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Abstract

A computational method for the evaluation of the two-dimensional diffuse X-ray scattering distribution

from  irradiated  single  crystals  is  presented.  A  Monte  Carlo  approach  is  used  to  generate  the

displacement  field in the damaged crystal.  This step makes use of vector programming and multi-

processing  to  accelerate  the  computation.  Reciprocal  space  maps  are  then  computed  using  GPU-

accelerated fast Fourier transforms. It is shown that this procedure allows to speedup the calculation by

a factor ~ 190 for a crystal containing 109 unit-cells. The potential of the method is illustrated with two

examples:  the  diffuse  scattering  from a  single  crystal  containing  (i)  a  non-uniform  defect  depth-

distribution (with a potentially bi-modal defect size distribution) and, (ii) spatially correlated defects

exhibiting either long-range or short-range ordering with varying positional disorder.
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1. Introduction

Ion beams produced by particle accelerators are used in many fields of materials science, such as the

implantation  of  semiconductors  (Chason  et  al.,  1997)  or  the  synthesis  of  nanostructured  materials

(Dhara, 2007). In the field of nuclear energy research, ion beams are used to simulate, in a controlled

way, the different irradiation conditions to which materials will be exposed when used in fission or

fusion  reactors  or  as  confinement  materials  for  nuclear  waste  storage  (Thomé  & Garrido,  2001).

Whether ion beams are used to intentionally modify the properties of materials, or to simulate their

degradation under irradiation, the understanding of the fundamental effects of the interaction of high-

energy particles with matter is of utmost importance.

When an energetic ion penetrates a solid, it  may collide with the nuclei of the target atoms, thereby

transferring  part  of  its  kinetic  energy  which  leads  the  target  atoms  to  be  displaced  from  their

equilibrium position. If the transferred kinetic energy exceeds a threshold energy (that depends on the

material),  the target  atoms can permanently leave their  position in the lattice,  hence creating point

defects  (Frenkel pairs) which may further rearrange to form larger scale defects (point-defect cluster,

dislocations loops, etc.) (Krasheninnikov & Nordlund, 2010; Becquart & Domain, 2011; Debelle et al.,

2014).  The  radiation  effects  are  intrinsically  a  multi-scale  phenomenon:  the  initial  collision  event

occurs between two atoms but the associated damage may extend over several tens of nanometers by

the  formation  of  collision  cascades  and  subsequent  defect  migration.  Any  experimental  or

computational approach to the understanding of radiation damage in materials must therefore take into

account this multi-scale property of the phenomenon. For instance, molecular dynamics simulations,

which consist in numerically solving the equations of motion for an ensemble of interacting particles, is

ideally  suited for the theoretical investigation of radiation damage: atomic scale interactions  are in

general described using empirical, analytical, potentials and, with the most recent developments, the

simulation  cells  can contain  up to  several  hundreds  of  millions  of  atoms,  i.e. several  hundreds  of
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nanometers in all three directions (Zarkadoula  et al., 2013; Nordlund & Djurabekova, 2014) which

permits an almost one-to-one comparison with experimental data.

On the experimental side, X-ray diffraction (XRD) is highly sensitive to atomic scale displacements

while probing macroscopic volumes, which makes it a method of choice to study radiation damage and

this technique is purposely used to this end since several decades. For instance, in ion-irradiated single

crystals,  the  analysis  of  the  coherent  scattering,  using  numerical  simulations,  allows  a  precise

determination  of  the  radiation-induced  strain  profiles  and  root-mean-squared  lattice  displacement

(damage)  profiles  (Speriosu,  1981;  Klappe  & Fewster,  1994;  Milita  & Servidori,  1995;  Boulle  &

Debelle,  2010).  Besides  these  phenomenological  quantities,  precious  information  regarding,  for

instance, the type and the dimensions of the defects formed can be obtained by the investigation of the

diffuse  X-ray  scattering  (DXS)  (Dederichs,  1971;  Larson  & Schmatz  1973;  Ehrhart  et  al.,  1982;

Nordlund  et al., 2000; Beck  et al., 2000). However, an important limitation in this approach is that

tractable equations of the DXS intensity distribution can only be obtained in some relatively simple

cases, say, homogeneously distributed defects,  of the same type and the same size,  whereas actual

samples may contain defects of different types, sizes, etc. This issue can be solved by a numerical

evaluation of the DXS intensity distribution, although, since we are considering the scattering from

large single crystals the computation times might be prohibitive, especially if one wishes to retain (at

least) the unit-cell resolution in the description of the structure of the disordered materials.

