
HAL Id: hal-02193594
https://hal.science/hal-02193594

Submitted on 24 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Application-aware adaptive partitioning for graph
processing systems

Erwan Le Merrer, Gilles Trédan

To cite this version:
Erwan Le Merrer, Gilles Trédan. Application-aware adaptive partitioning for graph processing sys-
tems. MASCOTS 2019 - 27th IEEE International Symposium on the Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems, Oct 2019, Rennes, France. pp.235-240,
�10.1109/MASCOTS.2019.00033�. �hal-02193594�

https://hal.science/hal-02193594
https://hal.archives-ouvertes.fr

Application-aware adaptive partitioning
for graph processing systems

Erwan Le Merrer
Univ Rennes, Inria, CNRS, IRISA

Rennes, France
erwan.le-merrer@inria.fr

Gilles Trédan
LAAS/CNRS

Toulouse, France
gtredan@laas.fr

Abstract—Modern online applications value real-time queries
over fresh data models. This is the case for graph-based ap-
plications, such as social networking or recommender systems,
running on front-end servers in production. A core problem
in graph processing systems is the efficient partitioning of
the input graph over multiple workers. Recent advances over
Bulk Synchronous Parallel processing systems (BSP) enabled
computations over partitions on those workers, independently of
global synchronization supersteps. A good objective partitioning
makes the understanding of the load balancing and communi-
cation trade-off mandatory for performance improvement. This
short paper addresses this trade-off through the proposal of an
optimization problem, that is to be solved continuously to avoid
performance degradation over time. Our simulations show that
the design of the software module we propose yields significant
performance improvements over the BSP processing model.

I. INTRODUCTION

Graph-based applications such as social networks [10],
search engines or recommender systems [2] have to deal
with giant and constantly evolving networks of user or item
interactions. Data-processing over those graphs include graph-
oriented operations, such as PageRank or shortest paths [8].
More local vertex-oriented operations, where computations
are centered on some particular vertices, are of particular
interest for instance in the support of social networks. This
includes users fetching their friends’ profiles [10] (one hop
retrieval), getting recommendations [2], or being assigned an
influence metric such as TunkRank [16], [3]. Such operations
are attractive for front-end Internet applications, as query
latency is low as compared to global operations, and as the
graph can be updated in real time to reflect user interactions
on the platform. This paper specifically values those vertex-
oriented computations.

In order to ensure scalability when running such applica-
tions on a set of workers, different execution models were con-
sidered by system designers. Due to it’s widespread use in dat-
acenters, the Bulk Synchronous Parallel (BSP) [15] paradigm
is the de-facto execution model for actual state-of-the-art graph
processing systems [8], [1]. Notably, Giraph++ [14] introduced
an alternative execution model, named BSP-hybrid. In a nut-
shell, this paradigm is as follows: like in BSP, BSP-hybrid
workers each hold a partition (i.e. a sub-graph) of the graph;
they process the requests related to this partition. Both BSP
and BSP-hybrid are organized is supersteps, and inter-worker

communication can only be made at the end of a superstep.
Yet, unlike BSP where intra-worker communications are also
delayed until the end of the current superstep, BSP-hybrid
systems allow intra-worker communication to be done within
the current superstep. In other words, the improvement made
by BSP-hybrid is to allow algorithm steps to proceed between
vertices belonging to the same partition, without being blocked
by the global synchronization superstep. Therefore, requests
can be processed in only one superstep provided they do not
require inter-worker communication: the partitioning of the
graph becomes a salient feature for fast request processing.

The quality of the partitioning method is thus at the core of
BSP-hybrid efficiency: well balanced partitions cause equiv-
alent completion times for the different workers, preventing
the last-reducer curse [13]. Simultaneously, avoiding too many
graph edges in between workers allows most requests to be
fulfilled locally by a worker within a superstep while reduc-
ing the network usage. These two objectives are commonly
captured by the following metrics: load balancing (noted LB
hereafter) and edge cut (noted C), and formalized as follows:
LB =

mini∈[k](|P (i)|)
maxi∈[k](|P (i)|) , C = 1 − |{(a,b)∈E s.t. a∈P (i),b∈P (j),i 6=j}|

|E| ,
where workers host and process over a partition of the G =
(V,E) graph, P (i) denotes the partition number i, and |P (i)|
its cardinality in terms of graph nodes.

