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ARTICLE

Cortical recruitment determines learning dynamics
and strategy
Sebastian Ceballo1, Jacques Bourg 1, Alexandre Kempf1, Zuzanna Piwkowska 1,3, Aurélie Daret1,

Pierre Pinson1, Thomas Deneux1, Simon Rumpel 2 & Brice Bathellier 1

Salience is a broad and widely used concept in neuroscience whose neuronal correlates,

however, remain elusive. In behavioral conditioning, salience is used to explain various

effects, such as stimulus overshadowing, and refers to how fast and strongly a stimulus can

be associated with a conditioned event. Here, we identify sounds of equal intensity and

perceptual detectability, which due to their spectro-temporal content recruit different levels

of population activity in mouse auditory cortex. When using these sounds as cues in a Go/

NoGo discrimination task, the degree of cortical recruitment matches the salience parameter

of a reinforcement learning model used to analyze learning speed. We test an essential

prediction of this model by training mice to discriminate light-sculpted optogenetic activity

patterns in auditory cortex, and verify that cortical recruitment causally determines asso-

ciation or overshadowing of the stimulus components. This demonstrates that cortical

recruitment underlies major aspects of stimulus salience during reinforcement learning.
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Sensory stimuli can vary in their efficacy as a conditioned
stimulus during behavioral conditioning. In classical
conditioning, a well-known example is the so called

“overshadowing” effect. When animals are trained to associate
two simultaneously presented stimuli (historically a tone and a
flash) to a specific unconditioned stimulus (e.g. foot-shock), it is
often observed that, after training, the animal is conditioned
more strongly to one stimulus than to the other1,2. In their
theoretical work originally developed for classical conditioning,
but later extended to operant conditioning, Rescorla and
Wagner3 introduced the notion of salience to explain the
overshadowing phenomenon. In their model, salience is a
parameter affecting the speed at which a given stimulus is
associated with the unconditioned stimulus. Thus, when beha-
vior reaches maximal performance and learning stops, the more
salient of the two stimuli has been associated more strongly
with the unconditioned stimulus, leading to overshadowing.
While this theory captures a number of phenomena and is the
basis for important frameworks such as reinforcement
learning4,5, the neural underpinnings of the salience parameter
remain elusive.

Salience in this context is usually seen as the global amount of
neural activity representing the stimulus, like in models of
attentional salience6–9. This intuitively follows from the idea that
if more spikes represent a stimulus, they can produce more
synaptic weight changes, as expected from the firing rate sensi-
tivity of typical learning rules10–14, and thus modulate more
rapidly the relevant connections. However widespread, this idea
lacks direct causal experimental verification in a learning task.
Moreover, other theories propose that salience could also be
encoded in other parameters such as neuronal synchrony
levels15–18, which could influence learning via the temporal
properties of biological learning rules19–23. Thus, the neuronal
correlate of stimulus salience is a key question with broad
implications for learning theories.

Using auditory discrimination tasks of sounds with differ-
ent global cortical response strengths, we show that cortical
recruitment impacts learning dynamics24,25 similarly to the
salience parameter of a reinforcement learning model. To
explore this result in more precise experimental settings, we
trained mice to discriminate optogenetically driven response
patterns that elicit different levels of cortical activity. Using
this paradigm, we directly demonstrate that cortical recruit-
ment determines which part of a compound stimulus drives a
learned association while “overshadowing” other parts of the
stimulus. This validates a generic prediction of reinforcement
learning models and causally establishes the role of cortical
recruitment as a neuronal correlate of stimulus salience.

Results
Sounds with identical levels can recruit different activity levels.
To investigate the relationship between stimulus salience and
neuronal recruitment, we first aimed to identify sounds recruiting
different amounts of cortical activity. A previous report has
shown that complex sounds with different frequency content but
equal duration and sound pressure level can recruit population
responses of different sizes in cat auditory cortex26. To test if a
similar phenomenon exists in mice, which would then allow us to
experimentally decouple recruitment from physical intensity, we
chose three short, complex sounds (70 ms duration) containing a
large range of frequencies and temporal modulations, but nor-
malized at equal mean pressure level (73 dB SPL, Fig. 1a). These
sounds displayed different power spectra in the 10–30 kHz range
(Fig. 1a) where the mouse ear is most sensitive27–29. We thus
wondered if this discrepancy was affecting their detectability. To
do so, we trained mice to lick on a water port after presentation of
any of the three sounds randomly presented in the same task to
obtain a reward (Fig. 1b). We then measured response probability
to decreasing intensity levels. All mice experience the three
sounds in the same task. We observed that, for all sounds,
response probability steadily decreased down to chance level as
measured in the absence of sound (Fig. 1c). Yet, no significant
response difference was observed across the three sounds
(Fig. 1c), indicating that the chosen 73 dB SPL was at a com-
parable distance from the detection threshold for the three
sounds.