Such an approach has been suggested in pioneering studies in the early 2000s, combining atomistic

simulation of the damaged crystal structure and a direct numerical evaluation of the scattered intensity

(Nordlund,  2000).  However,  because  of  limitations  in  the  computing  power,  the  approach  was

restricted to relatively small crystals (a few 106 atoms) containing only a few defects. In the present

work we present a powerful approach that allows to compute the two-dimensional distribution of the

scattered intensity (i.e. reciprocal space maps, RSMs) for very large crystals (up to a few 109 unit-
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cells), with realistic defect structures, in a limited amount of time. Our approach (detailed in § 3) is

actually divided in two steps. In the first step a defective crystal structure is generated using a Monte

Carlo evaluation procedure. In this step, high computing performances are reached by combining array

(i.e. vector) programming and multi-processing. The second step consists in computing the RSMs, a

task that is efficiently performed on a graphical processing unit (GPU) in order to reach the highest

possible computing speed. We show below that our approach allows to reduce the computing time by

more than two orders of magnitude. The next section (§ 2) briefly details the foundations which we rely

on in this work. Selected examples will be given and discussed in § 4.

2. Theoretical background

We shall start with writing the amplitude scattered from an ensemble of unit-cells with structure factor

F(Q) (Q being the scattering vector):

A(Q)=∑
j

F j(Q)exp [i Q (r j+u j ) ] , (1)

where rj is the position of the jth unit-cell in the ideal structure, and uj is its displacement from the ideal

structure. In the limit of small displacements we can make the common assumption that  Q u  H u

(where  H is the reciprocal lattice vector of the reflection considered) so that the amplitude can be

written

A(Q )=F O(Q)FT [V (r j)G (r j)] , (2)

where we introduced the crystal shape function V(r) which is equal to one when the position vector r

points inside the crystal, and 0 otherwise. G(r) is the correlation function 

G(r)=ρ(r)exp [ i H u(r)] , (3)

where the relative scattering density is written

ρ(r)=1+
Δ F (r )

F 0

. (4)
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The relative scattering density allows to take into account the fact that the structure factor of a unit-cell

containing a defect, Fdefect, may defer from the ideal structure factor, i.e. Fdefect = F0 + ΔF. For instance,

in  the case of  porous regions  (i.e. vacancy clusters),  ρ(r)=0 .  If  the displacement  field  u(r)  is

known, then the intensity can be straightforwardly computed from equations (2-4) and |A(Q)|2.

In an actual experiment, the intensity recorded on the detector results from the incoherent superposition

of  the  intensities  diffracted  by different  regions  of  the  crystal,  so that  the  quantity  that  should be

computed is <|A(Q)|2> where the average is performed over the different regions of the crystal, i.e. over

different defect configurations. This lack of coherence may result from the fact that the beam coherence

length is larger that the coherently-diffracting domain size of the sample, or that the beam coherence

length is smaller than the actual dimension of the beam, hence resulting in a (partially) incoherent

illumination  of  the  sample.  Besides,  on  laboratory  experiments  the  beam  is  often  only  poorly

collimated  in  the  direction  normal  to  the  scattering  plane  (the  plane  defined  by  the  incident  and

diffracted beam), resulting in axial divergences of the order of a few degrees, so that the diffracted

intensity can be (infinitely) integrated over Qy (Kaganer et al., 1997; Boulle et al., 2006a):

〈 I (Q x ,Q z) 〉=∫ dQ y⋅I (Q) (5)

where  Qy is the component of the scattering vector normal to the scattering plane, Fig. 1(a). Let us

develop the intensity on the right hand side of equation (5):

I (Q)=∣F 0∣
2∑

p , p '
∑
q ,q '
∑
r , r '

G(x p , yq , zr)G
*
(x p ' , yq ' , z r ' )

×exp [i Q x (x p−x p' ) ] exp [i Q y ( yq− yq ' ) ] exp [i Q z ( zr−z r ' ) ]
(6)

Equation (5) can hence be rewritten :

I (Q)=∣F 0∣
2∑

p , p '
∑
q ,q '
∑
r , r '

G(x p , yq , zr)G
*
(x p ' , yq ' , z r ' )

×exp [i Q x (x p−x p' ) ] exp [i Q z ( zr−z r ' ) ]∫dQ y⋅exp [i Q y ( yq− yq ' ) ]
(7)

The integral term in equation (7) is the delta function d(yq, yq') and is hence equal to one for yq = yq' (and

equal to zero elsewhere). The averaged intensity finally reads
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〈 I (Q x ,Q z)〉=∑
q

∣F 0∣
2∑

p , p '
∑
r , r '

G (x p , yq , z r)G
*
( x p ' , yq , zr ')

×exp [i Q x (x p−x p' ) ] exp [i Q z ( zr−z r ' ) ]
. (8)

The previous equation can be written in condensed form

〈 I (Q x ,Q z)〉=∑
q

∣F 0∣
2
∣FT [V q( x , z )Gq(x , z )]∣

2

, (9)

where the two-dimensional correlation function Gq(x, z) is

Gq (x , z )=ρ(x , z)exp [ i H u q(x , z) ] . (10)

where  uq is the displacement field within the  qth plane of the crystal. Equation (9) shows that in the

diffraction experiment the crystal can be viewed as divided into unit-cell – thick (x, z) planes, parallel

the scattering plane, that diffract incoherently with each other, as schematically represented in Fig. 1(a).