The importance of a good partitioning method, for providing
good values for LB and C metrics is highlighted in the
paper introducing Giraph++ [14]. Yet, the relationship between
those two metrics and the performances of the BSP-hybrid
processing model is unexplored. Secondly, for vertex-oriented
applications, graph persistence in the processing system is
mandatory for avoiding constant graph reloading (see e.g. [3],
[10]). This questions the possibility to migrate vertices be-
tween workers at runtime, in the context of a constantly
evolving graph; the relationship between LB and C thus
becomes particularly important.

This paper addresses this unexplored relationship between
LB and C in the context of a BSP-hybrid processing model,
and proposes the design of a software module for further
processing time improvement. Our contributions are: (i) to
exhibit the graph-related tradeoff between LB and C in
such a processing model. This tradeoff directly translates into
the performance of applications exploiting that graph; we
illustrate this principle through analysis in Section II. (ii)

Given the previous observation, to consider the problem of
an adaptive partitioning method as an optimization problem,
in Section III. In this problem, the optimization choices are
either LB or C, and the metric to optimize is the application
performance, measured by the average request processing
time. (iii) Finally, to propose a blind hill climbing optimizer
for adaptive partitioning, in sub-Section III-B. This module
implements arguably the simplest heuristic solution to the
aforementioned optimization problem. It monitors the average
processing time, and leads partitioning towards LB or C
improvement strategies. We finally show through simulations,
in Section IV, that such module significantly improves the
performance of a BSP-hybrid system.

II. IMPACT OF PARTITIONING IN THE BSP-HYBRID MODEL

In BSP systems, any vertex-to-vertex communication will
be delayed until the end of the current superstep, be it intra-
worker or not. As a superstep ends when the last worker is
done, a high stress is put on LB; C is thus taking a back seat as
a network congestion consideration. In the BSP-hybrid model,
dense sub-graphs on workers allow for in-worker computation
between supersteps, and even partition sizes imply similar
completion times and no straggler workers: both C and LB
are simultaneously valuable. Yet, we show in this section that
C and LB often cannot be improved simultaneously.

A. Load/Cut Trade-off Impact on Performance

We now propose a simple model, intended to capture the
relationship between aforementioned concurrent objectives.

1) System Modeling: As a BSP distributed application, we
assume k workers connected through synchronous equal links
dedicated to an application running on top of a partitioned
graph G. We hereafter coarsely model its environment. To
fulfill a request r, we consider that this application only
consumes two quantities: data m(r) and CPU cycles c(r).
Every worker is able to provide CPU cycles at rate χ per time
unit. If r is the only request on a single worker (k = 1), all
the required data is available locally and instantly, therefore
tr =

c(r)
χ .

As a simple model for congestion, assume that every worker
evenly splits its processor time to all the requests it has to
handle (side effects such as context switches are neglected),
and that the number of requests arriving at worker i is
proportional to |P (i)|: a worker i provides CPU cycles to each
request at rate χi

|P (i)| .
The data requirements of a request r are modeled as the

`-hop neighborhood of a node (i.e. a closed metric ball B):
m(r) ' B(v, `) ⊂ G, where v is the center of request r. We
define ` as a measure of requests’ locality. Let us illustrate this
concept: the request “get v’s degree” [10] has a locality of 0
(every node knows its adjacency list), whereas the request “get
v’s graph eccentricity” (i.e. its greatest distance to any other
vertex) has a locality of D, the graph diameter. A damped
random walk (jump with a probability α < 1) can be modeled
by an “expected” locality (e.g. ` = d −1log(α)e).

Fig. 1. Illustration of the load balancing (LB) versus edge cut (C) trade-off:
contradictory decisions can be made, favoring one over the other.

