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Abstract

A reduction in the level of some MCM proteins in human cancer cells (MCM5 in U20S cells or MCM3 in Hela cells) causes a
rapid increase in the level of DNA damage under normal conditions of cell proliferation and a loss of viability when the cells
are subjected to replication interference. Here we show that Drosophila S2 cells do not appear to show the same degree of
sensitivity to MCM2-6 reduction. Under normal cell growth conditions a reduction of .95% in the levels of MCM3, 5, and 6
causes no significant short term alteration in the parameters of DNA replication or increase in DNA damage. MCM depleted
cells challenged with HU do show a decrease in the density of replication forks compared to cells with normal levels of MCM
proteins, but this produces no consistent change in the levels of DNA damage observed. In contrast a comparable reduction
of MCM7 levels has marked effects on viability, replication parameters and DNA damage in the absence of HU treatment.
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Introduction

The MCM2-7 proteins form a complex which is a central player

in DNA replication in cells (reviewed [1]). It is involved at two

stages of the process: initiation, where it is important for the

formation of the preRC, and elongation, where it is thought to be

the primary helicase which unwinds the DNA ahead of the

replication fork.

A striking feature of the MCM complex is that it binds to

chromatin at high concentrations relative to the number of origins

present and also to the levels of other replication proteins such

as ORC [2–6]. This has led to the proposal of a number of

mechanisms of action for the MCM proteins which involve the

action of multiple complexes at each origin [7,8]. However in

Xenopus extracts [9], Drosophila S2 cells [10] and for MCM5 in

U20S cells [11] and MCM3 in Hela cells [12] the levels of the

MCM proteins can be drastically reduced without suffering an

apparent loss in the efficiency of unperturbed DNA replication or

cell survival. Several recent studies have led to the hypothesis that

one function of the additional MCM proteins maybe in permitting

survival after perturbation of DNA replication. Studies in Xenopus

extracts [13] showed that if DNA replication was inhibited with

aphidicolin and the S phase checkpoint ATR/ATM kinases were

inhibited with caffeine then extracts where fewer MCMs had been

loaded onto chromatin (due to the addition of geminin) were less

proficient at replication. Subsequently studies in human cancer

lines were also used to suggest a similar hypothesis. If U2OS cells

depleted of MCM5 by RNAi to levels which do not affect their

normal replication are challenged with HU they are less able to

survive [11]. Hela cells are not able to survive the equivalent

MCM5 depletion (or the depletion of MCM4, 6 or 7) however

depletion of MCM3 in these cells produced no short term changes

in viability or replication initiation and elongation but did seem to

result in increased DNA damage, as well as a decreased ability of

the cells to survive HU/aphidicolin challenge [12]. The model

proposed from these studies is that after replication interference

the replication fork restarts again from other normally silent

origins. If MCM proteins are limiting this is not possible resulting

in decreased replication and cell viability.

In our previous studies with Drosophila S2 cells [10] we showed

that, with the exception of MCM7, reduction of any of the

members of the MCM complex by .95% had little effect on cell

viability or DNA replication under conditions where DNA

replication was not perturbed. The data presented here extend

those studies. Firstly using more sensitive ways of looking at DNA

replication we are still unable to detect significant changes in

replication under unperturbed conditions. Secondly, following on

from recent studies which suggest that cancer cells respond

differently to changes in the levels of other replication proteins eg

cdt1 [14], we determined whether S2 cells (which are not

transformed) showed the same dependence on high levels of the

MCM proteins for viability, DNA replication and DNA damage

resistance after replication interference. Using similar techniques

to those used for the published studies in human cells we were not

able to detect the same striking changes in these parameters in

Drosophila S2 cells. This suggests that the requirement for a
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reservoir of MCM proteins in S2 cells cannot be entirely explained

by a role in recovery after DNA replication interference.