The intensity  diffracted  from each (x,  z)  plane  is  given by the  squared  modulus  of  the  amplitude

scattered from each plane, and the intensities are summed up to form the total scattered intensity. In the

next section we show how equations (9-10) can be efficiently implemented to compute the scattering

from defective crystals, with a special interest for irradiated single crystals.

It should be stressed that the approach presented below assumes the validity of the above-mentioned

assumption stating that Q u  H u, which allows to make use of Fourier transformation. Therefore, for

large deviations from the scattering vector from the center of the Bragg reflection, combined with large

lattice displacements (like dislocation cores for instance), the previous assumption obviously does not

hold. In such cases, only the scattering in the close vicinity of the Bragg peak should be considered.

3. Implementation

3.1. Computational details

All computations have been performed on a desktop workstation equipped with two Intel Xeon  E5-

2609 (4 cores, 2.5 GHz clock frequency) central processing units (CPUs), 64 GB of RAM and a Nvidia
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Quadro K4000 GPU (3GB memory, 768 CUDA cores, with compute capability 3.0).

We  used  the  Python  programming  language  (https://www.python.org/)  together  with  the  NumPy

(http://www.numpy.org/)  and SciPy (http://www.scipy.org/) libraries in order to benefit from vector

programming capabilities and extended mathematic and scientific functions (Oliphant, 2007). Python

natively  supports  parallel  computing  through  the  dedicated  multiprocessing module.  The

implementation on the GPU uses Nvidia's CUDA (Compute Unified Device Architecture) application

programming  interface  through  the  python  pyCUDA  wrapper  (Klöckner  et  al.,  2012  ;

http://mathema.tician.de/software/pycuda/).  GPU-based fast  Fourier  transformations  were performed

using  the  pyFFT  module  (https://pythonhosted.org/pyfft/).  Although  GPU-based  computing  is  a

relatively  new  field,  we  will  not  discuss  here  its  relevance  and  limitations  in  the  field  of  X-ray

crystallography as this topic has been covered in details previously, in the past five years in the present

Journal (Gutmann, 2010; Gelisio et al., 2010; Favre-Nicolin et al., 2011; Shalaby & Oliveira, 2013).

3.2. The displacement field

In the framework of linear elasticity, the displacement at a given point r in the crystal results from the

superposition of the displacement fields of all defects in the crystal (Krivoglaz, 1969):

u(r)=∑
α , j

cα , j u α , j (r−r j ) (11)

where  cα,j is  the  probability  of  having  a  defect  of  type  α at  the  jth lattice  site,  and  uα(r)  is  the

corresponding displacement field. As mentioned above, irradiation gives rise to point defects which

may migrate to form mostly spherical point-defect clusters. For simplicity, in the present article, we

shall  focus  on spherical  defects,  although the approach detailed  here  is  by no means restricted  to

spherical defects and can be used for any type of defect of any shape, as long as the corresponding

displacement field can be computed.

The displacement field associated to a spherical defect with radius  Rα can be written,  assuming an
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elastically isotropic crystal (Pietsch et al., 2004):

u α(Δ r)={AΔ r /Rα

3 if ∣Δ r∣≤Rα

AΔ r /Δ r3 if ∣Δ r∣>Rα

(12)

where  A =  e Rα
3 (1 +  n) / [3(1 –  n)] (e being the lattice mismatch between the defect and the ideal

crystal and n is the Poisson's ratio of the crystal).

We suggest to evaluate equation (11) numerically using a Monte Carlo summation procedure1. For this

purpose, we generate a three-dimensional NumPy array containing N unit-cells, and defect coordinates

rj are randomly chosen within this array. The displacement field corresponding to each defect  uα is

computed with equation (11) and added to the total displacement field  u. This procedure is repeated

until the maximum number of defects N<cα> is reached. The most interesting feature in this approach is

that  the defect locations  can be tuned in order to match the actual  defect  structure of the samples

investigated,  i.e. the defect distribution is not restricted to a random distribution. Spatially correlated

defects, defect interactions (with a variable attraction or repelling zone), concentration gradients, etc.,

can be straightforwardly implemented in this approach. Examples will be given in the next section.