Let p be the worker holding vertex v, center of a request r
of locality `. If B(v, `) ⊂ P (p), all the required information
to process r is already available on p, the request processing
time only depends on the CPU resources available on p:
tr = c(r)|P (p)|

χp
. However, if ∃q,B(v, `) ∩ P (q) 6= ∅, then

information will have to be fetched from worker q, and the
duration of this fetch will add up to the request processing
time. Let λ be the network latency induced by such a fetching
operation. Remote fetches cannot be made parallel, mostly
because the ` hop neighbors (and therefore the partitions hold-
ing them) are not known in advance beside direct neighbors.
Therefore we model the processing time of request r when
processed by p as:

tr =
c(r)|P (p)|

χp︸ ︷︷ ︸
computing time

+λ|{j 6= p, s. t. P (j) ∩B(r, `) 6= ∅}|︸ ︷︷ ︸
information fetching time

. (1)

Observe that the computing time contribution depends on
|P (p)| since the bigger the partition is, the more requests
worker p will have to serve in parallel. The information
fetching time also depends on P (p) since the bigger |P (p)|
is, the higher the chances are that B(v, `) ⊂ P (p), therefore
reducing the information fetching time to 0. This is the trade-
off that the partitioning strategy has to solve in order to
minimize request processing time: computations over small
partitions are processed faster (since the load on the machine
holding the partition is low) at the cost of higher information
fetching costs. On the other hand, computations over big
partitions are slower, but requires on average less fetching.
We now illustrate how the data requirements of the application
impact this trade-off.

2) Trade-off Analysis Using a Pathological Graph: With
the aforementioned tradeoff in mind, consider the graph de-
picted in Figure 1. This graph consists in four fully connected
clusters of sizes N,N, n and n. Clusters of equal size are
connected by L links, and two links connect one cluster of size
N with one of size n. Assume that N > n and n > L > 1.
Two key observations are: (i) Any exactly balanced bisection
(i.e. two partitions G1, G2 such that |G1| = |G2| = (N + n))
of the graph cuts at least 2L links. Let PLB such bisection,
symbolized by Ls on Figure 1. (ii) The graph is 2-connex.
The minimal cut is 2 and has a load balance min(|G1|,|G2|)

max(|G1|,|G2|) of
n
N . Let PL such bisection, symbolized by 1s on Figure 1.

Now let us compute the average processing time E(tr) of a
request centered on a node v. Since we have only two clusters,

assuming ` ∈ {0, 1}, computing the information fetching cost
is easy. Let B be the boundary of each cluster, and φ = c(r).
Assume LB is preferred:

E(tr|PLB) =
φ(n+N)

χ
+ λ`Pr(v ∈ B) = φ(n+N)

χ
+ λ`

2C

n+N
.

(2)

Now assume C is preferred:

E(tr|PC) = Pr(v ∈ P1)
φ|P1|
χ

+ Pr(v ∈ P2)
φ|P2|
χ

+ λ`Pr(v ∈ B)
(3)

=
2φ(n2 +N2)

χ(n+N)
+ λ`

2

n+N
. (4)

If we compare those two quantities we have:

E(tr|PLB) ≤ E(tr|PC)⇔ (5)

φ(n+N)2 + 2`λχC ≤ 2φ(n2 +N2) + 2`λχ⇔ 2`λχ

φ
≤ (n−N)2

C − 1
.

(6)

Therefore, in such a setting, one can draw two observations:
the confirmation that if the problem is only local (` = 0),
a partitioning providing a good LB is always faster (which
corresponds to embarrassingly-parallel problems, as targeted
by use-cases of the BSP model). On the contrary, a less local
problem (e.g. users getting their influence rank) will benefit a
lot from a low C. Second, final inequality (6)’s left hand side
only contains application and hardware dependent variables,
that are unlikely to change at runtime, even after graph
updates. The inequality’s right hand side only contains graph
dependent variables: these are likely to evolve at runtime, as
the graph evolves. A static partitioning strategy, that does not
improve results of its past decisions, is thus likely to be sub-
optimal. This calls for the design of an adaptive partitioning
module, that we now present.