We assessed recruitment of neural activity in the auditory
cortex in response to these three sounds using two-photon
calcium imaging in awake, passively listening mice. We imaged
six mice that were injected with AAV1-GCAMP6s virus in
auditory cortex (Fig. 2a). Recordings were followed by an
automated image registration and segmentation algorithm
(Fig. 2b)30 that allowed the isolation of 15,511 neurons across
27 imaging sites, from which large fluorescence signals could be
observed (Fig. 2c). The fields-of-view were either 0.5 × 0.5 or 1 ×
1 mm (Fig. 2a, b), allowing a rapid tiling of the full extent of
primary and secondary auditory cortex (Supplementary Fig. 1).
Cortical depths were randomly chosen ranging between 100 and
300 µm corresponding to layer 2/3. The mouse auditory cortex
(primary+secondary) contains ~200,000 neurons in one hemi-
sphere31 and thus ~50,000 neurons in layer 2/3, so we expect our
sample of ~15,000 neurons to be representative for supragranular
auditory cortex. As typical learning rules are dependent on pre-
synaptic firing rate10–14, we first measured the amplitude of the
mean-deconvolved calcium signals, a proxy for neuronal firing
rate32, recorded across the entire duration of the response
(Fig. 2d). We observed that at 73 dB intensity, sound A elicited at
least twofold less cortical activity than sounds B and C (Fig. 2e).
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Fig. 1 Spectro-temporal differences in complex sounds do not affect near-threshold detectability. a Spectrograms of three 70-ms-long complex sounds,
with power spectrum on the right. b Schematics describing the auditory detection task. c Mean response probability for six mice trained to detect sounds
A, B, and C at 73 dB to get a reward and probed with lower sound intensities. While the effect of intensity was significant, there was no effect of sound
identity (Friedman test, pintensity= 2.3 × 10−9, psound= 0.43, n= 6 mice). Error bars represent standard errors (SEM). Source data are provided as a Source
Data file
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This was consistently observed across mice (Supplementary
Fig. 1). Sounds producing more firing in the population activated
also more neurons (~18% for sound A and ~25% for B and C,
Fig. 2e). But note that the fraction of responsive neurons strongly
depends on statistical threshold. Furthermore, the observed
differences in neuronal activity recruitment was consistent with
previous, independent measurements performed under anesthesia
(Supplementary Fig. 1)33.

All three sounds elicited distinct response patterns as evaluated
by correlation-based population similarity measures and sound
identity could be decoded with high accuracy based on single-trial

response patterns using linear classifiers (Fig. 2f), indicating that
sound discriminability was not affected by cortical recruitment.

Another discrepancy between cortical recruitment and the
physical intensity of a stimulus can be observed using sounds
with different temporal intensity profiles. Up-ramping sounds
elicit larger cortical responses in mice34 and other animals35,36

than their time-symmetric down–ramps, despite equal physical
energies. This effect correlates with asymmetries in subjectively
perceived loudness in humans37,38. We confirmed this result for
2 s white noise sounds ramping between 60 and 85 dB, with a
clear effect at sound onset despite the lower initial intensity level
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Fig. 2 Spectro-temporal differences impact on cortical recruitment. a Example field of view illustrating GCAMP6s labeling of L2/3 auditory cortex neurons.
b Result of automated cell segmentation run on the data acquired in the example shown in a. c Example single trial responses to sounds (different colors)
for two neurons (top and bottom). Gray bars= sound duration. d Population responses (n= 27 sessions, 15,511 neurons in 6 mice) to Sound B (red) and A
(blue). Both normalized fluorescence (light colors) and deconvolved (dark colors) calcium signals are shown. e Mean deconvolved signal and fraction of
significantly responding neurons to sounds A, B, and C. Mean calcium responses to sound A (0.05 ± 0.03% ΔF/F.s-1, mean±SEM) were significantly
smaller than to B (0.10 ± 0.02% ΔF/F.s-1) and C (0.12 ± 0.02% ΔF/F.s-1; sign test, p= 0.0008 and p= 0.026, n= 27 sessions, 15,511 neurons in 6 mice).
Sound B and C also activated a larger fraction of neurons (24 and 25%; two-sided Signed test across 20 sound repetitions, p < 0.05) than A (18%; χ2 test,
p= 10–41 and 6 × 10–31, n= 15,511). f Population response reliability (diagonal) and similarity (off-diagonal) matrix for sounds A, B, and C. The pair-wise
discriminability value, computed with a linear classifier is indicated in red. g Mean deconvolved calcium signals for 6757 auditory cortex neurons in 12
awake mice during 29 calcium imaging sessions for 2-s-long white noise sounds modulated in intensity between 60 dB and 85 dB upwards and downwards
(mean between 0 and 0.5 s after sound onset for up: 0.80 ± 0.08% vs down: 0.62 ± 0.11%, Signed test p= 3.75 × 10–4, n= 29 sites, in 12 mice; mean
between 0 and 2.5 s: 0.166 ± 0.58% vs down: 0.157 ± 0.57%, Signed test, p= 0.034). The inset show the significantly different (χ2 test, p= 10–68) fraction
of responsive cells (75 and 61%; two-sided Signed test, p < 0.05). h Mean deconvolved calcium signals for 59,590 auditory cortex neurons in seven awake
mice during 60 calcium imaging sessions for white noise sounds modulated in intensity at 1Hz and at 20Hz (0.357+−0.032% and 0.15+− 0.034% ΔF/
F.s−1, signed test, p= 0.0009). The inset show the significantly different (χ2 test, p= 10–189) fraction of responsive cells (37 and 29%; two-sided Signed
test, p < 0.05). Error bars represent standard errors (SEM)
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in up-ramps (Fig. 2g). Rhythmic amplitude modulations provided
another striking example, as we observed that a white noise sound
modulated at 1λ produces more activity than when modulated at
20Hz, although the two sounds have the same physical energy
(Fig. 2h).

In summary, when different sounds are played at an intensity
above the detection threshold, the amount of recruited cortical
activity in mouse auditory cortex depends on factors other than
intensity and can vary across different sounds. Based on this
observation, we asked whether cortical recruitment could be
related to stimulus salience in a learning task.