Results

Reduction of MCM 2-6 in S2 cells does not affect
nucleotide incorporation and fork movement

Our previous work showed that dsRNAi depletion of MCM3

reduced MCM3 and MCM5 levels, and MCM6 depletion

reduced MCM2, MCM4 and MCM6 levels [10]. Co-depletion

of multiple proteins might be expected to have a larger cellular

effect. Therefore for the studies presented here we chose to deplete

MCM3 and MCM6 together with MCM5 (which only affects

MCM5). We also targeted MCM7 (which causes a reduction of

MCM4 and MCM7). MCM7 depletion has a drastic effect on cell

viability in the absence of DNA damage, we would therefore

expect that depletion of this protein should have effects on the

parameters which we are looking at, thus allowing it to serve as a

positive control. As for our previous studies the depletion of the

protein levels for MCM3, MCM5 and MCM6 were all greater

than 90%. We did not previously show the equivalent data for

MCM7 due to the lack of an efficient antibody. We have therefore

generated a new MCM7 antibody and Figure 1 shows that under

our standard dsRNA depletion conditions we are able to achieve

comparable depletion of MCM7 protein levels.

In our original studies the depletion of MCM3, MCM5 or

MCM6 had no apparent effects on cell viability, cell cycle

distribution of the cells or PCNA binding to chromatin. To rule

out the possibility that MCM depletion caused subtle effects that

were not detected using these techniques we re-examined the

MCM depleted cells using two techniques which should pick up

more subtle effects. - BrdU incorporation and molecular combing.

We first measured DNA synthesis directly by following the

incorporation of BrdU into the DNA. Figure 2 shows that while

BrdU incorporation in an MCM7 depleted cell line is markedly

reduced, depletion of MCM3, MCM5 and MCM6 had no

significant effect on DNA synthesis as measured by this method.

We next used DNA molecular combing to measure the origin

spacing and rate of fork movement in MCM3, MCM7 and control

cells. We measured global fork density (taking into account all

observed DNA fibres), local fork density (only taking into account

fibres showing incorporation) and the rate of fork movement. The

data obtained is shown in Figure 3 and Figure S1. MCM3

depleted cells show no significant difference in global or local

origin density. By contrast MCM7 depletion from cells causes a

significant change in both global and local origin density. In

neither case was a significant change seen in the rate of fork

movement (see observed BrdU track lengths in Figure S1).

Reduction of MCM 2-6 in S2 cells has minimal effects on
viability in the presence HU

Titration HU levels. To be consistent with earlier studies in

Xenopus extracts and human cells the level of replication

interference required is one that does not significantly inhibit

replication in wild type cells. For human cells the levels used varied

between 0.030 mM [12] and 0.2–1.3 mM [11]. To determine the

optimal concentration to use for Drosophila, we titrated the

amount of HU added to cells to determine a level which only

resulted in a transient cell cycle delay in untreated S2 cells.

0, 0.05, 0.2 and 0.5 mM HU were added to dividing S2 cells.

After 24, 48 and 72 h cell proliferation was measured by cell

count, and the effect on the cell cycle was measured by FACS.

Figure 4A shows that while 0.05 and 0.2 mM HU have no

permanent effect on the cell growth of S2 cells, 0.5 mM appears to

significantly affect the doubling time even after 72 hours. Similarly

FACS analysis (Figure 4B) suggests that after 48 h the cell cycle

profiles of cells treated with 0.05 and 0.2 mM have largely

returned to normal, whereas cells treated with 0.5 mM still appear

to be largely retained in the S phase. It was therefore decided to

use 0.2 mM HU as this clearly had a temporary effect (see 24 h

FACS profile) but no long term effect on the cells. Coincidentally

the same concentration was also used by Ge et al [11] in human

cells.
Challenge of depleted and non-depleted cells with

HU. 0.2 mM HU was added to MCM3, MCM5 and MCM6

depleted and mock treated cells 4 days after the RNAi treatment –

this corresponds to a time when .95% MCM protein had been

depleted in all cases. The levels of the MCM proteins remain low

throughout the rest of the time course of the experiment [10]. The

cells were assayed for their proliferation 24, 48 and 72 hours later.

For this experiment we did not analyse MCM7 depleted cells since

they were already too badly affected to allow meaningful

measurements of the additional effect of HU.