The obvious drawback of the approach is the time and memory needed to compute equation (11). For

instance, a crystal with N = 109 unit-cells and displacement values coded over 64 bits (double-precision

floating-point numbers) requires 8 GB memory. Since two copies of the displacement field has to be

stored  in  the  memory  during  the  computation  (corresponding  to  the  total  u and  the  current  uα

displacement field) the total memory needed to compute equation (11) reaches 16 GB. Our current

GPU is limited to 3GB, but even the best and most recent GPU available to date are limited to 12 GB

memory  which  unfortunately  prohibits  their  use  for  this  calculation.  Additionally,  it  is  worth

emphasizing that, given the large amount of data to transfer to the GPU as compared to the very small

computational  cost  of  equation  11  (one  array  addition  per  computed  uα),  the  acceleration  would

1 The Monte Carlo procedure is here used to generate a static three-dimensional displacement field assuming some 
predefined defect characteristics (defect radius, misfit, etc.). It does not allow to describe the evolution of the 
microstructure under the action of external stimuli (temperature, irradiation, etc.), which constitutes a topic by itself.
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certainly not be very favorable. Moreover, the computation pathway cannot be determined in advance

since the selection of random coordinates inside the three-dimensional NumPy array heavily relies on

conditional instructions (if,  then,  else), for instance to produce non-random defect distributions,

which is not ideal for the implementation on the GPU (Favre-Nicolin et al., 2011).

In order to keep the memory footprint as low as possible and to maximize the computing speed the

evaluation of equation (12) has been implemented in C language and integrated in the python code

using the  weave module  of  the  SciPy library.  Despite  this  procedure,  for  N = 109 unit-cells,  the

computation still requires a few seconds, which is prohibitive, especially if several thousands of defects

have to be generated. To circumvent this issue, we make use of a specific feature of the NumPy arrays

known as “slicing” (van de Walt, 2011): once an array is created it is possible to extract any sub-part (a

“view”) of the array with no need to copy to the memory and at no computational cost (generating a

view is performed in a few tens of microseconds). We hence generate a template displacement field for

a crystal with twice the dimensions of the actual crystal in all directions, containing a defect in its

center. A two-dimensional schematic is given in Fig. 1(b). From this template, any displacement field

corresponding to the actual crystal, can be extracted using uα(Δr) = utemplate(D – rj + Δr), where D = (Dx,

Dy,  Dz)T is the size of the array. Equation (11) is then computed using the vectorized addition of the

NumPy arrays. It should be noted that this approach assumes that the displacement field around the

defect is identical for all defects, independently of their location within the crystal. In particular this

excludes the influence of free surfaces. In the case of sufficiently large crystals this effect is probably

not dominant, but this approach could clearly not be used in the case of nanostructures.

The speedup obtained for the computation of the displacement field with this approach (as compared to

the direct computation of equation 12) is displayed in Fig. 2(a) for increasing crystal size, with a fixed

defect density <cα> = 10-5 defects/unit-cell. For arrays with less than 106 unit-cells there is no real gain

in using the template-slicing approach; this finding likely stems from the fact that the time needed to
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create the template compensates the gain obtained by generating a view of it. For larger arrays, the

speedup steadily increases, reaching a value of ~15 for N = 109 unit-cells.

An intrinsic limitation when working with large data sets comes from the time needed to transfer the

data from the memory to the CPU; this issue can in principle be solved by GPU computing (Schmeisser

et al., 2009) provided that the amount of GPU memory is sufficient, though. In the present case, we

propose to side-step this problem using multi-processing, i.e. the calculation of the displacement field

is distributed over the different cores of the processor. The parallelization can be performed in several

ways; here we have chosen to parallelize over the dimension of the crystal in the y-direction, so that

each  process  computes  the  displacement  field  in  a  sub-region  of  the  crystal.  At  the  end  of  the

calculation the different  sub-regions are combined to form the entire  displacement  field.  The main

advantage of this approach, besides the obvious increased computing power, is that each process deals

with  a  smaller  array,  hence  resulting  in  increased  transfer  speed  from  memory  to  CPU.  The

corresponding speedup for increasing crystal size is displayed in Fig. 2(b). For crystal sizes smaller

than N = 107 unit-cells, the speed-up increases steadily and, as expected, the computing speed obtained

with 8 processors is, respectively, 2 and 4 times faster than the speed obtained with 4 and 2 processors.

Above 107 unit-cells, whereas the slope of the curve corresponding to 2 processors remains unchanged,

the speedup obtained with 8 processors considerably increases (eventually saturating at a value of 22.5

for  N>5×108 unit-cells,  vs. 3.1 for 2 processors). This behavior can probably be attributed to the fact

that for those larger arrays, the speedup is limited by the time needed to transfer the data, an effect

which is less pronounced when dealing with smaller arrays, hence the increased speedup when using

multiple processors. It should be noted that, for this last benchmark, the time measurements (including

the reference time with only one processor) include the template-slicing modification detailed above.

The total speedup therefore correspond to the product of both curves; in the best case we reach a total

speedup of 22.5×15 = 337.5.
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3.3. The scattered intensity

We now focus on the evaluation of the scattered intensity. Equation (9) shows that it is actually the sum

of (the squared modulus of) two-dimensional Fourier transforms that can be evaluated independently.

We here propose to compute the Fourier transform on the GPU using a fast Fourier transform (FFT)

algorithm. The computational cost of FFT algorithms scales as  N  log(N) (N points in real space,  N

points in reciprocal space spanning a complete reciprocal unit-cell), versus N2 for a direct evaluation of

the sum, which makes FFTs particularly relevant for the large crystal sizes considered in this work.