Cortical recruitment influences learning speed. Classically,
relative salience measures are performed using an overshadowing
paradigm in which two stimuli are conditioned together, as a
compound stimulus, to an unconditioned stimulus. Then, sal-
ience is derived from the level of the conditioned response elicited
by each stimulus component individually. While this approach is
valid when the compound is made of stimuli from two different
sensory modalities, two simultaneous sounds are likely to fuse
perceptually, precluding measurement of their individual sal-
iences with the classical overshadowing design39. Alternatively,
Rescorla and Wagner’s model3 postulates that learning speed
follows stimulus salience. We thus decided to test if learning
speed relates to cortical recruitment, using an auditory-cued Go/
No-Go task. To do so, water-deprived mice were first trained to
visit a lick-port and to receive a water reward if they licked after
being presented with an S+ sound. The main effect of this pre-
training phase was to raise motivation rather than to learn sound-
reward association and thus could not be used to measure
learning speed. When mice collected rewards in at least 80% of
their port visits, the Go/NoGo task was started by introducing a
non-rewarded S− sound in half of the trials (Fig. 3a). After a large
number of trials, mice succeeded to both sustain licking to the S+
and withdraw from licking for the S− (Fig. 3b), demonstrating
discrimination of the two sounds. Importantly, as typically
observed in such tasks25, the S+ sound was rapidly associated
with the lick response and the rate limiting factor in task learning
was to associate the suppression of licking with the S− sound
(Fig. 3b). Hence, learning speed depends more on the properties
of the S− than of the S+ sound in this task. Discrepancies
between two stimuli X and Y can thus be measured by comparing
the learning speed of the X versus Y Go/NoGo discrimination
when X is the S− against the speed observed when Y is the S−.
For example, if X is less salient than Y, we expect learning to be
slower when X is the S−. We therefore trained eight cohorts of
mice to compare learning speed for sounds pairs A-B, A-C, B-C,
and for the pair of sinusoidaly modulated sounds. We also used
learning speed data from an earlier study for discrimination of up
and down-ramping sounds34. Plotting the population learning
curves for the sound pairs with maximum cortical recruitment
differences (A–B and A–C,), we qualitatively observed that the
average learning speed was faster when cortical recruitment for
the S− sound was larger than for the S+ sound (Fig. 3c), sug-
gesting a link between learning speed and cortical recruitment.

However, looking at learning curves from individual mice, we
noticed that the qualitative difference observed at the group level
hides a more complex effect. As often observed in animal
training24 and as we previously reported for our task25, most
individual learning curves had a sigmoidal rather than exponen-
tial time course. Specifically, the curves displayed a delay phase
with no increase in performance followed by a learning phase
with a steep performance increase. Also, the duration of each
phase was highly variable across animals as exemplified in Fig. 3b.
We wondered whether cortical recruitment was affecting one

particular phase or both. Using sigmoidal fits (Fig. 3b), we
measured the delay phase duration as the number of trials
necessary to reach 20% of maximal performance, and the learning
phase duration as the number of trials necessary to go from 20 to
80% maximal performance. We observed across the five sound
pairs tested that learning phase duration was systematically
longer when the S− sound recruited less activity than the S+
sound (Fig. 3d) and a non-parametric analysis of variance showed
this effect to be highly significant across all mouse populations
tested. No systematic effect of cortical recruitment was observed
for the delay phase (Fig. 3d, Supplementary Fig. 2). In addition,
we noticed that cortical recruitment had also an effect on inter-
individual variability. When the S− sound recruited more activity
than the S+ sound, learning phase duration was more
homogenous than for the opposite sound assignment, especially
for the two sound pairs with a large difference of cortical
recruitment (mean normalized standard deviation difference:
93% ± 18%, mean±SEM, n= 5 sound pairs, p= 0.008 Wilcoxon
rank-sum test, Fig. 3d, e and Supplementary Fig. 2). Together,
these results obtained over a total of 72 mice, indicated clear
relationships between cortical recruitment and learning phase
duration for the five pairs of sounds tested. It cannot be ruled out
a priori that other non-measured parameters of the sound
representations could explain this dependency. Yet, in the
hypothesis that these parameters would be randomly assigned
to the tested sounds, the probability to obtain by chance a
consistent result across five independent experiments would be
only about 3% (2–5), so we expect this eventuality to be rather
unlikely.

A reinforcement learning model reproduces recruitment
effects. To theoretically evaluate the generality of these results, we
tested a recent model of the discrimination task, extending the
Rescorla–Wagner reinforcement learning framework to a simple
but more biologically interpretable neuronal model (Fig. 4a)25.
The model postulates that associative learning occurs by adjusting
the synaptic weights between sensory and decision neural
populations described by population firing rate variables. At the
input, two populations are specific for the S+ and S− sounds
respectively, which we denote as Ŝ+ and Ŝ−, and one population,
Ĉ, which represents information common to S+ and S− trials
(e.g. overlap between the S+ and S− representations or activity
independent of sound, for example, related to visiting the lick
port). Population Ĉ is an essential element of the model to
reproduce high initial hit-rates during delayed discrimination
learning25. The decision population has two ensembles: one
promoting and one inhibiting licking (Fig. 4a). Adjustment of
synaptic weights happens through a Hebbian learning rule
modulated by Rescorla and Wagner’s (1972) δ-rule which gates
weight updates by the reward expectation error. However, the
employed δ-rule is asymmetric, meaning that the learning rate is
larger by a factor v when an unexpected reward occurs, as
compared to when an expected reward does not occur. This
asymmetry is crucial for capturing the fast raise of the hit-rate,
and slower adjustment of the correct rejection-rate (Fig. 3b). Last,
synaptic updates are multiplicative, meaning that weight updates
are proportional to the current weight value40–43. The key feature
of multiplicative learning is that learning speed depends on the
current strength of the synapses. Thus, the same model can
have very slow learning (low weights) as in the delay phase and
faster learning (high weights) as in the learning phase. Further-
more, this feature makes learning dynamics highly sensitive to
the initial synaptic weights, which become important parameters
that can even account for most of the inter-individual varia-
bility25. Importantly, the activity level of the Ŝ+ and Ŝ−
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populations can be varied in the model, allowing to simulate the
impact of cortical recruitment, for example, by setting either
Ŝ− or Ŝ+ activity level to 2 while level for the other population is
1 (but note that this value can be widely varied without changing
our conclusions, Fig. 4b, Supplementary Figs. 3 and 4, Supple-
mentary Note 1).