Figure 5 shows the averaged results from four independent

analyses. Figure 5A shows the proliferation profiles of cells which

were not treated with HU. Figure 5B shows the same cells with

HU added on day 4. In all cases the presence of HU caused a

decrease in the growth rate of the cells. We could not detect a

significant decrease in the viability of the cells that had lower levels

of MCM3, MCM5 and MCM6 as compared to the mock treated

cells at 24 and 48 hours after HU addition. On day 7 (after 1

complete division in the presence of HU) there was no significant

Figure 1. Western blot to demonstrate the depletion of MCM7 from S2 cells by dsRNA interference. The levels of MCM7 protein were
determined 3, 5 and 7 days after the addition of dsRNA in control cells and cells treated with dsRNA against MCM7 as shown. Loading was checked by
comparison with Ponceau red staining of the blot before development (data not shown). The cross-reacting but unrelated band (*) also provides an
indication that loading between the fractions is comparable.
doi:10.1371/journal.pone.0027101.g001

MCM Depletion in Drosophila S2 Cells
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difference in the MCM depleted cells as compared to the control.

(Note that comparable variation was observed when the equivalent

sets of cells were allowed to proliferate in the absence of HU

treatment.)

An analysis of the cell cycle profile of the cells by FACS failed to

show significant additional effects of the removal of MCM proteins

in the presence of HU when compared to mock treated cells (data

not shown).

We repeated the experiment but instead of leaving the HU in the

medium washed it out of the cells after 24 h in case the continuing

presence of HU affected the results. In this case we saw no

significant effects of MCM depletion on cell growth or cell cycle

profile after HU removal (not shown). We also confirmed that the

removal of HU (and therefore any dsRNA remaining in the media)

did not cause any recovery in the levels of the depleted MCM

proteins over the time course of the experiment (Figure 5C).

We analysed global and local origin densities and rates of fork

movement by molecular combing. As seen in Figure 6 and Figure

S2 the presence of HU has a small effect (,20%) on the local fork

density and a slightly larger effect (,40%) on the global fork density

in MCM3 depleted cells. This figure also shows that treatment of

MCM7 depleted cells with HU had minimal additional effects on

fork densities over that seen by the depletion alone. Again in neither

case was a significant change seen in the rate of fork movement (see

observed BrdU track lengths in Figure S2).

Reduction of MCM 2-6 in S2 cells has minimal effects on
the levels of DNA damage observed in an unperturbed S
phase

Ibarra et al reported that depletion of MCM3 caused an

increase in damage observed in the absence of replication

interference. To test whether this was observed in S2 cells we

prepared chromatin from mock and MCM depleted cells 5 days

after dsRNA treatment. At this point the cells will have been

through 2–3 divisions in the absence MCM proteins which should

allow time for damage to develope.

To test for ds breaks we used antibodies against phosphorylated

Drosophila H2AvD (an H2AX homologue). Figure 7A and 7B

shows the results of this analysis. We see a small increase in the

level of H2AvD phosphorylation for some of the MCM depleted

cells. Again the level of this is variable between experiments in

some cases with no additional damage being seen. In MCM7

dsRNA treated cells a much larger increase in H2AvD

phosphorylation was observed which is consistent with the marked

decrease in proliferation that we see in these cells by this time. It

should be noted that despite this small increase in damage for the

other MCM deplete lines no significant changes in proliferation

and cell growth are observed at this stage.

The presence of ssDNA regions were analysed by determining

the level of the RPA 30 kDa and 70 kDa subunits binding to the

chromatin. Figure 7C and 7D shows the results of such an analysis

3, 4 and 5 days after the addition of dsRNA. A small increase was

seen for MCM3. No significant increases were seen for MCM5 and

MCM6. Again a large increase is seen with MCM7, however

conclusions about the exact extent of this analysis are complicated

by the fact that RPA binding is increased in S phase and MCM7

depleted cells show a higher proportion of S phase cells.

Reduction of MCM 2-6 in S2 cells has minimal effects on
the levels of DNA damage resulting from HU treatment

It was possible that an increase in DNA damage was only

observed after replication interference. We therefore carried out

Figure 3. Relative local and global fork densities of MCM depleted and control cells as measured using molecular combing. These
data were derived as explained in materials and methods – please also see Figure S1.
doi:10.1371/journal.pone.0027101.g003

Figure 2. Dot blot analysis to compare BrdU incorporation by
MCM depleted and control cells. S2 cells after 5 days of treatment
with dsRNAi against MCM3, MCM5 MCM6 MCM7 or a control human
fragment were labeled with BrdU for 1 h and the DNA prepared and
analysed as described in materials and methods. These data are the
average of 2 independent experiments.
doi:10.1371/journal.pone.0027101.g002

MCM Depletion in Drosophila S2 Cells
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chromatin extractions on mock and MCM depleted cells 48 h after

0.2 mM HU treatment. The results from these analyses are shown

in Figure 8. DNA damage as measured by H2AvD phosphorylation

levels (Figure 8A) was slightly higher for MCM3, and more

noticeably for MCM6 at this time point however, as for the

experiments carried out in the absence of HU, the level of this is

variable between experiments and in some cases no additional

damage is seen. In this case even MCM7 depletion had no apparent

effect at this time point. In case the damage occurred earlier the cells

were also checked at 6 h, 14 h and 24 h after the addition of HU.

