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Introduction

Rheumatoid arthritis (RA) is a chronic infl ammatory 

disease aff ecting synovial joints. A hallmark of RA is the 

pseudotumoral expansion of fi broblast-like synoviocytes 

(FLSs), which invade and destroy the joint. Tumor 

necrosis factor-alpha (TNFα) plays a major role in pro-

mot ing RA, and blocking this cytokine is eff ective for 

treating patients with RA [1]. However, a signifi cant 

number of patients do not respond or become resistant 

to anti-TNF therapies; approximately 50% of the patients 

still receive anti-TNFs 5 years after the start of treatment 

[2]. Th e participation of other cytokines in RA has also 

been reported and could explain the absence of response 

to anti-TNFs. Often, patients treated with anti-TNFs 

show secondary eff ects such as recurrent infections [3]. 

Th erefore, it is important to defi ne additional therapeutic 

strategies in order to better control synovial infl ammation 

and joint destruction observed in RA. Although lympho-

toxin alpha (LTα) has been associated with autoimmune 

and infl ammatory diseases and is the closest homolog to 

TNFα, few data pointing to a role for LTα in RA are 

available [4-10]. In this review, we aim to summarize the 

general features of LTα and what at present is known 

about its role in RA.

Lymphotoxin alpha in general

LTα, formerly known as TNFβ, was originally described 

in 1968 as a cytotoxic factor produced by T lymphocytes 

after antigenic or mitogenic stimulation [11]. Later on, in 

1984, human LTα was purifi ed from a B-lymphoblastoid 

cell line [12,13] and its structure was determined by 

classic protein-sequencing methods, making LTα the fi rst 

member of the TNF superfamily to be characterized [14]. 

TNFα was subsequently purifi ed, and sequence com-

parison and receptor competition experiments revealed 

that these two proteins were homologous [15,16]. Indeed, 

LTα is the closest homolog to TNFα.

LTα and TNFα are 30% homologous in their primary 

amino acid sequence, but of greater signifi cance is the 

observation that the regions of major sequence homology 

indicated a similarity in their tertiary and quaternary 

structures [15]. LTα is structurally similar to TNFα: LTα 

is a soluble homotrimer composed of 17-kDa monomers 

and binds to and signals specifi cally through TNF recep-

tors 1 and 2 (TNFR1 and TNFR2) to exert its biological 

activities.

Although LTα and TNFα have many similarities, there 

are some distinct molecular and biological diff erences 

[17,18]. Like TNFα, LTα binds with high affi  nity to 

TNFR1 and TNFR2 [19]. However, the N-terminus of 

LTα, unlike that of TNFα, resembles a traditional signal 

peptide, making its conversion to a soluble form 

extremely effi  cient. Th us, LTα is never found at the cell 

surface, a unique feature among the TNF superfamily 

members. LTα is anchored to the cell membrane only in 

association with membrane-bound LTβ, as LTαβ hetero-

trimers [20]. LTαβ is structurally distinct from LTα and 

comprises two membrane-anchored heterotrimers, the 

predominant LTα1β2 form and a minor LTα2β1 form, 
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both of which interact with the LTβ receptor (LTβR) 

[18,21,22]. Besides binding to TNFR1 and TNFR2, LTα 

binds to HVEM (herpesvirus entry mediator), a receptor 

discovered as an entry route for herpes simplex virus, but 

this binding is relatively weak [23].

LTα is expressed by CD4+ T helper type 1 (Th 1) cells, 

CD8+ cells, natural killer (NK) cells, B cells, and macro-

phages [18]. LTα has specifi c roles in the development 

and function of the immune system, mainly in lymphoid 

organ development, organization and maintenance of 

lymphoid microenvironments, host defense, and infl am-

mation [18]. However, most of the evidence pointing to 

these roles came from genetically defi cient mice and the 

relevance of LTα in humans is less clear. Moreover, these 

mice models make it diffi  cult to determine the relative 

role of LTα in these systems. Th is is because the LTα gene 

is closely linked to the TNFα and LTβ genes and targeting 

the LTα gene can lead to collateral damage to the 

neighboring genes [24]. Addition ally, LTα could some-

how control the expression of TNFα and the absence of 

LTα could interfere with the production of this cytokine. 

In any case, although LTα was once considered to be 

redundant to TNFα, the fact that the same cell types 

express both LTα and TNFα and that knockout mice for 

either cytokines can manifest diff erent phenotypes 

suggest that the two cytokines have overlapping and 

diff erent functions.