We therefore wondered whether this model reproduces the
observed relationships between cortical recruitment and mean
learning speed and its variability. The dynamics of the model
depend on the choice of its three core parameters (noise level,
learning rate, and asymmetry, see Methods) and of its initial
synaptic weights. We showed previously25 that individual learning
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curves can be fitted by adjusting these parameters, even without
accounting for recruitment difference. Nevertheless, to test if the
model captures the effect of recruitment, one can use a realistic set
of parameters and test if asymmetric recruitment produces the
effects seen during the behavior. We thus looked at the qualitative
behavior of the model using a set of parameters obtained in a
previous group of experiments25 by fitting the individual learning
curves from 15 mice trained in a task identical to the one used in
this study. This parameter set included 15 different values of the
initial weights, and core parameters were identical for all mice,
which we showed is sufficient to account for inter-individual
variability25. Based on these parameters, and systematically varying
the recruitment values in simulations, we observed that recruit-
ment differences were positively correlated to learning phase
duration in the model, similar to the experimental results (Fig. 4b).
Also, as illustrated when neuronal recruitment is doubled for one
of the two stimuli, the model reproduced two other experimental
observations. First, the delay phase was not significantly influenced
by recruitment (Fig. 4c). Second, the variability of the learning
phase duration was much stronger when S− recruited less activity
than S+ (Fig. 4c, d). Thus, without any tuning, the model
qualitatively reproduced the complexity of the experimental
dynamics, offering an opportunity to explore possible mechanisms
for the complex effects of neuronal recruitment on learning
behavior in a precise theoretical framework.

Learning speed effects depend on initial synaptic strengths. To
understand the origin of inter-individual variability in our
simulations, we plotted the learning phase duration against the
values of the three initial synaptic weight parameters (wCe and wCi

for the Ĉ population, and a single initial value wS for the four
weights of the Ŝ+ and Ŝ− population, as in Fig. 4a). First, we

observed that the initial weight between sound-specific neural
populations and the decision populations (wS) had no correlation
with learning speed duration. This was expected as wS mostly
impacts the delay phase because small initial synaptic weights
lead to slow initial learning (multiplicative rule). After the delay
phase, sufficient learning has occurred for the sound-specific
synaptic weights to increase performance at high speed and wS

does not influence learning speed anymore. Our earlier results25

showed that wS is the main determinant of the delay phase
duration and is highly variable across mice. These inter-
individual wS variations induced large variations of delay phase
duration masking the smaller impact of neuronal recruitment on
delay phase in simulations (Fig. 4). This suggests that variability
in initial connectivity may explain the independence between
cortical recruitment and delay phase duration in behavior.

A second observation was that the learning phase is long when
the initial weights wCe and wCi (non-specific population Ĉ) are
small, but only when S− recruits less activity than S+ (Fig. 4d). In
contrast, for large weights, the recruitment differences between S
+ and S− have no effect on learning phase (Fig. 4d). Hence,
variability in initial connectivity from non-specific representation
of the task may explain the larger variability in learning phase
duration observed in behavior when cortical recruitment for S− is
smaller than recruitment for S+ (Fig. 3e).

To better understand why the initial conditions of wCe and wCi

gate the influence of neuronal recruitment on learning speed, we
plotted the time-course of both excitatory and inhibitory
connection weights for four combinations of recruitment and
initial weights values (Fig. 5a–d, see also Supplementary Fig. 4 for
the same analysis with a smaller recruitment ratio). These plots
show that the large prolongation of the learning phase when
neuronal recruitment is lower for S− than for S+ and when wCe

and wCi are small (Fig. 5d) is due to the maintenance throughout
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the delay phase of low initial weights from Ŝ− and Ĉ populations
to the No-Go population. This impacts the effective speed
(multiplicative learning rule) at which correct rejections
responses to S− are acquired during the learning phase, flattening
the overall learning curve. In contrast, with large initial synaptic
weights from the Ĉ population, more rapid S− rejection learning
is obtained solely based on the Ĉ common population (Fig. 5c).

When S− recruits more activity, learning is always fast (Fig. 5a, b)
because, in all cases, the rate limiting process remains the
abolition of licking to the NoGo stimulus (due to learning rule
asymmetry, see Supplementary Fig. 3). This process is boosted by
strong Ŝ− recruitment. Also, in these conditions, acquisition of
the NoGo stimulus is independent of wCe and wCi, because the Ĉ
population drives the Go response. Thus, the complex modula-
tion of learning phase duration by neuronal recruitment is due, in
the model, to a non-trivial assignment of the three sensory
populations to either Go or NoGo responses, based on neuronal
recruitment distribution. Specifically, when the Ŝ− population
recruits more activity, it is assigned to NoGo, while the Ĉ
population drives the Go response. In contrast, when the Ŝ+

population recruits more activity, it is assigned to the Go
response, and in this case, the Ĉ population drives the NoGo
response. These different solutions of the binary discrimination
problem could be seen as different strategies chosen by the model
or eventually the animals during the learning process.

The existence of multiple solutions to the task provides a
testable, general prediction of reinforcement learning models
which use population activity as a salience parameter (independent
of the magnitude of recruitment differences, see analytical
arguments in Supplemental Experimental Procedures). The test
would be to isolate and drive the neurons corresponding to Ĉ in
the brain. Activation of the Ĉ population alone should drive licking
when S− recruits more activity, and should not drive licking when
S− recruits less activity (Fig. 5, Supplementary Fig. 4).