As can be seen in Figure 8B there were no notable differences in the

levels of H2AvD phosphorylation at any of these time points.

Analysis of RPA binding after 24–48 h (Figure 8C) showed

slight increases for MCM5 and MCM7 but again these increases

Figure 4. Effect of increasing concentrations of HU on S2 cells. (A)Titration of the proliferation rate of S2 cells treated with different levels of
HU. 0 HU (%), 0.05 mM HU (-), 0.2 mM HU (X) and 0.5 mM HU (N) as shown were added to log phase S2 cells and the proliferation rate of the cells was
determined by cell counting at 6, 24, 48 and 72 h. Consistent results were obtained with several independent experiments and this figure presents
data from one representative experiment. (B) FACS analysis showing the effect of titrating HU into Drosophila S2 cells. Log phase S2 cells were either
left untreated or 0.05 mM HU, 0.2 mM HU and 0.5 mM HU as shown (front to back) were added at time = 0 and the cell cycle state of the cells was
determined by FACS at 4, 24, and 48 h. Consistent results were obtained with several independent experiments and this figure presents data from
the same representative experiment as Figure 4A.
doi:10.1371/journal.pone.0027101.g004

MCM Depletion in Drosophila S2 Cells

PLoS ONE | www.plosone.org 4 November 2011 | Volume 6 | Issue 11 | e27101



Figure 5. Relative growth rates of control and MCM deplete cells in the absence (5A) and presence (5B) of 0.2 mM HU. These data
were derived as explained in Materials and Methods and represents the average of 4 independent experiments. 5C demonstrates that there is no
recovery of MCM levels during the time course of the experiment. The levels of MCM5 and MCM6 were measured either 24 h after HU treatment (5
days after dsRNA treatment) – B, or HU was washed out by the addition of new media after 24 h of HU treatment, and the cells were left to grow for a
further 2 days - A. The dsRNAs used for the treatment were either against 2 different controls or MCM3, MCM5 or MCM6, as indicated at the top of the
figure. The amounts loaded in each lane were checked by ponceau staining of the gel prior to development but the MCM5 and 6 also serve as
internal controls for each other.
doi:10.1371/journal.pone.0027101.g005

Figure 6. Relative local and global fork densities of MCM depleted and control cells when challenged with 0.2 mM HU as measured
using molecular combing. The data were derived as explained in materials and methods. Please also see Figure S2.
doi:10.1371/journal.pone.0027101.g006

MCM Depletion in Drosophila S2 Cells
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were not consistently seen. A time course of RPA binding

(Figure 8D) shows that RPA binding is increased at early time

points (6 h and 14 h) in the control as well as the MCM3 and

MCM7 depleted cells (likely due to the increased number of cells

in S phase due to the effect of HU treatment). At later time points,

consistent with what was observed previously, no significant

differences are seen.

Discussion

The data presented in this paper allow us to draw several

conclusions about the effects of depletion of MCM proteins in

Drosophila S2 cells:

MCM2-6 depletion in the unperturbed cell cycle
These studies confirm our earlier analysis which suggested that

depletion of MCM2-6 proteins has no measurable effect on the

efficiency of DNA replication in S2 cells. We had already shown

that the depletion of MCM2-6 proteins from S2 cells by .95%

had no apparent effect on the viability, cell cycling or chromatin

association of PCNA. This suggested that there was not a

significant effect on DNA replication. However we were

concerned that these techniques were not sensitive enough to

detect subtle changes that might be caused by the depletion.

Therefore in this study we used two techniques -BrdU incorpo-

ration and molecular combing – to allow us to detect changes that

were not rate limiting to cell growth and viability.