Therefore,  even if  only a small  fraction of  the computed  RSM is required,  it  is  still  considerably

interesting to use an FFT algorithm.

With an input array of size D'i in a given direction, the FFT returns an array with spacing 1/D'i in the

associated direction. The size of the input array has therefore to be adjusted according to the desired

reciprocal space resolution. A rule of thumb is that if the crystal size is Di in a given direction, then the

tiniest (finite size) interference feature will exhibit a period of 1/Di. Basic oversampling considerations

requires  an oversampling  factor  of  two (the  Nyquist  rate).  Here,  in  order  to  correctly  describe  an

interference fringe without impairing the computation time, we chose an oversampling rate of 4, so that

we obtain the condition D'i = 4×Di (with i = x, z). In the y-direction the summation is incoherent so that

we can take D'y = Dy.

In equation (9) the shape and size of the crystal are described by the term Vq(x, z). In the present work

we restricted the study to parallelepipedic shapes such that Vq(x, z) = V(x)V(z) and we wrote

V (i)=
1
2 [1−erf (

i−Di

√2σi
)] (13)

where  i =  x,  z. Equation (13) allows, if needed, to account for fluctuations of the crystal size. For

simplicity, the size distribution is assumed to be Gaussian, with standard deviation σi. The presence of
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size fluctuations smears out the size-induced interference fringes as detailed elsewhere (Boulle et al.,

2006a, 2006b). When σi → 0, equation (13) is a top-hat function (= 1 if 0  x  Di, 0 otherwise) and

its FFT is equal to a sinc function with well defined interference fringes with period 1/Di.

Equations (9) and (10) are directly evaluated on the GPU after the two-dimensional view uq(x,z) has

been extracted from the three-dimensional displacement field  u(r) computed in the previous section,

and this  operation is  repeated for all  values  of  q,  i.e. all  (x,  z)  planes in  the crystal.  The speedup

obtained using the GPU instead of a classical CPU evaluation is displayed in Fig. 1(c). As expected, the

speedup is mainly relevant for large array sizes, with a maximum efficiency (speedup = 45) reached at

N = 106 unit-cells.

The total  speedup obtained with our approach has been evaluated with the following example: the

computation of the 004 reflection of a crystal  with 1000×1000×1000 unit-cells  (with a 5 Å lattice

parameter and n = 0.3) containing 104 defects (i.e. <c1> = 10-5 defects / unit-cell) with radius R1 = 5 nm

and 5% lattice mismatch. The calculation lasted 26 minutes using our optimized approach (11 minutes

to generate the displacement field, 15 minutes to compute the RSM), versus 83 hours using a non-

parallel  approach,  i.e. a  total  speedup of 191. Obviously,  the scattering  from randomly distributed

spherical  defects  can  be  computed  in  a  few  seconds  using  the  appropriate  analytical  expressions

(Pietsch  et al., 2004). Our approach reveals all its potential when dealing with more complex defect

distributions for which analytical solutions are hardly obtainable. This will be the topic of the next

section.

As  mentioned  earlier,  the  integration  along  the  y direction  leads  to  an  incoherent  addition  of  the

intensities  scattered  from the  different  (x,  z)  planes.  The  choice  of  the  crystal  dimension  in  this

direction hence does not affect the shape the scattered intensity and can be used to adjust the computing

times. It must, however, be borne in mind that higher values of Dy will improve the signal/noise ratio of
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the computed RSMs. Indeed, the FFT of a single (x,  z) plane exhibits a complex fringes pattern (a

speckle pattern) corresponding to the scattering from a given defect configuration. The summation over

different planes along y smears out these patterns and produces the configuration-averaged signal, as

measured experimentally. This situation is illustrated in Fig. 3 where we plot h-scans (extracted at Δl =

-0.12) corresponding to the previous example (gray dots). It can be readily observed that increasing the

number of lattice planes in the y direction allows to reduce the level of noise in the computed curves,

while the overall shape of the curves remain unchanged. This can be quantified by computing the root-

mean-squared (rms) deviation of the scattered intensity  σI (see equation (14) in Kaganer & Sabefeld,

2009). In this example, the maximum rms deviation (relative to the diffracted intensity,  σI /  I) ranges

from 25% when only 10 lattice planes are used, to 0.2% for 1000 lattice planes. A smooth curve (with

rms deviation of 0.4%) is obtained for 500 lattice planes.