Recruitment determines learning strategy. Testing this predic-
tion was impractical with our sound-based Go/NoGo dis-
crimination protocol, because the neurons encoding information
common to S+ and S− trials (Ĉ population) likely code for
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Ŝ+
G

Ŝ–
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Ŝ–

Ŝ+
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multiple cues, including (i) the overlap of S+ and S− repre-
sentations and (ii) all cues related to the decision to visit the lick
port, and thus cannot be isolated. Therefore, we decided to test
the model predictions in an artificial but better controlled
experiment in which head-fixed mice had to discriminate opto-
genetically driven cortical ensembles. We used a custom-made
video-projector setup44 to project precise 2D light patterns
through a cranial window placed above the auditory cortex in
Emx1-Cre x Ai27 mice (Fig. 6a, b, Supplementary Fig. 5). Using
intrinsic imaging, we identified the main tonotopic fields of
mouse auditory cortex (Fig. 6c)33,45 and thereby reliably posi-
tioned optogenetic stimulation spots in homologous regions
across mice (Fig. 6c). We defined three circular optogenetic sti-
mulation spots out of which we constructed two stimuli. One of
the three spots, the Ĉ spot, was common to the two S+ and S−
stimuli and the two other spots corresponded to the stimulus-
specific neuronal populations Ŝ+ and Ŝ− (e.g. Fig. 6b). Thus, the
Go-trial cue consisted of simultaneous activation of Ŝ+ and Ĉ
and the NoGo-trial cue consisted of simultaneous activation of Ŝ
− and Ĉ. Furthermore, cues common to S+ and S− related to
licking port visits in the sound task were eliminated in the head-
fixed task design, as mice did not initiate the randomly inter-
leaved trials. Thus the Ĉ spot was the only cue common to Go
and NoGo-trials. We doubled the diameter of either the Ŝ+ or the
Ŝ− spot to create a difference in cortical recruitment between the
two input representations. Electrophysiological measurements of
the population firing rate elicited by the small and large spots
showed that the recruitment difference between the stronger and
weaker stimuli was ~69% (Supplementary Fig. 5), comparable
with the population recruitment differences observed for sounds
(Fig. 4b; Supplementary Fig. 5). Also, we measured that the large
disk activates ~2.5 more neurons than the small disk

(Supplementary Fig. 5). Given that the Ĉ spot has a small dia-
meter, we could evaluate the fraction of cells commonly activated
by the S+ and S− stimuli within the cells activated by S+ and S−
as 1/(1+1+2.5) ≈ 22%, similar to the fraction of cells commonly
activated by sounds (e.g. 18%, 18%, 23% for sound pairs A–B,
A–C, and B–C, s.e.m= 0.3%, binomial distribution). Thus the
artificial stimuli, although not identical to sound responses had
comparable characteristics.

Mice were then initially trained to obtain a water reward by
licking after the coincident activation of the Ŝ+ and Ĉ spot. When
80% performance was reached in this stage, the discrimination
training started. Mice kept licking in the presence of the Ŝ+ spot
and learned, within hundreds of trials to avoid licking in the
presence of the Ŝ− spot (both activated together with Ĉ, Fig. 6d),
reaching a steady state performance of 94.7% ± 4.5% correct trials
(hit rate 93.9% ± 3.3%, false alarm rate 4.5% ± 1.3%, n= 8 mice,
see Fig. 6e, f). Importantly, in this task setting, the stringent
definition of the common Ĉ population, activated during the
initial motivation training, likely resulted in the systematic
establishment of strong initial connections for this population
at the beginning of the discrimination training, leading to
homogenous durations of the learning phase (212 ± 117 trials for
the large Ŝ− vs 260 ± 220 for the small Ŝ−, p= 0.26, Wilcoxon
rank-sum test, see also Fig. 6d) independent of recruitment
(Figs. 4 and 5).

However, once mice had learned the behavioral task, we
measured their response to Ĉ activation alone in catch trials that
were not rewarded (catch trial probability= 0.1; 15 catch trials
per mouse). In the group of mice that had a larger Ŝ− spot, we
observed that activation of Ĉ elicited strong licking responses
(84% ± 6% response probability, n= 6 mice, Fig. 6e). In contrast,
in the group of mice that had a larger Ŝ+ spot, activation of Ĉ
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Ĉ
&

Ŝ
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elicited no licking response (2% ± 1% response probability, n= 7
mice, Fig. 6f). Note that these effects are unlikely to be caused by
inhibition of Ĉ when paired with the large Ŝ+ or Ŝ− spot, as no
inhibition from the larger spot was observed at the location of Ĉ
in calibration experiments (Supplementary Fig. 5). In addition,
behavioral responses to Ŝ+ or Ŝ− alone were compatible with our
model (Figs. 6e, f and 5). By confirming the model’s predictions,
these results demonstrate, in a causal manner, that cortical
recruitment affects the choice of which stimulus is associated to a
particular response. Even if simple in essence, this result shows
that cortical recruitment is a parameter influencing learning, in a
manner compatible with the role of a salience parameter in
reinforcement learning models.

Discussion
Combining behavioral measurements, large scale two-photon
imaging, optogenetics, and theoretical modeling, we have shown
that sounds of different quality but equal mean pressure levels can
recruit highly variable levels of neuronal activity in auditory
cortex, measured as the mean amount of activity in a repre-
sentative subsample of neurons. We showed that cortical
recruitment levels correlate with learning speed effects in a Go/
NoGo task as expected if neuronal recruitment corresponds to
stimulus salience. Moreover, these effects can be precisely
reproduced by a reinforcement learning model of the task.
Finally, training mice to discriminate optogenetically evoked
cortical patterns, and manipulating these patterns, we showed
that neuronal recruitment determines which elements of the
cortical representation are selected to drive each conditioned
action. This corroborates, in a causal manner, the idea that cor-
tical recruitment is a neuronal correlate of stimulus salience.

Several studies indicate that cortical recruitment can vary
across stimuli, even when played at the same sound pressure
level26,28,34. These discrepancies may have multiple origins. First,
it is well known that the mouse cochlea is more sensitive in its
middle frequency range29, which could explain the over-
representations of sounds in this frequency range (10–30 kHz) in
cortex28. In this case, cortical recruitment is expected to reflect
recruitment throughout the auditory system, making it a good
proxy for sound salience independent of whether the dis-
crimination task requires auditory cortex46–48 or does not require
it49–51. But a second source of recruitment differences may be the
nonlinearities of cortical representations34,52–54. For example, a
recent study suggested that cortical response patterns can be
invariant to changes in intensity55. In this case, cortical recruit-
ment should also depend on the higher level features composing
sound representations and on how broadly these features are
represented in cortex.