Again we could not detect significant changes in BrdU

incorporation, rate of fork movement, or fork density in MCM

depleted cells. This leads us to suggest more strongly that the loss

of significant amounts of the MCM2-6 proteins from S2 cells has

no effect on replication in those cells. This is consistent with

previously published data from Xenopus extracts (9), Hela cells for

the depletion of MCM3 [12] and U20S cells for the depletion of

MCM5 [11] proteins.

In Hela cells although the depletion of MCM3 does not affect

cell viability, fork density or fork movement it does produce an

apparent increase in the number of ds breaks and ss DNA regions

as measured by the chromatin binding of phosphorylated H2AX

and RPA respectively. This is much less apparent in Drosophila S2

cells depleted of MCM3, MCM5 or MCM6. Although after

averaging several experiments some slight differences were seen,

these were not seen consistently in each experiment leading us to

question the significance of the differences. This is not due to the

MCM/DNA ratio being higher in S2 cells. Quantitative analysis

suggests that S2 cells have approximately 26104 molecules of each

MCM per cell compared to transformed human cells which are

reported to have 1.5–2.56106 molecules per cell [15]. Allowing for

genome size S2 cells therefore have a 5–106 lower MCM/DNA

ratio, more comparable with that reported in non transformed

human cells. In addition the S phase lengths are comparable

between the two types of cells. Perhaps it is due to a difference

between species (Drosophila vs human). It may also be related to

the different methodology used for dsRNA interference – in

Drosophila the cells do not need to be treated with transfection

agents to allow them to take up the RNA. This potentially leaves

them less stressed by the procedure itself. Alternatively Hela cells

are tumour derived while S2 cells are not and this may also lead to

some differences in the response of the cells to replication

perturbation similar to that reported for cdt1 overexpression in

Hela cells vs fibroblasts [14].

MCM2-6 depletion and replication interference
The depletion of MCM5 in U2OS cells or MCM3 in Hela cells

has been reported to cause sensitisation of cells to replication

interference by HU or aphidicolin. This is seen as a decrease in

cell proliferation and an increase in observed DNA damage. S2

cells treated with HU do not apparently show the same degree of

change in either of these parameters.

Figure 5 shows that as an average of four individual experiments

there are no significant decreases in proliferation of MCM3,

MCM5 and MCM6 depleted cells at 24 or 48 h after HU

treatment. At 72 h there may be some slight effect, however this is

not consistently seen in each individual experiment so the

significance of these results is unclear. The level of the decreases

in proliferation (5–10%) are less than those reported by Ge et al

[11] using similar assays for MCM5 depleted U2OS cells treated

with 0.2 mM HU (12.5%) and 0.5 mM HU(17%). Larger effects

were observed on aphidicolin treatment of MCM3 depleted Hela

cells [12], although the maximum effect was observed after 5 days

of HU treatment in this case. Ge et al [11] were also able to see

larger effects using a different assay involving focus formation in

agar although in this case much higher concentrations of HU were

used which also had rather severe effects on undepleted cells.

Consistent with the reported studies in human cells we did see

relatively lower fork densities by combing after HU treatment.

These changes were smaller than those reported for human cells

which may explain why the observed effects on viability and

replication were less prominent. As would be expected the

observed differences resulted from an increase in the fork density

in untreated cells but no change in the depleted cells.