The quality of the computed curves can be dramatically increased, while reducing the computing times,

by convolving the computed curves with a blurring function. Experimentally, this corresponds to the

resolution function of the diffractometer (which reflects the coherence properties of the beam), and

which can be obtained either by the measurement of a perfect reference crystal, or calculated by taking

into account the different elements in the beam path (Boulle et al., 2002). Eventually, this procedure

should allow to quantitatively compare (fit) the computed curves with experimental data. In the present

article we do not consider quantitative fitting of data and the resolution function is simply assumed to

be a two-dimensional Gaussian with a full-width at half-maximum of 2×10-4 Å in both directions of

reciprocal space (which corresponds to an isotropic spatial coherence length of ~ 3 µm). Fig. 3 shows

that this procedure allows to obtain relatively smooth data from ~100 lattice planes (i.e. 5 times less

than without convolution). Additionally, this procedure allows to clearly resolve tiny features in the

curves,  such as  the  narrow coherent  Bragg  peak  located  at  Δh =  0,  in  situations  where  they  are

completely masked by the noise when no convolution is used.
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4. Application to irradiated single crystals

4.1. Non-uniform and bimodal defect distribution

For this example, we shall consider the case of yttria-stabilized zirconia (YSZ) single crystals, whose

behavior under different irradiation conditions is well documented (Debelle  et al., 2014; Moll  et al.,

2009; Vincent et al., 2008, Yang et al., 2013). In these materials, the damage build-up upon increasing

ion fluence takes place by a multi-step process, each step occurring in order to lower the system's free

energy. In the first step, point-defects, mainly Frenkel pairs, are formed2 in a sub-surface region whose

extension varies from ~100 nm to a few hundreds of nanometers, depending on the nature and energy

of the incident ions (the defect distribution in the damaged region being non-uniform). In the next

steps,  these  point  defects  coalesce  to  form  larger  (a  few  nanometers)  point-defect  clusters  and,

ultimately,  an  intricate  network  of  dislocation  loops.  The  defect  mobility  can  be  increased  by

performing irradiation at high temperature which results in a shift of the different steps towards lower

fluences, i.e. the increased defect mobility favors defect clustering at lower fluences.

The microstructure of those irradiated YSZ single crystals has been modeled as follows. Defects are

randomly  created  in  the  crystal  according  to  an  arbitrary  density  function  corresponding  to  the

probability to observe a defect at a given depth below the surface, Fig. 4(a). The shape of the density

function has been chosen so as to be similar to disorder profiles determined by ion channeling and X-

ray diffraction (Debelle et al., 2014) in actual irradiated crystals. In a first step, unit-cell – sized defects

are  created  (R1 =  5  Å,  e = 5%) with  concentration  <c1> = 0.01 defect/unit-cell.  A section  of  the

computed two-dimensional strain field is shown in Fig. 4(b). It can be seen that the defects produce

tensile strain (white regions) in the 0-200 unit-cells range below the surface. For depths larger than 200

2 In these fluorite-type structure the most stable defect appears to be a Frenkel pair, where a cation leaves its ideal site to
occupy the center  of the oxygen cube in the center  of the unit-cell  (Van Brutzel  et  al.,  2008).  The corresponding
fractional displacement is 0.5, so that the structure factor of the 004 reflection is not affected. Therefore, ΔF was set to 0
in the calculations.
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unit-cells, no tensile strain can be detected.

The corresponding 004 RSM is shown in Fig. 5(a) and selected scans are displayed in Fig. 5(d, e). The

RSM exhibits an elongated streak parallel to the l direction, with the Bragg peak (emanating from the

virgin part of the crystal) located at Δl = 0 and a secondary maximum located at Δl = -0.04. This signal

is typical of irradiated materials exhibiting a dilatation gradient in the direction perpendicular to the

surface (Boulle & Debelle, 2010). This result shows that a dilatation (i.e. homogeneous strain) gradient

can be produced in irradiated crystals with a non-uniform distribution of unit-cell – sized defects. In

addition, it can be seen that the DXS is extremely weak and drops rapidly down to values 105 times

lower than the coherent signal ,  i.e. the intensity is mainly concentrated within the damage-induced

streak. It can also be noticed that, in addition to the vertical streak, a horizontal streak is also observed

at  Δl =  0.  This  feature  corresponds  to  the  crystal  truncation  rods  (CTR) and  is  due  to  the  finite

dimensions of the crystal used in the calculation. This latter streak is in general not observed in the

scattering  from  single  crystals  as  the  dimensions  of  actual  coherent  domains  are  larger  than  the

dimensions considered here (500 unit-cells).

In a second step, we generated a structure where 25% of the initial defects were allowed to coalesce to

form larger defects with R2 = 5 nm. The corresponding RSM is given in Fig. 5(b). The intensity of the

damage-induced streak is lowered and, concomitantly the DXS intensity considerably increases (as

revealed by the spreading of the intensity in the  h direction). This feature shows that, whereas small

defects are efficient in producing homogeneous strain within the damaged region of the crystal, large

defects mostly give rise to heterogeneous strain. Finally, in the last step, only large defects remain, and

the trend observed previously continues, Fig. 5(c). The damage-induced streak is now reduced to a

weak peak on the lower  l side of the main Bragg peak, and the DXS forms an intense, elliptically

shaped halo around the Bragg peak. These features are in remarkable qualitative agreement with the

tendency observed in YSZ; see for instance Fig. 5 in Debelle  et al. (2014). In this figure, the three
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different  steps  correspond  to  the  irradiation  performed  at  increasing  temperatures,  resulting  in  an

enhanced defect clustering, and hence to the formation of larger defects at higher temperatures.