In regard to the development of secondary lymphoid 

organs, it was shown that mice defi cient in LTα are 

completely devoid of peripheral lymphoid tissues, such as 

Peyer patches (PP) [25]. It has been demonstrated that 

LTα mediates PP formation through TNFR1 because 

TNFR–/– mice either lack or have abnormal PP whereas 

TNFα–/– mice have normal PP [26].

Several studies suggested a role for LTα in host defense 

against certain infections. Mice defi cient in LTα are 

highly susceptible to Staphylococcus aureus infections 

[27]. Other studies showed the LTα requirement for 

granuloma formation and resistance to Mycobacterium, 

Leishmania, and Plasmodium infections in mice [28-31]. 

However, whether these functions are mediated by LTα, 

LTβ, or even TNFα is unclear. Th e contribution of LTα to 

host defense was further challenged by recently generated 

LTα–/– mice showing intact TNFα production, which 

allows the evaluation of LTα alone, as opposed to the 

earlier generated LTα–/– mice that showed altered expres-

sion of TNFα [32].

LTα has been implicated in infl ammation since its 

initial description. LTα induces infl ammation in vivo 

when expressed under the control of the rat insulin 

promoter (RIP) at the sites of transgene expression in the 

pancreas and kidney of RIPLT mice [33], and this occurs 

even in LTβ–/– mice [34], indicating that LTα alone 

induces infl ammation. Additional data suggesting a 

pro infl ammatory role for LTα derive from studies on 

experi mental allergic encephalomyelitis (EAE) and show 

that myelin basic protein-specifi c T-cell clones secrete 

LTα [35] and that LTα–/– mice are resistant to 

infl ammation and clinical signs of EAE whereas LTβ–/– 

mice can still develop EAE [36]. Th e mechanisms through 

which LTα promotes infl ammation and lymphoid organ 

develop ment are still poorly understood. One possibility 

is the induc tion of adhesion molecules in endothelial 

cells. In vitro studies showed that recombinant human 

LTα induces expression of intercellular adhesion 

molecule (ICAM) and E-selectin in human endothelial 

cells [37]. RIPLT mice overexpressing LTα exhibited a 

high expression of ICAM-1 and vascular cell adhesion 

molecule-1 in the vasculature of the infl amed pancreas 

and kidney independently of T or B cell-derived 

cytokines [38]. LTα could also contribute to infl ammation 

by the induction of chemokines. In this manner, LTα 

induces the expression of RANTES (regulated upon 

activation, normal T cell expressed and secreted) and 

monocyte chemoattractant protein-1 in a murine 

endothelial cell line [39]. Moreover, LTα contributes to 

lymphatic vessel functions in steady-state conditions and 

induces lymphangiogenesis in in fl am mation through 

mechanisms yet to be characterized [40].

LTα is required for the diff erentiation of NK cells and 

plays a role in the recruitment and antitumor activity of 

mature NK cells [41-43]. When inoculated subcuta-

neously with syngeneic B16F10 melanoma cells, LTα–/– 

mice develop enhanced tumor growth and metastasis in 

comparison with wild-type littermates. Th is was asso-

ciated with a lower number of NK cells and with slower 

migration of these cells from the bone marrow to 

peripheral organs [44]. Established, preclinical graft-

versus-host disease (GVHD) models showed that LTα 

contributes to the development of GVHD, the most 

frequent complication of allogeneic transplantation [45]. 

Naïve and alloreactive CD4+ T cells secrete soluble LTα 

after T-cell receptor stimulation. LTα participates in 

GVHD-mediated epithelial cell apoptosis, target organ 

damage, and mortality and this is mediated through 

TNFR1 signaling [45]. Th ese eff ects were not redundant 

to TNFα, as GVHD patients treated with TNFRFc, which 

cross-reacts with and blocks LTα, have outcomes diff er-

ent from those of patients treated with anti-TNFα mono-

clonal antibody, as do patients with a chronic auto-

immune disease such as RA [8].

Lymphotoxin alpha in rheumatoid arthritis

Th e fi rst reports suggesting a role for LTα in RA came 

from an analysis in patients with RA by enzyme-linked 

immunosorbent assay (ELISA), reverse transcription-

polymerase chain reaction, and immunohistochemistry. 