Replication challenge of MCM3 depleted Hela cells also shows

significantly increased levels of ds breaks and ssDNA [12]. MCM5

depleted U2OS cells challenged with HU show some stress related

responses: increased levels of chromatin-bound PCNA, ubiquiti-

nated PCNA, RPA, and DNA polymerase delta and phosphor-

ylation p53 on ser15, but not others: changes in the levels of

phospho-Chk1, phospho-Rad17, or phospho-H2AX [11]. In S2

cells, although MCM 2–6 depletion does not seem to significantly

Figure 7. Analysis of the effects of MCM depletion on DNA damage in normally dividing S2 cells. (A) Sample western blot demonstrating
the detection of phosphorylated H2AvD as a measure of DNA damage in control and MCM depleted S2 cells. Phosphorylated H2AvD was measured
in chromatin prepared from S2 cells at day 4. In all cases the order of loading is MCM3 deplete, MCM5 deplete, MCM6 deplete, MCM7 deplete, TTC4
deplete (control), etop (positive control from etoposide treated cells). Phosphorylated H2AvD is the top band and the loading control is the bottom
band - a cross reactivity with H2A. This shows some variability between blots but is consistent within a blot. Loading was also checked by comparison
with Ponceau red staining of the blot before development (data not shown). (B) Quantitation of phosphorylated H2AvD as a measure of DNA damage
in control and MCM depleted S2 cells on day 5. These data were obtained by quantitation of western blots as shown in (A). The etoposide lane was
not quantitated as it was only present to allow the correct identification of phosphorylated H2AvD. (C) Sample western blot demonstrating the
detection of chromatin bound RPA as a measure of the level of ssDNA in control and MCM depleted S2 cells. RPA binding was assessed in chromatin
prepared from S2 cells at day 5. In all cases the order of loading is MCM3 deplete, MCM5 deplete, MCM6 deplete, MCM7 deplete, TTC4 deplete
(control). The 70 and 30 kDa bands of RPA are as shown. The loading control is H2a shown at the bottom of the gel visualized by with Ponceau red
staining of the blot before development. (D) Quantitation of RPA binding data for the MCM and control depleted S2 cells as shown on day 3, 4 and 5
(light, medium and dark grey respectively for each condition). These were obtained by quantitation of the 70 and 30 kDa RPA bands from western
blots as shown in (C).
doi:10.1371/journal.pone.0027101.g007
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affect cell viability, we do see some small changes in phospho-

H2AvD levels on replication interference. The same is also true

for RPA binding. As for the experiments carried out in the

absence of HU treatment the precise reason for the differences

observed between the different cell types therefore remains

unclear, but again may be due to species, cell type or

methodology differences.

Cellular effects of MCM7 depletion
The data presented in this paper also further confirms that S2

cells appear to have additional requirements for MCM7 as

compared to the other MCM proteins. We had previously shown

that depletion of MCM7 caused severe effects on the proliferation

and cell cycle profile of S2 cells. We have now shown that

depletion of MCM7, in the absence of replication interference,

produces a decrease in DNA synthesis, a decrease in the number

of active replication forks (either through a decrease in origin firing

or early fork stalling) and an increase in DNA damage. The

decrease in replication was not obvious from our earlier studies

where we used chromatin binding of PCNA as a measure of

ongoing replication. This is likely to be due to a combination of an

increased number of MCM7 cells in S phase and PCNA loading as

part of the damage response. The effects are not due to a more

efficient depletion of MCM7 than the other MCM proteins, as a

less efficient depletion of MCM7 produces similar effects. It is also

not due to lower levels of MCM7 in cells since in S2 cells protein

levels are comparable for each of MCM2-7. The mechanism by

which MCM7 functions in this respect is unclear but the negative

effects must be related to passage through S phase since treatment

of MCM7 depleted cells with HU seems to reduce the level of

damage which occurs. In addition since these effects are not seen

by depletion of the other MCM proteins it is likely that they are

specific to MCM7, although we cannot rule out that it may also be

affected by co-depletion of MCM4 with MCM7 [10]. In other

systems MCM7 has been suggested to have a role in the

checkpoint response to UV damage (human cells [16,17] and

Xenopus extracts – [18]). How this is related to what we observe

here will require additional specific studies.

Conclusion
In S2 cells although the depletion of MCM2-6 causes some

small but measurable changes in DNA replication parameters and

the levels of damage observed on replication interference these are

less than those observed under the corresponding conditions in

human cancer cells. In addition these changes have little effect on

the viability of S2 cells. This suggests that in S2 cells the excess of

MCM2-6 proteins present appears to be greater than that needed

for recovery from replication interference possibly suggesting that

they may also be required for additional cellular processes (1). By

contrast any reduction of MCM7 severely disrupts DNA

replication, further strengthening the suggestion that it may play

important roles in DNA replication independent of the other

members of the MCM complex.

Materials and Methods

Antibodies
H2AvD (rabbit anti-histone H2AvD pS137 was obtained from

Rockland), anti BrdU was from sigma (B8434). HP labelled anti-

rabbit were from Pierce Scientific and HP anti-mouse from

Thermo Scientific). Rabbit antibodies against Drosophila RPA

were produced using purified Drosophila RPA [19]) as the

antigen. MCM3, MCM5 and MCM6 antibodies were as

previously reported [20]. Rabbit antibodies against MCM7 were

produced at Neosystem (Strasbourg) using hexahis-tagged MCM7

as the antigen.