4.2 Spatially correlated defects

An  interesting  feature  in  the  irradiation  of  materials  is  the  spontaneous  formation  of  ordered

nanostructures, which is mainly observed in fcc and bcc metals. These nanostructures include, among

others,  self-organized three-dimensional  superstructures  of voids (vacancy clusters),  gas bubbles or

dislocations loops with varying degree of disorder (see Ghoniem et al., 2002 and references therein).

In this section we investigate the effects of spatially correlated defects, in the case of long-range order

(LRO) and short-range order (SRO) spatial correlations and with a varying degree of disorder. For

simplicity we assumed a cubic ordering, but any type of array can be straightforwardly implemented.

Additionally in order not to overly complicate the RSMs we only consider the effect of ordering of

defects  of  the  same  size  and  we  do  not  take  into  account  the  previous  depth  gradient.  It  must

emphasized,  however,  that  any  constraint  on  the  defect  positions  or  defect  sizes  can  be  easily

implemented without any additional computational cost. For the sake of modeling spatial correlation

we use the following probability density function

p (x )=∑
n

g ( x)∗d( x−n Λ) (14)

which corresponds to the probability of finding a defect at a distance x from another defect, Λ being the

period of the superstructure. The function g(x) describes the positional probability density function at

each node of the superstructure. In the case of LRO it was assumed to be a Gaussian with a fixed

standard deviation,  σ0, whereas in the case of SRO, the standard deviation was assumed to vary in a

random-walk type fashion, σn = n1/2 σ0 (Schmidbauer, 2004). The corresponding density functions, with

Λ = 20 unit-cells, are plotted in Fig. 6 in the case of a low (σ0 =  Λ / 12) and a high (σ0 =  Λ / 4)

positional  disorder.  Increasing  the  standard  deviation  widens  the  peaks  of  the  probability  density
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function resulting in an increased disordering (i.e. the probability to find a defects never drops down to

0). In the case of SRO, this eventually leads to correlations restricted to the first neighbor.

The computed RSMs (with defect radius R1 = 2.5 nm, i.e. 5 unit-cells, and e = 5%) corresponding to

each case are displayed in Fig. 7 and 8. We first discuss the case of LRO (Fig. 7). In the case of low

positional disorder (Fig. 7a), the DXS is elliptically shaped with clearly visible superstructure peaks

occurring for Δh,  Δl = n /  Λ = n×0.05 (n being an integer). The superstructure peaks occur along the

coherent CTR (Fig. 7c) but also in the DXS (Fig. 7d). The intensity of the superstructure peaks is

modulated  by a Debye-Waller  – like factor,  exp(-2p2n2σ0
2),  so that  for low disorder superstructure

peaks are visible up to high orders n. On the contrary, as shown in Fig. 7b and in the scans Fig 7c and

7d,  for  increased  disorder  only  the  first  order  peaks  are  visible,  and  the  diffuse  scattering  has  a

structured  shape  corresponding  to  the  DXS  from  isolated  defects,  where  the  RSM  exhibits  two

asymmetrical lobes and fringes on each side of a nodal plane located at  Δl = 0 (Pietsch et al., 2004).

The broad secondary maximum located at  Δl  -0.12 corresponds to the diffraction from the core of

the defects. The peak shift is due to the strain inside the defect which gives rise to the observed shift of

- l×e×(1 + n) / [3(1 – n)] = -0.124 (with n = 0.3).

The case of  SRO is  displayed in  Fig.  8.  It  can  be readily  observed that  SRO leads  to  much less

pronounced superstructure features. This can be explained by the fact that, in the case of a random walk

model, the width of the superstructure peaks scales as n2σ0
2 (Schmidbauer, 2004), so that high order

peaks are smeared out, even for relatively small values of σ0. Therefore, for SRO, the low disorder case

is similar to the high disorder case of LRO, in particular regarding the overall shape of the DXS. A

closer inspection, however, reveals that the width of the first order peak is larger in the case of SRO

than in LRO, in agreement with the previous statement. For higher disorder, although first neighbor

correlations are present, no particular features can be detected in the RSM which correspond to the

RSM from isolated point defects.
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5. Discussion and conclusions

We have presented a computational method for the evaluation of the displacement field induced by

defects  in  irradiated  materials  and  the  corresponding  XRD  reciprocal  space  maps.  The  total

displacement  field  of  the  damaged  crystals  is  calculated  using  a  Monte  Carlo  method  where  the

displacement fields of individual defects are summed (several defect distributions were tested). This

step combines vector programming and multi-processing to speedup the calculation.  The RSMs are

obtained from the incoherent sum of Fourier transforms of two-dimensional slices of the correlation

function. This part is computed on the GPU making use of optimized FFT algorithms. We used this

approach to successfully model the DXS of irradiated zirconia single crystals containing a non-uniform

defect  depth-distribution  and undergoing defect  clustering.  We showed that  the proposed approach

allows  to  qualitatively  reproduce  the  main  features  observed  in  actual  RSMs recorded  from such

crystals.

