modes in a row (without intermediate ε-approximation); this is equivalent to divide k by p, at the price of considering m p "extended" modes instead of just m modes. (see Example 1, Figure 2). An alternative for decreasing k is to increase τ (which may require in turn to decrease ∆t for preserving assumption ∆t ď G u p1 ´αu q, see Remark 4).

Example 1. Consider the 1D reaction-diffusion system with Dirichlet boundary condition (see [START_REF] Pouchol | Phase portrait control for 1D monostable and bistable reaction-diffusion equations[END_REF], bistable case):

Bypt, xq Bt " σ B 2 ypt, xq
Bx 2 `f pypt, xqq, t P r0, T s, x P r0, Ls ypt, 0q " u 0 , ypt, Lq " u L , yp0, xq " y 0 pxq, x P r0, Ls with σ " 1, L " 4 and f pyq " yp1 ´yqpy ´θq with θ " 0.3. The control switching period is τ " 0.1. The values of the boundary control u " pu 0 , u L q are in U " tp0, 0q, p0.2, 0.2q, p0.4, 0.4q, p0.6, 0.6q, p0.8.0.8q, p1, 1qu. 4We discretize the domain Ω " r0, Ls of the system with M 1 " 5 discrete points, using a finite difference scheme. Our program returns an OSL constant λ u " ´0.322 for all u P U . Constant C u varies between 10.33 and 11.85 depending on the values of u.

We then discretize each interval component of the space S " r0, 1s M1 of values of y into 15 points with spacing η " 1{15 « 0.066. The grid X is of the form t0, η, 2η, . . . , 15ηu M1 , and the initial error e 0 equal to ε " ? M 1 η{2. This leads to G u varying between 0.00155 and 0.00178 depending on the value of u P U . One checks: |λu|Gu 4 ă 1 for all u P U . The time step upper bound required by Theorem 1 for ensuring numeric stability is 0.00155. Since the switching period is τ " 0.1, we perform subsampling (see, e.g., [START_REF] Le Coënt | Control synthesis of nonlinear sampled switched systems using Euler's method[END_REF]) by decomposing every time step riτ, pi `1qτ q (1 ď i ď k ´1) into a sequence of elementary Euler steps of length ∆t " τ {100 ă 0.00155. This ensures that the system satisfies pHq, hence, by Theorem 1, the explicit Euler scheme is stable and error }Y π t,y0 ´Ỹ π t,z0 } never exceeds ε.

For objective with y f " p0.3, 0.3, 0.3, 0.3, 0.3q and horizon time T " kτ " 2 (i.e., k " 20), our program5 returns an approximate optimal controller in 2 minutes. Let z 0 be the ε-representative of y 0 " 0.8x{L `0.1p1 ´x{Lq. Let π ε k be the pattern output by P ROC ε k pz 0 q. A simulation of zptq :" Ỹ π ε k t,z0 is given in Figure 1 with T " 2, τ " 0.1 (k " 20), ∆t " τ 100 . We have }zpT q ´yf } « 0.276. The simulation presents some similarity with simulations displayed in [START_REF] Pouchol | Phase portrait control for 1D monostable and bistable reaction-diffusion equations[END_REF] (see, e.g., lower part of Figure 6), with a phase control u 0 " u L ą θ (here, u 0 " u L " 0.4) alternating with a phase control u 0 " u L ă θ (here, u 0 " u L " 0.2). The discretization error E ε pT q is smaller than p2k `1qε " 41 ? 5{30 ă 3.1. Let us now proceed with extended modes of length p " 2 and p " 4, as explained in Remark 5. For p " 2 (i.e., k " 10), the control is synthesized in 7mn of CPU time. The controller simulation is given in the left part of Figure 2; we have: }zpT q ´yf } « 0.445 with E ε pT q ă 1.57. For p " 4 (i.e., k " 5), the computation of the control requires 8h of CPU time. The corresponding simulation is given in the right part of Figure 2; we now have: }zpT q´y f } « 0.164 with E ε pT q ă 0.82.