Cell culture
S2 cells (originally obtained from the Drosophila Genomics

Resource Center) were grown in Schneiders Drosophila medium

from Lonza, with 10% Foetal calf serum from Gibco and penicillin

streptomycin from sigma.

DsRNA interference
Primers containing a 59 T7 RNA polymerase binding site and

specific for MCM3, MCM5, MCM6, MCM7 and TTC4 were as

previously described [10]. The dsRNA was made using MEGA-

script T7 kit (Ambion) as per manufacturers instructions. The

dsRNA interference experiment was carried out on S2 cells in

exponential growth phase as described [21]. 10 mg of dsRNA was

added per 106 cells and the cells were monitored by cell count,

FACS analysis and protein blotting over a period of 7 days.

Measurement of BrdU incorporation by dot Blot
This was carried out largely as previously described [22]. S2

cells at day 5 post RNAi treatment were labelled with BrdU

(20 mM) for 1 h. The cells were harvested, resuspended in RSB

buffer (10 mM Tris-HCl pH8, 10 mM NaCl, 3 mM MgCl2) at a

concentration of 2.56107 cells/ml, and incubated on ice for

5 min. An equal volume of 0.2% NP-40 in RSB buffer was added

followed by incubation in ice for an additional 10 min. The nuclei

obtained were pelleted by centrifugation (50006g for 5 min) and

resuspended in 3 ml lysis buffer (200 mM NaCl, 10 mM Tris-HCl

pH8, 25 mM EDTA, 1% SDS and 100 mg/ml proteinase K

(roche)) overnight at 37uC. The sample was then extracted twice

with phenol:chloroform:isoamyl alcohol (25:24:1). After extrac-

tion, an equal volume of isopropanol was added to the aqueous

phase and the precipitate was collected by centrifugation for

30 min (160006g for 30 mins) at 4uC. The DNA was then

resuspended in TE buffer (10 mM Tris-HCl pH 8, 1 mM EDTA)

and the concentration was measured spectrophotometry.

To denature the sample 5 ml of the DNA solution (at 1 mg/ml)

was mixed with 45 ml of NaOH 0.4N, vortexed and incubated for

30 minutes on ice. The solution was neutralised by addition of

50 ml of 1 M Tris-HCl pH8. Then a dilution series of the final

solution was spotted on nitrocellulose: Amersham Hybond ECL

(G.E). The negative control was DNA extracted from S2 cells (no

Figure 8. Analysis of the effects of MCM depletion on DNA damage in dividing S2 cells challenged with HU. (A) Quantitation of
phosphorylated H2AvD as a measure of DNA damage in control and MCM depleted S2 cells after HU treatment. These data were derived by the
quantitation of the levels of phosphorylated H2AvD in chromatin 48 h after HU treatment as seen on western blots equivalent to those shown in
Figure 7A. (B) Time course of change in phosphorylated H2AvD levels in chromatin for MCM3, control and MCM7 depleted S2 cells after HU
treatment. In each case samples were taken at 6 h, 14 h and 24 h. The last 2 lanes are etoposide treated cell controls and as above the top band is the
phosphorylated H2AvD and the bottom, the loading control H2A. (C) Quantitation of chromatin bound RPA in control and MCM depleted S2 cells
after HU treatment. These were derived by the quantitation of the levels of the 70 and 30 kDa subunits of RPA in chromatin 48 h after HU treatment
from western blots equivalent to those shown in Figure 7C. (D) Time course of change in RPA levels on chromatin for MCM3, control and MCM7
depleted S2 cells. In each case samples were taken at 6 h, 14 h and 24 h. The loading control is H2A shown at the bottom of the gel visualized by
with Ponceau red staining of the blot before development.
doi:10.1371/journal.pone.0027101.g008
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BrdU labelling). The nitrocellulose membrane was incubated

overnight in PBS+1% Tween +1% perfect block (Mo Bi Tech) and

incubated with primary (anti BrdU) and secondary antibodies as

for protein blotting. Quantification was performed using the

Image gauge software on a Fujifilm Life Science LAS-4000

imaging system (Fuji).

Flow cytometry
Cells were harvested and fixed using 50% ethanol in PBS.