The idea that the amount of neuronal activity recruited by a
stimulus influences behavior has been proposed in different
contexts. For example, several studies indicate that attention can
boost neuronal firing associated to behaviorally relevant
stimuli6,56,57 and thereby make them more discriminable from
other stimuli58. Also, several theoretical studies have proposed
that attention impacts learning59,60 and some reinforcement
learning models can account for such effects by dynamically
weighting stimuli according to their predictive relevance61. It will
be an interesting research avenue to analyze the relative con-
tribution of bottom-up sound encoding and attentional top-down
mechanisms to the level of cortical recruitment. Earlier reports,
using direct microstimulation of the cortex, showed that low
levels of neuronal recruitment can impact detection
probability62,63. Here, we show that neuronal recruitment for
stimuli that are well beyond detection threshold still impact the
learning process. Even if such effects are predicted by the Rescorla

and Wagner model3, capturing their details requires a refinement
of the original model. In particular, we had to introduce a more
realistic multiplicative learning rule which renders learning speed
not only dependent on neuronal recruitment, but also on the
current synaptic strength. This property has important con-
sequences. First, it introduces variability in the relationship
between recruitment and learning speed, through large inter-
individual variations of the initial weights for the synapses
involved in the task. Second, the multiplicative rule makes
learning speed proportional to the product of neuronal recruit-
ment and connectivity, allowing for more robustness, by com-
pensating weak neuronal recruitment with stronger initial
connections (see Supplemental Experimental Procedures). In our
experiments, this phenomenon tends to stabilize learning speed,
explaining why neuronal recruitment does not always impact the
learning phase duration, except for particular initial conditions
for which compensation occurs too slowly (Figs. 3–5).

Strong pre-established connections can lead to fast learning for
specific stimuli with innate meaning. In this study, we have
shown an effect of cortical recruitment on learning speed for five
different pairs of sounds which had no particular meaning to the
animal. This does not exclude the possibility that some sounds, in
particular, sounds with learnt or innate meaning would show a
different relationship. For example, pup calls are extremely salient
to mothers but trigger little activity in cortex64. This could be due
to strong pre-existing wiring between cortical neurons responding
to pup calls compensating for limited recruitment. So, even if, as
we show, cortical recruitment plays a role in the salience of a
sound, general theories of salience should also account for
potential a priori meaning of stimulus, via pre-existing connec-
tions, as simple extensions of our model would suggest, or via
more complex cognitive processes assigning value to the sounds.

The complex dynamical phenomena described in our study
make learning speed measurements a more complicated proxy for
stimulus salience than the overshadowing protocol which relies
on steady state behavior, after the dynamical phase of the asso-
ciation. However, it allows the comparison of salience for stimuli
from the same sensory modality. As our extended multiplicative
model only diverges from the Rescorla-Wagner model for the
transient dynamical part of the association process, it reproduces
overshadowing effects25, and can also predict how elements of
sensory representations are assigned to different conditioned
responses in a more complex task setting. Here, by conditioning
mice to compound stimuli composed of multiple optogenetically
activated neuronal ensembles (Fig. 6), we show, in line with
reinforcement learning models, that the brain establishes its sti-
mulus discrimination strategy based on the amount of activity
recruited by the different subpopulations representing the stimuli.

Methods
Animals. All mice used for imaging and behavior were 8–16 weeks old C57Bl6J
and GAD2-Cre (Jax #010802) × RCL-TdT (Jax #007909) mice. Mice used for
optogenetics were 8–16 weeks old males and female obtained by crossing homo-
zygous Emx1IRES-cre (Jax #005628) mice with Ai27 (Jax # 012567) mice to obtain
expression of Td-Tomato-tagged channelrhodopsin (ChR2) in excitatory neurons
of the cortex. All animal were group housed. All procedures were approved by the
Austrian laboratory animal law guidelines (Approval #: M58/02182/2007/11; M58/
02063/2008/8) and the French Ethical Committee (authorization 00275.01).

Two-photon calcium imaging in awake mice. At least 3 weeks before imaging,
mice were anaesthetized under ketamine medetomidine. The right masseter was
removed and a large craniotomy (~5 mm diameter) was performed above the
auditory cortex. We then performed three to five injections of 200 nL (35–40 nL
min−1), rAAV1.Syn.GCaMP6s.WPRE virus obtained from U. Penn Vector Core
(Philadelphia, PA) and diluted 10 times. The craniotomy was sealed with a glass
window and a metal post was implanted using cyanolite glue and dental cement. At
least 3 days before imaging, mice were trained to stand still, head-fixed under the
microscope for 20–60 min per day. Then mice were imaged one to two hours
per day. Imaging was performed using a two-photon microscope (Femtonics,
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Budapest, Hungary) equipped with an 8 kHz resonant scanner combined with a
pulsed laser (MaiTai-DS, SpectraPhysics, Santa Clara, CA) tuned at 920 nm or 900
nm depending on the experiments. Images were acquired at 31.5Hz. All sounds
were delivered at 192 kHz with a NI-PCI-6221 card (National Instrument) driven
by Elphy (G. Sadoc, UNIC, France) through an amplifier and high frequency
loudspeakers (SA1 and MF1-S, Tucker-Davis Technologies, Alachua, FL). Sounds
were calibrated in intensity at the location of the mouse ear using a probe
microphone (Bruel&Kjaer). In a first experiment, we played three 70 ms complex
sounds at 73 dB SPL preceded by two 50 ms 4 kHz pure tones (inter-tone interval:
375 ms) sounds as in the behavioral task. The three sounds were played in a
random order and repeated 30 times. In a second experiment, we played white
noise sounds ramping -up or -down in intensity between 60 dB and 85 dB SPL
during 2 s. The ramps were repeated 20 times. In a third experiment, we played 20
repetitions of white noise sounds modulated in intensity at 1 and 20Hz.