III. AN OPTIMIZATION MODULE FOR ADAPTIVE
PARTITIONING

A. Optimization Problem Statement

For navigating in this trade-off at runtime, a processing sys-
tem has to employ a well defined function in order to choose
one of the two concurrent directions for optimization (LB or
C). Let EG be the general average processing time, i.e. for all
requests centered on all nodes, during an arbitrary observation
period. The optimization problem the graph processing system
has to solve to maximize throughput in this model is therefore
the minimization of:

min. EG

(
1/χ

∑
r∈R

∑
r′∈R

c(r)δqr′ ,qr + λ
∑
r∈R

∑
j∈V

mrj(1− δqr,pj)

)
,

with 1 ≤ pi ≤ k, ∀i ∈ V,
1 ≤ qr ≤ k, ∀r ∈ R,

(7)

where R is the set of requests, M is the matrix of data
requirements for the requests R: it is a |R| × n matrix where

mri = 1 if request r needs i’s data to be processed, and
0 otherwise. Finally, c(r) if the computing cost of request
r, χ is the power of each worker (in computing units per
timestep), and λ is the network access latency (in timesteps),
and δ is the Kronecker delta function. Vectors (pi)i∈V and
(qr)r∈R respectively represent how the system allocates nodes
and requests to workers. In practical contexts (c(r) is not too
big) a good strategy is to allocate requests at their center node,
leaving node allocations the only input of this problem.

In this notation, one can express the cut as:

C = 1− 1/m
∑

i,j∈V 2

aij(1− δpi,pj),

with aij being the values of the adjacency matrix associated
to the graph G and m the total number of edges of the graph.
Load balancing can be expressed as:

LB =
mini∈1..k

∑
r∈R δi,qr

maxi∈1..k

∑
r∈R δi,qr

.

With arbitrary input graphs and workloads, the impact of
any partitioning algorithm is complex and does not permit
to derive EG(tr) from a closed-form formula. This could be
observed from our example model with Eq 1, where LB and C
do not appear directly in the equation. We thus have to observe
the resulting evolution of this metric based on the changes of
both LB and C with time. Specifically, one can observe that
LB and C respectively contribute to the left and right parts of
the function to minimize (7); they therefore constitute natural
optimization directions. In practice, as future requests cannot
be predicted, an optimizer can 1) monitor EG and 2) change
the node allocations (pi)i∈V : migrate the nodes. The questions
that remain are which nodes must be migrated, and where to
migrate them. Heuristics exist for the second question [12],
but are until now agnostic of current EG; we hereafter present
a simple heuristic to answer both questions at runtime.

B. An Optimizer Using Blind Hill Climbing
Given the state of the partitioning at a given time on

workers, improving on either LB or C means re-configuring
the system, by moving some nodes onto different workers.
As finding a particular graph partitioning is a NP-complete
problem (e.g. bisecting static graphs [5]), we have to rely on
local search optimization. Considering our computing time
feedback EG, and two improvement criterions, we seek a
configuration on the Pareto frontier for the optimal choice
between LB and C. A classic optimization framework is hill
climbing.

Among all possible optimization approaches, we choose
to use hill climbing for two reasons. First, it is simple and
provides a baseline for the approach: more elaborated ap-
proaches are likely to perform better for instance by leveraging
previous runs to select the improvement direction. Secondly,
the continuous updates of the graph perpetually prevent the
system from converging to a stable state, therefore removing
the local minima drawback of hill climbing.

Algorithm 1 presents the pseudo-code. The difference of
our setup with a canonical hill climbing is that we cannot

while True do
cbefore ← getComputeTime();
buffer();
if Random(cut,balancing) == cut then

changes← OptimizeOnCut()
else

changes← OptimizeOnBalancing()

cafter ← getComputeTime();
if cafter > cbefore + ε ∗ cbefore then

rollback(changes);
else

commit(changes);
flushBuffer();

Algorithm 1: Pseudo-code for the BHC adaptive Optimizer.