Immediately prior to use cells were resuspended in PBS containing

1% glucose, 10 mg/ml RNase,1 mM EDTA,0.5% Triton 6100

and 50 mg/ml propidium iodide to stain DNA. Flow cytometry

was carried out on a CYTOMICS 500 (Coulter Beckman) analysis

was done using CXP software.

Cell fractionation (chromatin extraction)
Chromatin fractionation was carried out as described in Crevel

et al 2005 [21]. Cells were spun and washed with PBS. They were

incubated on ice 10 min, washed twice in PBS 0.5% triton and

protease inhibitors (complete, EDTA free, Roche) by resuspension

and spinning at 50006g The final pellet was resuspended in SDS

loading buffer at a concentration corresponding to 250 000 cells/

ml (5 ml was loaded per well).

Protein blotting
Proteins from SDS PAGE were blotted onto Amersham

Hybond ECL (G.E) and developed with Immobilon Western

Chemiluminescent HRP Substrate(Millipore) Visualisation and

quantitation were carried out using Fujifilm Life Science LAS-

4000 imaging system (Fuji).

Replication interference analysis
Where appropriate Hydroxyurea (0.2 mM final except when

stated) was added to S2 cells at day 4 post addition of dsRNA. The

cells were then monitored over a period of 3 days for viability (cell

count), cell cycle characteristics (by flow cytometry) and appear-

ance of DNA damage antigens (by western blotting of prepared

chromatin against H2AvD and RPA).

In order to get a positive control for H2AvD detection etoposide

(10 mM) was added to S2 cells in exponential growth phase and

the cells were harvested after (24 h) and chromatin extracted as

described above.

Calculation of growth with HU
Cell count was performed at day 4 5 6 and 7 for controls and HU

samples. The cell count obtained at day 4 (before addition of HU)

was used as a starting point (value 100%). The growth curve

evolving from that point was calculated as a proportion of that initial

point. Separate data sets were calculated for the percentage increase

or decrease of cells for each depleted MCM and the control with

and without HU. The data presented in Figure 4 show the ratio of

the percentage growth obtained in the presence of HU to that in its

absence for each MCM deplete and the control.

Combing
To estimate fork progression rate, cells were pulsed with

100 mM BrdU for 30 min. Cells were embedded in agarose plugs

and after proteinase K treatment genomic DNA was extracted and

‘‘combed’’ onto cover- slips as described [23]). Coverslips were

incubated in 1 M NaOH for 25 min, neutralized in PBS (pH 7.5),

and processed for immunofluorescence. BrdU was detected with

rat anti-BrdU monoclonal antibody (SeraLab), ssDNA was

visualized with an anti-DNA antibody (Chemicon). Images were

collected and analyzed with MetaMorph 7 software (Molecular

Devices) and analysis of BrdU track vs DNA labeling was

performed using the program IDeFIx written by Thierry Gostan

(details available from Montpellier DNA Combing Facility).

Global fork density was measured taking the number of BrdU

tracks divided by the sum of all fiber lengths. The local fork density

was calculated dividing the number of BrdU tracks by the total

length of fibers that showed BrdU substitution. In each case only

filtered BrdU length was used so any fibres with BrdU at the end

of the fibres has been discarded.

Supporting Information

Figure S1 Box and whisker plots to show the distribu-
tion of the fibre sizes and BrdU tracks obtained by
combing which were used for the calculation of the local
and global fork densities of control, MCM3, and MCM7
samples in the absence of HU challenge. For the control,

the MCM3 deplete and the MCM7 deplete respectively; the total

fibre lengths were 90.7, 29 and 26 Mb, substituted fibre lengths

were 10.4, 3.9 and 1.17 Mb and the number of BrdU tracks were

86, 30 and 4.

(TIF)

Figure S2 Box and whisker plots to show the distribu-
tion of the fibre sizes and BrdU tracks obtained by
combing which were used for the calculation of the local
and global fork densities of control, MCM3, and MCM7
samples in the presence of HU challenge. For the control,

the MCM3 deplete and the MCM7 deplete respectively; the

total fibre lengths were 25.7, 29.8 and 32.5 Mb, substituted fibre

lengths were 6.8, 5.8 and 1.45 Mb and the number of BrdU tracks

were 59, 39 and 8.

(TIF)
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