We believe that our approach is not limited to the study of irradiated crystals and can be used for a

broad range of systems, as long as the displacement field of the defects can be computed. For instance,

dislocations in thin films are the subject of thorough studies using DXS and Monte Carlo simulations

(Kaganer & Sabefeld, 2009; Lazarev et al., 2013) and could probably benefit from this approach (in the

limits of the validity of the assumption Q u   H u, as mentioned in Sec. 2).

Future developments of this work will use the results of atomistic simulations (i.e. molecular dynamics)

or finite-element modeling to compute the displacement field of the damaged crystals. Indeed, for very

high defect concentrations, the relevance of the use of the displacement field from individual (isolated)

defects  to compute  the total  displacement  field can probably be questioned. Additionally,  for high

defect concentrations the computation times of the displacement field become prohibitively long, even

with the improvements presented in this work, so that an alternate method is preferable.
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On the contrary, the GPU-accelerated approach to compute the RSMs from the displacement field is

solely  dependent  on  the  crystal  size,  and  its  efficiency  is  independent  of  the  complexity  of  the

displacement field. It can hence be straightforwardly combined with any computational method that

allows to compute the displacement field. Moreover, the fast-growing computing power of the GPUs

will allow to study crystals with increased dimensions in the very near future.
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Figure 1.

(a) schematic view of the diffraction geometry. Ko and Kh are the incident and diffracted wave-vectors

respectively. Dx and Dz are the dimensions of the crystal along the x and z directions, respectively.

(b) schematic representation of the template-slicing approach. The template is indicated by rectangle

(A), and the extracted view by rectangle (B).
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Figure 2.

(a) speedup obtained when using the template-slicing approach  vs. the direct evaluation of equation

(12) in the computation of the displacement field, equation (11).

(b) speedup obtained with the use of an increased number of CPUs in parallel, in the computation of

equation (11).

(c) speedup obtained with the GPU-based computing of equations (9) and (10), vs. CPU computing.
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Figure 3.

Computed h-scans with increasing number of lattice planes in the y-direction, indicated at the right (the

numbers  in bracket  indicate  the relative  rms deviation of the intensity,  σI /  I).  Gray dots:  without

convolution;  Black  lines:  with  convolution.  The  following  defects  characteristics  were  assumed:

random distribution of spherical (R1 = 5 nm) defects with concentration <c1> = 10-5 defects / unit-cell)

and lattice mismatch e = 5%. The curves are shifted vertically for clarity.
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Figure 4.

(a) density function corresponding to the probability (used in the example of Sec. 4.1) of finding a

defect at a given depth below the surface.

(b) 100×500 unit-cells section of a computed two-dimensional strain field. The defects are distributed

according the above density function and have radius R1 = 5 Å and mismatch e = 5%. White: tensile

strain; black: compressive strain.
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Figure 5.

Computed 004 RSMs with a non-uniform and bimodal distribution of defects (corresponding to the

example used in Sec. 4.1 and Fig. 4): (a) only small defects (R1 = 5 Å); (b) small and large (R2 = 5 nm)

defects; (c) only large defects. In all maps the logarithm of the intensity is plotted; each contour line

corresponds to a 100.5 variation. The intensity is truncated at Imax / 10 (white region in the center) to

highlight the DXS. (d) l - scans extracted at Δh = 0 evidencing the damage-induced streak. (e) h - scans

extracted at Δl = -0.03 evidencing the DXS intensity. The black, blue and red lines correspond to scans

extracted from (a), (b) and (c), respectively. Each graduation corresponds to a ×10 variation.
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Figure 6.

Probability density function (corresponding to example of Sec. 4.2) in the case of low (a) and high (b)

positional disorder, for LRO (continuous lines) and SRO (dotted lines).
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Figure 7.

Computed 004 RSMs in the case of spherical defects with LRO spatial correlations (corresponding to

the example used in Sec. 4.2 and Fig. 6): (a) low positional disorder (σ0 = Λ /12); (b) high positional

disorder  (σ0 =  Λ /12).  In  all  maps  the  logarithm  of  the  intensity  is  plotted;  each  contour  line

corresponds to a 100.5 variation. The intensity is truncated at Imax / 10 (white region in the center) to

highlight the DXS. (d) l - scans extracted at Δh = 0 evidencing the superstructure peaks. (e) h - scans

extracted at  Δl = -0.05 evidencing the DXS intensity and the superstructure peaks. The black and red

lines correspond to scans extracted from (a) and (b), respectively. Each graduation corresponds to a

×10 variation.
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Figure 8.

Same as in Fig. 7 in the case of SRO.
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