instantly evaluate both neighbors of current configuration,
i.e. the new configuration after a step on LB and after
a step on C. We thus make a random choice towards
one criterion, and act as a function of resulting computing
time, by committing or rollbacking changes made (an op-
tional parameter ε can enforce improvement over previous
configuration to be ε times better). We name this algo-
rithm Blind Hill Climbing or BHC in the sequel. Meth-
ods OptimizeOnCut() and OptimizeOnBalancing()
are for instance picking “bad” nodes having a large con-
tribution to C; OptimizeOnCut() selects worst nodes
on all workers, while OptimizeOnBalancing() only
on the more unbalanced workers. They then allocate
the selected nodes to the partitions containing the most
of their neighbors (OptimizeOnCut()), or using the
best heuristic from [12] (i.e. the weighted deterministic
greedy strategy for OptimizeOnBalancing()). Method
getComputeTime() returns current EG. Finally, method
buffer() records all incoming events (vertices, requests) in
a message queue, while flushBuffer() consumes those
buffered events. This encapsulation ensures that no graph
modification affects the system while optimization is being
performed.

IV. PERFORMANCE EVALUATION BY SIMULATION

To validate our approach, we evaluate the performance of
the BHC module through simulations on real-world network
topologies for a panel of typical vertex-oriented graph appli-
cations. The worker model is patterned after Section II, and
the system processes real graphs that are presented hereafter.

A. System Setup

We consider four applications, that are representative of
different locality/computation trade-offs. Each operation is
vertex-oriented, and run on the current graph partitioning:
FETCH: get one-hop neighbors, to fetch and display informa-
tion (e.g. on user’s wall) [10].
RECOM: get a recommendation, for instance to propose new
friends to connect to [2]. This implementation uses random
walks from the node to propose friends to.
CENTRAL: get diameter

4 -hop neighbors, and compute central-
ity over this ego network, to identify key locations for data

dissemination [4].
MIX: execute an equal load of the three previous operation.

The computational cost of the requests FETCH, RECOM,
CENTRAL and MIX are respectively c(r) = 1, 2, 3 and 2.
We use different values of λ to simulate different network
instantiations: one very slow with λ = 1000, one medium1

with λ = 100 and one fast with λ = 10. The processing
throughput χ of a machine is set to one, and ε to zero (i.e. no
degradation allowed). Requests on the system are simulated as
follows: 100 times per run, 1% of randomly selected nodes are
the center of a request (either FETCH, RECOM, CENTRAL or
MIX accordingly). We simulate various number of workers
k ∈ {4, 8, 32} and migrations are up to 10% of workers’
partition sizes at time of optimization. getComputeTime()
is estimated by executing Eq 1 over nt

100 requests (with nt the
size of the graph G at time t), randomly picking the start
node. Finally, each experiment is reported as the average of
15 independent runs.

We simulate requests over growing graphs, that are real
world interaction graphs available online2. As the information
about the real growth of those graphs is not available (exact
order of arrival of their vertices), we stream them by picking
vertices in a random order (15 runs and then random seeds
for each graph and each application). We run simulations
on the following graphs: 4elt (n = 15, 606, m = 91, 756),
Brightkite (n = 58, 228, m = 214, 078), Digg (n = 30, 398,
m = 87, 627), escorts (n = 16, 730, m = 50, 632), Facebook
(n = 63, 731, m = 1, 269, 502), Gnutella (n = 62, 586,
m = 147, 892), Gowalla (n = 196, 591, m = 950, 327),
pgp (n = 10, 680, m = 24, 316), Slashdot (n = 79, 120,
m = 515, 581) and Twitter (n = 465, 017, m = 834, 797).

B. Simulation Results

Figure 2 details a run of our system. In 2(a), curves represent
the evolution of the request processing time EG, while the
Gowalla graph is growing over time. Dashed curves represent
EG’s evolution in a system with no optimization (i.e. no vertex
migration), while plain curves a system implementing the BHC
module. The most striking benefits of BHC are witnessed
on less local applications such as CENTRAL and RECOM,
e.g. with around 50% improvement for RECOM. On FETCH
requests, no noticeable improvement occurs, as the state of
the art algorithm from paper [12] achieves a very good static
partitioning.