Data analysis. Data analysis was performed using Matlab and Python scripts.
Motion artifacts were first corrected frame by frame, using a rigid body registration
algorithm. Regions Of Interest were selected using a semi-automated hierarchical
clustering algorithm based on pixel covariance over time as described in30(see
detailed method below). Neuropil contamination was subtracted65 by applying the
following equation: Ftrue (t)= Fmeasured (t) – 0.7 Fneuropil (t), then the change in
fluorescence (ΔF/F0) was calculated as (F-F0)/F0, where F0 is estimated as the
minimum of the low-pass filtered fluorescence over ~40 s time windows period. To
estimate the time course of firing rate, the calcium signal was temporally decon-
volved using the following formula: r(t)= f′(t)+ f(t)/τ in which f′ is the first time
derivative of f and τ the decay constant set to 2 s for GCaMP6s. For the complex
sounds, the population response was computed as the mean deconvolved signal
across all neurons from sound onset to 500 ms after sound offset. For the ramps,
because the behavioral discrimination response typically occurs within few hun-
dreds of milliseconds after the ramp onset34, the mean population response was
evaluated from 0 to 500 ms after sound onset. To estimate the discriminability of
two sounds based on cortical population responses, linear Support Vector Machine
classifiers were trained to discriminate population activity vectors obtained from 20
presentations of each sound (training set), and were tested on activity vectors
obtained for 10 independent presentations of the same sounds (test set).

Patterned optogenetics and intrinsic imaging. To flexibly activate different
activity patterns in the mouse auditory cortex, we used a computer driven (VGA
input) video projector (DLP LightCrafter, Texas Instruments) which includes a
strong blue LED light source (460 nm) and from which we have removed the
objective. To project a two-dimensional image onto the auditory cortex surface
(Fig. 6a, b), the image of the micromirror chip is collimated through a 150-mm
cylindrical lens (Thorlabs, diameter: 2 inches) and focused through a 50-mm
objective (NIKKOR, Nikon). Imaging of the cortex at the focal plane is obtained by
side illumination with a green (525 nm, blood vessels) or far red (780 nm, intrinsic
imaging) LED. The light collected by the objective passes through a dichroic
beamsplitter (long pass, >640 nm, FF640-FDi01, Semrock) and is collected by a
CCD camera (GC651MP, Smartek Vision) equipped with a 50-mm objective
(Fujinon, HF50HA-1B, Fujifilm). Note that the image projected to the cortical
surface corresponds to a narrow cone of light extending below the surface and
potentially activating ChR2 expressing neurons throughout the cortical depth.
Intrinsic imaging was performed in isoflurane anesthetized mice (1.1% delivered
through SomnoSuite, Kent Scientific). To compute intrinsic signal maps we divided
the red light image of the cortical surface after the onset of a stimulation (average
over 2 s) with 2-s-long pure tones (4, 8, 16 and 32 kHz) by the mean image
immediately before stimulus onset.

Calibration of optogenetic. For calibration of optogenetic stimulation, a small
aperture was drilled in the cranial window with a diamond-coated dental drill
during isoflurane anesthesia. 30 min after surgery, 4 × 8 silicon probes (Neuro-
nexus) were implanted at a ~35° angle in auditory cortex in the awake head-fixed
mouse. Recordings were performed at three different depths (400, 600, and 800
µm) using a pre-amplifier and multiplexer coupled to a USB acquisition card (Intan
Technologies). Sounds and light stimulations were randomly presented at 2.5 s and
each repeated 10 times. Single unit spikes were detected and sorted from multi-unit
spikes using the Phy Suite (https://github.com/kwikteam/phy). Light stimuli con-
sisted of small and large disk (360 µm and 720 µm diameter) presented at different
positions of a two-dimensional grid centered on the probe location (Supplementary
Fig. 5). For small disks, the grid included 5 × 8 locations with a regular Δx= Δy=
360 µm spacing. For large disks, the grid included 3 × 4 locations with a regular
spacing of 480 µm. Population firing rate elicited by a single disk was estimated as
the integral

P
Locations

rx;yΔxΔy of the responses rx,y to the disk centered at locations

that were within in the extent of the smaller of the two grids (large disks: all
locations, extent 1440 × 1920 µm; small disk: 4 × 5 locations, spanning 1440 × 1800
µm). The integrals for big and small disks were normalized by Δx0Δy0= 360 × 360
µm2. The overall fraction of responsive neurons over the extent of the smaller grid

(see firing rate) was computed as
P
x;y

Nresponsive cellsðx; yÞ
 !

= Nlocations ´Ncellsð Þ,

where Nresponsive cellsðx; yÞ is the number responsive cells at each disk location,
Nlocation is the number of locations and Ncells is the number of recorded cells.