Model reduction

Let us consider the system S 2 on space S h2 " r0, 1s M2 (with M 2 even). The differential equation can be written under the form:

dy 2 dt
" σL h2 y 2 `ϕh2 puq `f py 2 q.

where L h2 corresponds to the pM 2 ˆM2 q Laplacian matrix, and h 2 " L M2`1 . Let us consider the "reduced" system S 1 defined on S h1 " r0, 1s M1 with M 1 " M 2 {2, defined by:

dy 1 dt " σL h1 y 1 `ϕh1 puq `f py 1 q,
where L h1 is the pM 1 ˆM1 q Laplacian matrix and h 1 " L M1`1 .

With M 1 " M 2 {2, we have h 2 " L 2M1`1 (" h1pM1`1q 2M1`1 ). Let us consider the pM 1 ˆM2 q reduction matrix:

Π :" 1 ? 2 » - - - 1 1 0 ¨¨¨0 0 0 0 1 1 ¨¨¨0 ¨¨0 0 ¨¨¨0 1 1 fi ffi ffi fl
Note that ΠΠ J " I M . Let us consider a point w 0 P S h2 , and let z 0 " Πw 0 P S h1 . Theorem 3. Consider the system S 2 and a point w 0 P S h2 , and let z 0 " Πw 0 P S h1 . Let Y h2 w0 and Y h1 z0 be the solutions of S 2 and S 1 with initial conditions w 0 P S h2 and z 0 P S h1 respectively. We have:

@t ě 0 }ΠY h2 w0 ptq ´Y h1 z0 ptq} ď K 2 σ |λ h1 | , where K 2 :" sup wPS h 2 }pΠL h2 ´Lh1 Πqw},
and L h2 (resp. L h1 ) is the Laplacian matrix of size M 2 ˆM2 (resp. M 1 ˆM1 ).

Proof. Let us consider the system S 2 : dy 2 dt " σL h2 y 2 `ϕh2 puq `f py 2 q.

By application of the projection matrix Π, we get: dΠy 2 dt " σΠL h2 y 2 `ϕh1 puq `f pΠy 2 q.

By substracting pairwise with the sides of S 1 , we have:

dΠy 2 dt ´dy 1 dt
" σpΠL h2 y 2 ´Lh1 y 1 q `f pΠy 2 q ´f py 1 q " F h1 pΠy 2 q ´Fh1 py 1 q `σpΠL h2 ´Lh1 Πqy 2 ,

where F h1 pyq " σL h1 pyq `f pyq for y P S h1 . On the other hand, we have:

1 2 d dt p}Πy 2 ´y1 } 2 q " x d dt pΠy 2 ´y1 q, Πy 2 ´y1 y " xF h1 pΠy 2 q ´Fh1 py 1 q `σpΠL h2 ´Lh1 Πqy 2 , Πy 2 ´y1 y " xF h1 pΠy 2 q ´Fh1 py 1 q, Πy 2 ´y1 y `σxpΠL h2 ´Lh1 Πqy 2 , Πy 2 ´y1 y ď λ h1 }Πy 2 ´y1 } 2 `σxpΠL h2 ´Lh1 Πqy 2 , Πy 2 ´y1 y ď λ h1 }Πy 2 ´y1 } 2 `K2 σ}Πy 2 ´y1 } with K 2 :" sup wPS h 2 }pΠL h2 ´Lh1 Πqw} ď λ h1 }Πy 2 ´y1 } 2 `K2 σ 1 2 pα}Πy 2 ´y1 } 2 `1 α q, for all α ą 0. Choosing α ą 0 such that K 2 σα " ´λh1 , i.e.: α " ´λh 1 K2σ , we have:

1 2 d dt p}Πy 2 ´y1 } 2 q ď λ h1 2 }Πy 2 ´y1 } 2 ´pK 2 σq 2 2λ h1 .
Since y 2 p0q " w 0 and y 1 p0q " z 0 , we get by integration: }Πy 2 ptq ´y1 ptq} when the same control modes are applied to both systems. 6Let y 0 2 P S 2 and y f 2 P S 2 be an initial and objective point respectively. Let y 0 1 :" Πy 0 2 P S 1 and y f 1 :" Πy f 2 P S 1 denote their projections. Suppose that π ε is the pattern returned by P ROC ε k py 0 1 q for the reduced system S 1 . Then, from Theorem 3, it follows that, when the same control π ε is applied to the original system S 2 with y 2 p0q " y 0 2 P S 2 , it makes the projection Πy π ε 2 ptq P S 1 reach a neighborhood of y f 1 at time t " T . Formally, we have:

}P y π ε 2 pT q ´yf 1 } ď }y π ε 1 pT q ´yf 1 } `K2 σ |λ h1 | .
Example 2. Let us take the system defined in Example 1 as reduced system S 1 (M 1 " 5), and let us take as "full-size" system S 2 the system corresponding to M 2 " 10. Since the size of the grid X 2 associated to S 2 is exponential in M 2 , the size X 2 is multiplied by p1{ηq M2´M1 " 15 5 « 7.6 ¨10 5 w.r.t. the size of the grid X 1 associated to S 1 . The complexity for synthesizing directly the optimal control of S 2 thus becomes intractable. On the other hand, if we apply to S 2 the optimal strategy π ε P U k found for S 1 in Example 1, we obtain a simulation depicted in Figure 3 for extended mode of length 1, which is the counterpart of Figure 1 with M 2 " 10 (instead of M 1 " 5), and has a very similar form. Likewise, if we apply to S 2 the optimal strategy π ε P U k found for S 1 in Example 1, we obtain a simulation depicted in Figure 4 for extended modes of length 2 and 4, which is the counterpart of Figure 2, and very similar to it. As seen above, we have:

}Πy π ε 2 pT q ´yf 1 } ď }y π ε 1 pT q ´yf 1 } `K2 σ |λ h1 | ,
where y f 1 " p0.3, 0.3, 0.3, 0.3, 0.3q, and the reduction error is bounded by K2σ |λ h 1 | " 17.9 σ. The subexpression }y π ε 1 pT q´y f 1 } can be computed a posteriori by simulation: see Table 1 of Appendix 2, with σ " 1, σ " 0.5. The value of }y π ε 2 pT q´y f 2 } for S 2 is also given in Table 1 for comparison.

The upper bound }y π ε 1 pT q ´yf 1 } `K2σ |λ h 1 | of the distance }P y π ε 2 pT q ´yf 1 } is very conservative, due to a priori error bound K2σ |λ h 1 | . On can obtain a posteriori a much sharper estimate of }P y π ε 2 pT q´y f 1 } by simulation: see Table 2, Appendix 2.

Final Remarks

Using the notion of OSL constant, we have shown how to use the finite difference and explicit Euler methods in order to solve finite horizon control problems for reaction-diffusion equations. Furthermore, we have quantified the deviation of this control with the optimal strategy, and proved that the error upper bound is linear in the horizon length. We have applied the method to a 1D bi-stable reaction-diffusion equation, and have found experimental results similar to those of [START_REF] Pouchol | Phase portrait control for 1D monostable and bistable reaction-diffusion equations[END_REF]. We have also given a simple and specific model reduction method which allows to apply the method to equations of larger size. In future work, we plan to apply the method to 2D reaction-diffusion equations (e.g., Test 1 of [START_REF] Alla | A HJB-POD approach for the control of nonlinear PDEs on a tree structure[END_REF]).

Fig. 1 .

 1 Fig. 1. Simulation of the system of Example 1 discretized with M1 " 5 points, for initial condition y0 " 0.8x{L `0.1p1 ´x{Lq, objective y f " 0.3 and horizon time T " 2 (τ " 0.1, ∆t " τ 100 ).

Fig. 2 .

 2 Fig. 2. Simulation of the system of Example 1 discretized with M1 " 5 points, with extended modes of length 2 (left) and extended modes of length 4 (right).