Figure 2(b) provides a more aggregate perspective of the
results. It plots the endpoints (graphs fully streamed) with
and without BHC optimization, averaged for all 45 different
runs (15 for each cost ratio) on each graph, and for k = 4.
First, one can observe that non-optimized results (triangles)
have a worse C and LB than the results using BHC (except
for RECOM, having a worse LB). Moreover, one can notice
that all the non-optimized results are application-oblivious:

1There is typically a factor 100 between a main memory based op-
eration, and a network operation on a 1Gbps network (please refer to
http://norvig.com/21-days.html).

2http://konect.uni-koblenz.de/networks/

0e+00

1e+05

2e+05

3e+05

4e+05

5e+05

0 50000 100000 150000 200000
n

A
vg

. R
eq

ue
st

 P
ro

ce
ss

in
g

T
im

e

Application
CENTRAL−BHC
CENTRAL
FETCH−BHC
FETCH
MIX−BHC
MIX
RECOM−BHC
RECOM

(a) Runtime of the different applications over the Gowalla graph (λ = 100,
and k = 4) along its streaming process, as a function of the number n of
streamed vertices (emulating time). Mean and standard deviation computed over
15 independent runs.

●

●
●

●

0.80

0.85

0.90

0.95

1.00

0.65 0.70 0.75 0.80 0.85
Cut (C)

Lo
ad

 B
al

an
ci

ng
 (

LB
)

Application

●
●
●
●

CENTRAL

FETCH

MIX

RECOM

Optim

●
None

BHC

(b) Aggregate load balancing (y-axis) and edge cut (x-axis) values pro-
duced with and without BHC optimization. Aggregation is made over the
10 datasets, for 15 independent runs. k = 4.

Fig. 2. Simulation of a graph processing system, with and without the BHC optimization module: results plotting evolution of processing time and improvement
of load balancing and edge cut.

CENTRAL FETCH MIX RECOM
Dataset l=10 100 1000 l=10 100 1000 l=10 100 1000 l=10 100 1000

w=4
1 4elt 0.84 2.32 11.94 0.79 0.93 4.27 4.48 21.92 38.71 7.44 31.38 39.14
2 brightkite 2.53 9.53 16.25 0.56 0.72 3.19 8.02 26.86 33.74 16.01 40.77 49.66
3 digg 0.16 3.58 7.94 0.22 0.21 0.97 1.15 3.43 3.58 3.09 6.16 6.91
4 escorts 0.01 0.43 4.40 0.41 2.11 15.22 23.69 57.05 68.04 43.63 67.45 71.31
5 facebook 2.50 10.03 12.60 0.79 2.74 18.31 8.87 14.35 17.39 14.43 38.24 47.46
6 gnutella 0.00 0.00 0.43 0.00 0.07 0.14 0.13 5.09 4.80 1.87 5.71 7.76
7 gowalla -2.99 9.25 7.83 0.38 0.53 1.95 3.64 14.81 33.32 7.13 35.51 60.55
8 pgp -0.60 13.55 8.74 0.07 0.85 5.94 7.59 32.43 28.63 17.50 37.85 39.81
9 slashdot 0.03 4.46 1.04 0.31 0.70 4.51 4.75 6.62 5.80 8.15 23.90 28.29
10 twitter 0.33 0.86 1.23 0.34 0.34 1.85 4.30 18.45 34.51 14.29 38.65 49.77

w=8
11 4elt 1.82 4.32 16.69 1.41 2.04 3.48 6.77 29.25 34.24 12.38 37.79 33.89
12 brightkite 5.94 8.64 15.79 0.34 1.01 7.85 10.75 21.24 30.81 22.79 43.44 47.61
13 digg -0.31 5.20 9.00 0.20 0.37 2.56 3.29 2.77 5.21 4.32 4.83 4.83
14 escorts 0.39 0.86 7.84 0.45 4.27 21.37 34.25 57.55 63.09 49.97 61.73 64.00
15 facebook 9.78 11.90 5.26 1.29 5.49 27.27 13.53 19.14 21.05 20.97 39.43 42.24
16 gnutella 0.01 0.22 0.52 0.01 0.07 1.36 0.70 1.28 0.12 2.38 5.14 3.83
17 gowalla 6.20 15.22 18.49 0.12 0.41 3.52 2.24 24.29 24.71 10.99 38.59 51.69
18 pgp 0.31 24.85 3.85 0.30 2.34 9.58 16.02 26.80 33.72 26.43 38.63 42.91
19 slashdot 0.98 2.19 -4.12 0.40 1.14 3.28 4.79 10.60 2.18 11.08 20.19 23.06
20 twitter 0.45 1.93 4.98 0.42 0.76 6.37 5.16 26.63 32.54 21.02 42.73 46.42