It has been reported that LTα levels are elevated in the 
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serum and the synovial tissue of patients with RA in 

comparison with the healthy controls or patients with 

osteoarthritis [6,46]. A relevant piece of evidence linking 

LTα to RA was provided by a case report describing an 

RA patient with no benefi cial clinical eff ect after therapy 

with infl iximab, a monoclonal antibody that specifi cally 

blocks TNFα. Interestingly, subsequent treatment of this 

patient with etanercept, a TNFR2-Fc fusion protein that 

also blocks LTα, resulted in clinical remission of the 

disease [8]. Th e diff erent ligand specifi cities of etanercept 

and infl iximab could account for the diff erent outcomes 

of this patient after both treatments. Increased LTα 

expression has been shown in the synovial tissue of this 

patient [8]. Th ese data, together with the biological 

similari ties between LTα and TNFα, suggest that resis-

tance to TNFα blockage may occur when TNFα is not the 

dominant infl ammatory cytokine and that LTα may play 

a role in the disease. An important advancement in the 

understanding of the participation of LTα in RA came 

from a study using the collagen-induced arthritis (CIA) 

mouse model, the most commonly used animal model 

for arthritis [47]. In this model, the blocking of LTα with 

a monoclonal antibody signifi cantly improved the disease 

[47]. Th e main mechanism responsible for this improve-

ment in the CIA model appears not to be the blocking of 

soluble LTα but the depletion of LTα expressing Th 1 and 

Figure 1. Proposed model for the action of lymphotoxin alpha (LTα) in rheumatoid arthritis (RA) fi broblast-like synoviocytes (FLSs). RA 

FLSs express all LTα receptors (TNFR1, TNFR2, and HVEM). TNFR1 contains a cytoplasmic death domain (DD). Although the specifi c contribution 

of each receptor for LTα signaling remains to be clarifi ed, RA FLSs are activated upon LTα binding through the phosphorylation of the mitogen-

activated protein kinases p38 and ERK1/2 and of the phosphatidylinositol 3-kinase (PI3K) Akt. Transcription factors such as nuclear factor-kappa-B 

(NF-κB), in turn, are activated. These events lead to cell responses involved in the pathogenesis of RA, such as proliferation, survival, and secretion 

of proinfl ammatory cytokines, chemokines, and matrix metalloproteinases (MMPs). Based on [48]. ERK, extracellular signal-regulated kinase; HVEM, 

herpesvirus entry mediator; IL, interleukin; JNK, c-jun N-terminal kinase; RANTES, regulated upon activation, normal T cell expressed and secreted; 

TNFR, tumor necrosis factor receptor.
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Th 17 cells [47]. Still, the anti-LTα antibody applied in this 

study also binds to soluble LTα and inhibits its binding to 

a TNFR2.Ig in a competition ELISA [47]. An example of a 

dual functionality of an antagonist in RA is the well-

established monoclonal antibody infl ixi mab, which binds 

specifi cally to TNFα. Besides blocking secreted TNFα, 

infl iximab can activate the complement cascade and 

deplete membrane-bound TNFα-expressing cells through 

a cytotoxic mechanism [18]. Recently, our group pro-

vided more evidence for a role of LTα in RA when we 

demon strated that LTα can trigger activation (that is, 

proliferation and induction of an infl ammatory and 

aggressive phenotype) of FLSs [48]. Th e mechanisms 

through which LTα activates FLSs are depicted in 

Figure 1, in a proposed model for the action of LTα in RA 

FLSs. To better evaluate the role of LTα in RA, our group 

analyzed LTα levels in whole sera, plasma, and synovial 

fl uid of patients with RA, patients with osteoarthritis, 

and healthy controls. We were unable detect LTα reliably 

with the commercially available ELISA kits in these 

samples. However, this does not mean LTα is not 

expressed locally in joints of patients with RA. While it 

would be interesting to detect circu lating LTα in synovial 

fl uid, it would be equally or even more important to 

obtain in situ evidence of LTα expres sion in arthritic 

tissue, where it might exert eff ects such as those we 

reported on synovial fi broblasts.

Conclusions

TNFα is known to play a crucial role in RA, but several 

other proinfl ammatory cytokines have been identifi ed to 

contribute to the disease as well [49]. LTα can easily be 

placed in the context of the RA synovium as it is secreted 

by CD4+ Th 1 cells, CD8+ T cells, NK cells, and macro-

phages, cell types that are increased in the arthritic joint. 

Th e fact that LTα activates RA FLSs and thus may contri-

bute to synovial hyperplasia suggests that LTα can also 

play a disease-promoting role in RA [48]. It will be 

important to further characterize the relevance of LTα in 

RA by detecting it in vivo in patients with RA.
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