CpT q " Ope L f T q where L f is the Lipschitz constant associated with vector field f .

Note that, in[START_REF] Pouchol | Phase portrait control for 1D monostable and bistable reaction-diffusion equations[END_REF], the values of the boundary control are in the full interval r0, 1s, not in a finite set U as here. In[START_REF] Pouchol | Phase portrait control for 1D monostable and bistable reaction-diffusion equations[END_REF], they focus, not on the bounding of computation errors during integration as here, but on a formal proof that the objective state y f " θ (0 ă θ ă 1) is reachable in finite time iff L ă L ˚for some threshold value L ˚.

The program, called "OSLator"[START_REF] Le | OSLator 1.0[END_REF], is implemented in Octave. It is composed of 10 functions and a main script totalling

lines of code. The computations are realised in a virtual machine running Ubuntu 18.06 LTS, having access to one core of a 2.3GHz Intel Core i5, associated to 3.5 GB of RAM memory.

By comparison, in[START_REF] Alla | A HJB-POD approach for the control of nonlinear PDEs on a tree structure[END_REF], the error term originating from the POD model reduction is exponential in T (see C1pT, |x|q in the proof of Theorem 5.1).

Appendix 1: Proof of Lemma 1

Proof. It is easy to check that 0 ă α u ă 1 when |λu|Gu 4 ă 1. Let t ˚:" G u p1 ´αu q. Let us first prove δ e0 ptq ď e 0 for t " t ˚. We have:

Hence:

˚λu pt ˚q2 `2α u ´α2 u " 0.

We have: ´1 4G 2 u t ˚λu pt ˚q4 e λut ˚ě 0. It follows:

˚λu pt ˚q4 e λut ˚ě 0.

Hence:

By multiplying by t

Since G " ? 3|λ u |e 0 {C u :

By multiplying by λ u :

Note that, in the above formula, the subexpression λ u t ˚`1 2 λ 2 u pt ˚q2 is such that:

On the other hand, the subexpression ´1 3 λ u pt ˚q3 ´1 12 λ 2 u pt ˚q4 e λut ˚is such that:

u pt ˚q3 ´1 24 λ 4 u pt ˚q4 e λuθ q for some 0 ď θ ď t

It follows:

i.e.

pδ u e0 pt ˚qq 2 ď e 2 0 . Hence: δ u e0 pt ˚q ď e 0 . It remains to show: δ u e0 ptq ď e 0 for t P r0, t ˚s. Consider the 1rst and 2nd derivative δ 1 p¨q and δ 2 p¨q of δp¨q. We have: δ 1 ptq " λ u e 2 0 e λut `C2 u λ 2 u p2t `2 λu ´2 λu e λut q δ 2 ptq " λ 2 u e 2 0 e λut `C2 u λ 2 u p2 ´2e λut q. Hence δ 2 ptq ą 0 for all t ě 0. On the other hand, for t " 0, δ 1 ptq " λ u e 2 0 ă 0, and for t sufficiently large, δ 1 ptq ą 0. Hence, δ 1 p¨q is strictly increasing and has a unique root. It follows that the equation δptq " e 0 has a unique solution t ˚˚for t ą 0. Besides, δptq ď e 0 for t P r0, t ˚˚s, and δptq ě e 0 for t P rt ˚˚, `8q. Since we have shown: δpt ˚q ď e 0 , it follows t ˚ď t ˚˚and δptq ď e 0 for t P r0, t ˚s. l

Appendix 2: Numerical results

Dimension

Extended mode length }y π ε i pT q ´yf i } for σ " 1 }y π ε i pT q ´yf i } for σ " 0. i pT q ´yf i } for σ " 1 and σ " 0.5 (T " 2, i " 1, 2).

Extended mode length }P y π ε 2 pT q ´yf 1 } for σ " 1 }P y π ε 2 pT q ´yf 1 } for σ " 0. 2 pT q ´yf 1 } for σ " 1, σ " 0.5 (T " 2).