w=32
21 4elt 2.50 10.03 25.73 1.71 3.48 16.61 13.04 22.56 18.67 22.39 35.39 32.42
22 brightkite 2.37 7.41 5.75 0.48 1.67 14.56 18.71 24.17 23.65 27.95 33.97 35.34
23 digg -0.63 8.12 -1.76 0.13 0.60 5.46 1.59 5.08 8.02 6.45 7.13 7.46
24 escorts 0.68 3.81 16.56 0.93 11.41 38.83 35.81 48.19 46.24 46.47 46.86 47.59
25 facebook 6.31 9.90 6.86 2.94 13.14 33.35 12.17 11.77 11.88 28.13 33.11 33.65
26 gnutella -0.12 0.65 3.25 0.03 0.14 1.58 2.56 3.19 5.67 2.31 3.31 3.87
27 gowalla 4.34 9.41 9.30 0.28 1.41 4.38 8.89 10.23 13.05 20.85 36.89 40.06
28 pgp -7.45 10.89 17.67 0.94 5.57 24.45 29.17 36.76 38.70 37.58 39.59 40.43
29 slashdot 8.97 0.26 5.70 0.29 0.08 5.64 1.65 1.83 11.96 14.42 17.48 16.81
30 twitter 0.77 4.87 23.11 0.83 3.49 17.20 30.34 43.31 46.47 42.29 51.37 50.83

Average
31 1.53 6.48 8.76 0.57 2.26 10.16 10.6 20.92 24.68 18.82 32.1 35.65

Fig. 3. Relative request processing time improvement (in %) of BHC for a variety of datasets, applications and system parameters. Improvements of processing
time over 10% are in highlighted green, while degradations are in red.

all applications end up grouped at the same position. This
is because the original BSP-hybrid systems does not target
partitioning improvement based on the application feedback.
On the contrary, results with BHC are clearly separated:
optimizations are driven by EG, that lead the processing
system in the best configuration for the current application.
Intuitively, FETCH (green) favors LB (locality prevails), while
RECOM favors C (more information fetching expected to

occur). CENTRAL sits in the middle.
Figure finally 3 presents another aggregate results for all

graphs: the relative runtime improvement (that is EG−EG
BHC

EG ,
where EGBHC and EG are respectively the optimized and
non-optimized average request processing times). As observed
before, since the original vertex assignment heuristic [12]
optimizes cut, local applications like FETCH do not benefit
much from BHC. Yet, all other less local applications see their

runtime improved. Similarly, improvements are greater when
the network latency is higher, with up to of 71% of improve-
ment (RECOM on the escorts network, with λ = 1000). Note
that degradations (red values) are possible in this simulation,
as the reported numbers are averages of independent runs,
where result variability may occur due to the random nature
of vertex stream order for instance. On average (as seen line
31 of Figure 3), and more notably for less local applications
(CENTRAL, RECOM and thus also MIX) in contexts of medium
to slow networks, significant improvement results from the
use of BHC. Results range from around 10%, up to 35%
improvement.

As a conclusion of this evaluation Section, it appears that
there is a clear gain in optimizing the processing system,
based on the application runtime feedback. This is achieved
by selecting and migrating vertices based on the direction (LB
or C) privileged by the applications running on the system, at
runtime.

V. RELATED WORK

Most of the distributed graph processing systems follow
the Bulk Synchronous Parallel (BSP) model introduced by
Pregel [8], allowing iterative graph computations on dis-
tributed partitions of the graph. This includes systems as
Giraph [1], Mizan [7], Powergraph [6], GPS [11] and Ki-
neograph [3]. Only recently, Giraph++ [14] has shown sig-
nificant improvement over this BSP model, by keeping global
synchronization supersteps and by additionally allowing in-
worker computations between two of those supersteps. This
is achieved by considering the vertex partitions on workers as
sub-graphs. Good partitioning in Giraph++ can benefit from
vertex locality. We precisely address this complex problem in
this paper, to propose an additional software module for further
performance improvement of BSP-hybrid systems.