Go/NoGo discrimination behavior. Mice were water-deprived and trained daily
for 200–300 trials. Mice first performed 4 habituation sessions to learn to obtain a
water rewards (~5 µl) by licking on a spout over a threshold after the positive
stimulus S+. After habituation, the fraction of collected rewards was ~80%. The
learning protocol then started in which mice also received a non-rewarded,
negative sound S− for which they had to decreasing licking below threshold to
avoid an 8 s time-out. For the freely moving complex sound discrimination, S+
and S− sounds consisted of two 4 kHz pips (50 ms) followed by one of the three 70
ms complex click shown in Fig. 1a. The interval between the offset and onset of the
pips and click was 375 ms. Licking was assessed 0.58 s after the specific sound cue
in a 1-s long window by an infrared beam at the spout. For the intensity ramp
discrimination, licking was assessed in a 1.5-s window after sound offset. In both
cases, licking was considered above threshold if the infrared beam in front of the
licking tube was broken during 75% of the measurement time-window. Positive
and negative sounds were played in a pseudorandom order with the constraint that
exactly 4 positive and 4 negative sounds must be played every 8 trials. For learning
curves, performance was measured as the fraction of correct positive and correct
negative trials over bins of 100 trials. For the optogenetically driven, head-fixed
discrimination task, the S+ and S− stimuli were each composed of two disks of
blue light (465 nm) flashing at 20Hz for 1 s. One of the two disks (noted Ĉ) was
common to S+ and S− stimuli, the other disk was condition-specific. The three
disk locations were chosen in similar tonotopic locations across mice based on
intrinsic imaging maps. They were precisely re-positioned for every training session
using an automated registration procedure based on blood-vessel patterns. A
strong masking light was used to prevent the animal from using visual cues in the
task. The common disk was 360 µm in diameter. In one set of mice, the disk
specific to S− was 720 µm in diameter, while the S+ specific disk was 360 µm in
diameter. In the other set of mice, sizes of the specific disks were swapped. Head-
fixed mice performed 200–300 trials per day with an inter-trial interval randomized
between 3 and 7 s. Individual licks were detected through an electric circuit con-
necting the mouse and the lick tube. Then, each trial was started only if the mouse
was not spontaneously licking for at least 3 s (in addition to the inter-trial interval).
Mice were first trained to respond to the S+ stimulus by producing at least 3–5
licks (depending on the mouse) to get the 5 µL water reward. When the mouse
could collect more than 80% of the rewards, the S− stimulus was introduced.
Licking above threshold after S− was punished with a 7-s timeout.

Reinforcement learning model. The model has been described extensively in a
previous publication25. In short, it is composed of three sensory units (Ŝ+, Ŝ−, and
Ĉ, representing populations of neurons) whose activity described by a three-
dimensional vector X and which are connected to a simple decision circuit
(Fig. 4a). Cortical recruitment is modeled by changing the firing value of the sound
units. When the S− stimulus recruits less activity than the S+ stimulus, the input
vectors are: XS+ = [1 0 2] or XS−= [1 1 0]. When S− recruits more activity than S
+, the input vectors are: XS+= [1 0 1] or XS−= [1 2 0].

The decision circuit is composed of all-or-none response unit (y= 0 or 1) which
linearly sums the three sensory inputs (representing synaptic populations) under
the form of three direct excitatory connections and of a graded feed-forward
inhibition from a virtual inhibitory unit in fact equivalent to three direct inhibitory
connections. The output of model is described by a single equation for the decision
unit:

y ¼ θðWE:X �WI:X � ξÞ ð1Þ
in which θ is the Heaviside step function. WE and WI are three-dimensional
positive vectors describing the excitatory synaptic weights from the sensory units to
the decision and inhibitory units respectively. The variable ξ is a Gaussian random
noise process of unit variance which models the stochasticity of behavioral choices.

Based on the action outcome (R= 1 for a reward, R=−1 for no reward), the
learning rule for the synaptic weights is implemented as:

δWE ¼ αWE � f ½R� σðWE �WIÞ:X�yX ð2Þ

δWI ¼ �αWI � f ½R� σðWE �WIÞ:X�yX ð3Þ
in which ⊙ is the Hadamard (element-wise) product implementing the
multiplicative rule, y~x is a Hebbian term, α is the learning rate and σ is a parameter
related to the noisiness of the model and setting its asymptotic performance. To
account for the faster improvement of performance for rewarded as compared to
non-rewarded trials, positive expectation errors are more strongly weighted than
negative ones, thanks to the asymmetric function f[u]= u if u ≤ 0 and f[u]= vu if
u > 0. The parameter v is typically >1, consistent with the activity of basal ganglia
dopaminergic neurons in mice66 and monkeys67 coding for reward expectation
error.

As described above, the equations of the model are stochastic due to the
Gaussian random noise process ξ. To compute the response probability estimates
plotted throughout the study, we used a previously established probability
equation25, valid for learning dynamics much slower than fluctuations (ergodic
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approximation). The probability to make a lick response given the input vector Xs+
or Xs− is:

pSþjS� ¼ pðy ¼ 1jX ¼ XSþjS�Þ ¼
1
2

1þ erf
ΔW:XSþjS�ffiffiffi

2
p

� �� �
ð4Þ

where Δ~w ¼ ~wE �~wI represents now the average observed values of difference
between the excitatory and inhibitory connections. In addition, the plasticity
equations become:

δWE ¼ α

2
WE � f ½1� σΔW:XSþ�pSþXSþ þ f ½�1� σΔW:XS��pS�XS�

� � ð5Þ

δWI ¼ � α

2
WI � f ½1� σΔW:XSþ�pSþXSþ þ f ½�1� σΔW:XS��pS�XS�

� � ð6Þ

Statistical tests. Unless otherwise specified, all quantifications are given as mean
±standard error (SEM). To statistically assess the differences between paired
measurements (e.g. activity for two different sounds elicited in the same neuronal
populations) we used the non-parametric Signed test. To compare two sets of
measurements (e.g. delay and learning phase duration for two groups of mice) we
used the non-parametric Wilcoxon rank sum test. Assessment of the differences in
the fraction of responsive neurons for different sounds was done with the χ2 test
which evaluates differences in the distributions of two binary variables. All tests are
two-sided. No data was excluded from the analysis sample.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All datasets, analysis software, and codes for running the simulations of our model are
freely available on the Dryad Digital Repository (http://datadryad.org/) https://doi.org/
10.5061/dryad.47h8t87 or on https://www.bathellier-lab.org/downloads. The source data
underlying Figs. 1c, 3d, and 6e, f are provided as a Source Data file.
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