Some previous works took specific steps for performance
improvements, that can be classified in two categories. (i)
Related works also stated that the input graph characteristics
are impacting the system processing time. Powergraph [6]
and GPS [11] improve the handling of graph with power law
degree distributions, by distributing computations for highest
degree vertices over the whole set of workers. (ii) Vaquero et
al. [16] considered the the migration of vertices at runtime, to
adapt to graph updates and preserve satisfying performances
for the processing system. Some works target extreme graph

VI. CONCLUSION

Leveraging the recent advance proposed by Giraph++ over
bulk synchronous parallel systems, this paper has studied the
impact of the partitioning on processing performances of this
new model. An optimization problem has been proposed to

scales of billions of edges [9]. Yet those adaptations are
application agnostic or non-reactive, while our proposal is
driven by average processing time of the applications. Those
two classes of works only apply to BSP-systems; this paper
addresses the adaptive graph improvement in BSP-hybrid
systems.
address the complex load balancing versus edge cut trade-
off. A solver for this problem, available as a generic soft-
ware module for BSP-hybrid systems, has been detailed and
simulated. It improves by an average of up to 35% the stan-
dard BSP-hybrid performances, by adapting the graph to the
actual request workload on the system. Having exposed this
partitioning trade-off and the benefits of considering it, future-
work includes the deployment and testing of the optimization
module in a tailored BSP-hybrid production system.

REFERENCES

[1] Apache Giraph, 2014.
[2] Bahman Bahmani, Abdur Chowdhury, and Ashish Goel. Fast incremen-

tal and personalized pagerank. In VLDB, 2010.
[3] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng,

Ming Wu, Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen.
Kineograph: Taking the pulse of a fast-changing and connected world.
In EUROSYS, 2012.

[4] Wei Gao and Guohong Cao. User-centric data dissemination in disrup-
tion tolerant networks. In INFOCOM, 2011.

[5] Michael R. Garey and David S. Johnson. Computers and Intractability;
A Guide to the Theory of NP-Completeness. W. H. Freeman & Co.,
New York, NY, USA, 1990.

[6] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and
Carlos Guestrin. Powergraph: Distributed graph-parallel computation
on natural graphs. In OSDI, 2012.

[7] Zuhair Khayyat, Karim Awara, Amani Alonazi, Hani Jamjoom, Dan
Williams, and Panos Kalnis. Mizan: a system for dynamic load balancing
in large-scale graph processing. In EUROSYS, 2013.

[8] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C.
Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel:
a system for large-scale graph processing. In SIGMOD, 2010.

[9] C. Martella, D. Logothetis, A. Loukas, and G. Siganos. Spinner: Scalable
graph partitioning in the cloud. In ICDE, 2017.

[10] Josep M. Pujol, Vijay Erramilli, Georgos Siganos, Xiaoyuan Yang,
Nikolaos Laoutaris, Parminder Chhabra, and Pablo Rodriguez. The little
engine(s) that could: scaling online social networks. IEEE/ACM Trans.
Netw., 20(4):1162–1175, August 2012.

[11] Semih Salihoglu and Jennifer Widom. Gps: A graph processing system.
In SSDBM, 2013.

[12] Isabelle Stanton and Gabriel Kliot. Streaming graph partitioning for
large distributed graphs. In KDD, 2012.

[13] Siddharth Suri and Sergei Vassilvitskii. Counting triangles and the curse
of the last reducer. In WWW, 2011.

[14] Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish
Tatikonda, and John McPherson. From ”think like a vertex” to ”think
like a graph”. VLDB, 2013.

[15] Leslie G Valiant. A bridging model for parallel computation. Commu-
nications of the ACM, 33(8):103–111, 1990.

[16] L.M. Vaquero, F. Cuadrado, D. Logothetis, and C. Martella. Adaptive
partitioning for large-scale dynamic graphs. In ICDCS, 2014.

