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Résumé. In this paper we consider different entropy-based approaches to Pat-
tern Mining. We discuss how entropy on pattern sets can be defined and how it
can be incorporated into different stages of mining, from computing candidates
to interesting patterns to assessing quality of pattern sets.

1 Introduction

Information theory (IT) is now a widely used framework in Machine Learning (MD) and
Data Mining (DM). In this paper we give an overview on application of a fundamental concept
of IT, namely, entropy, in Pattern Mining (PM). PM takes an important place in Data Science,
and has many applications related to computing classes of patterns generated under specific
objectives (Aggarwal et Han, 2014). To apply PM methods under supervised settings (e.g.,
Subgroup Discovery, classification) one needs to use an objective that takes into account true
class labels. The objective of unsupervised ML problems deals with a pattern as a subset of
attributes and objects this pattern describes.

A generic objective of PM is to discover a small set of non-redundant and interesting pat-
terns that describe together a large portion of data and that can be easily interpreted. There are
two approaches to define pattern “interestingness”, namely, static and dynamic (Aggarwal et
Han, 2014). The static approaches envelop a large number of interestingness measures (Kuz-
netsov et Makhalova, 2018). The patterns are mined under non-changeable assumptions about
interestingness. For example, in frequent PM, one assumes that all the patterns with a support
greater than a minimum threshold are interesting. Usually, a set of discovered patterns is re-
dundant, i.e., it contains a lot of similar patterns. This problem is solved by post-processing
pruning. Apart of redundancy, the use of an interestingness measure is quite subjective and
most of the time it is not easy to provide explanation or justification about using one measure
w.r.t. some others.

In paper of (Aggarwal et Han, 2014), it is argued that instead of finding all the patterns
that satisfy some given constraints (the concern of static approachs) one should ask for a small
(easily interpretable) and non-redundant (with high diversity) set of interesting patterns. This
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is precisely what dynamic approaches are aimed at. A dynamic approach to PM implies ta-
king into account initial assumptions, e.g., background knowledge, and then adding gradually
patterns that “add some new knowledge” to the current pattern set. Most of existing dynamic
approaches (Vreeken et al., 2011; Siebes et Kersten, 2011; Smets et Vreeken, 2012) are based
on Minimum Description Length (MDL) principle (Grünwald, 2007) that is aimed at selecting
a pattern set that compresses a dataset at most.

Pattern mining is generally performed in two steps (i) computing a candidate pattern set,
a search space for interesting patterns, (ii) selection interesting ones. In (i), the search space
is restricted to frequent patterns (Vreeken et al., 2011), low-entropy sets (Heikinheimo et al.,
2009), a set where patterns ensure the maximal entropy (Mampaey et al., 2012), or other types
of patterns (Gallo et al., 2007). Step (ii) consists in selecting patterns that satisfy a chosen
criteria, i.e., an interestingness measure (static approaches) or a greedy strategy for extending
a pattern set by patterns that bring “something new” into the pattern set (dynamic approaches).

In this paper we discuss how entropy can be applied at every step of PM, namely, generating
candidates, mining itself, and assessing the quality of pattern sets.

The paper is organized as follows. In Section 2 we recall the main notions used in the paper.
In Section 3 we discuss how entropy can be incorporated in PM. In Section 4 we conclude and
give the direction of future work.

2 Basic notions
In this paper we consider transaction databases. Since any transactional database or catego-

rical dataset can be trivially converted into a binary dataset, in this paper we use binary datasets.
In transactional databases, patterns are also called itemsets. We present (closed) itemsets in the
framework of Formal Concept Analysis (Ganter et Wille, 1999).

2.1 Formal Concept Analysis

A formal context is a triple (G,M, I), where G = {g1, g2, ..., gn} is called a set objects,
M = {m1,m2, . . . ,mk} is called a set attributes and I ⊆ G×M is a relation called incidence
relation, i.e. (g,m) ∈ I if the object g has the attribute m. The derivation operators (·)′ are
defined for A ⊆ G and B ⊆M as follows :

A′ = {m ∈M | ∀g ∈ A : gIm} , B′ = {g ∈ G | ∀m ∈ B : gIm} .

A′ is the set of attributes common to all objects of A and B′ is the set of objects sharing all
attributes of B. An object g is said to contain a pattern (set of items) B ⊆ M if B ⊆ g′. The
double application of (·)′ is a closure operator. Sets A ⊆ G, B ⊆ M , such that A = A′′ and
B = B′′, are said to be closed.

A (formal) concept is a pair (A,B), where A ⊆ G, B ⊆ M and A′ = B, B′ = A. A
is called the (formal) extent and B is called the (formal) intent of the concept (A,B). The
support of an itemset I is defined as follows : sup(I) = |{g | g ∈ G, I ⊆ g′}|. An itemset I is
frequent with threshold q if sup(I) ≥ q. Formal concept has the twofold nature, since it can be
considered as a set of objects and attributes. We discuss in Section 3.3 that entropy that takes
into account this duality allows for computing pattern sets of better quality.
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In PM closed itemsets are of a big importance since (i) a closed itemset is a maximal set
that embodies all the patterns with the same frequency, (ii) a closed itemset provides a lossless
representation of these patterns.

2.2 Entropy and related notions
Entropy is a central notion of IT, where entropy or mutual information are used for as-

sessing data compression and transmission. The both notions are functions of the probability
distribution that underlies a describing process.

The entropy H(X) of a discrete random variable X is defined by

H(X) = −
∑
x∈X

p(x) log p(x).

In this paper we will use logarithms to the base 2, thus the entropy then is measured in bits.
The entropy is a measure of the average uncertainty in the random variable, i.e., the number of
bits required on the average to describe the random variable.

The mutual information (MI), as a measure of the dependence between two random va-
riables X and Y , is defined as

I(X,Y ) = I(Y,X) = H(X)−H(X|Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
,

where H(X|Y ) = −
∑

x∈X
∑

y∈Y p(x, y) log
p(x,y)
p(y) is a conditional entropy. MI is a special

case of relative entropy D(p||q) =
∑

x∈X p(x) log p(x)
q(x) , that is the “distance” between two

probability mass functions p and q. Relative entropy is not a true metric, it has some of the
metric properties, e.g., D(p||q) ≥ 0 and D(p||q) = 0 iif p = q. However, there exist entropy-
based distance measures (De Mántaras, 1991; Wang, 2012). The properties of entropy, MI can
be found in (Cover et Thomas, 2012).

3 Entropy in Pattern Mining
As it was mentioned above, a pattern can be considered not only a set of attributes, but also

as a set of objects it describes. Thus entropy in PM can be defined in several ways.

3.1 Object-based entropy
Considering patterns (itemsets) in terms of objects is more common under supervised set-

tings, where for all objects their class labels are available. For example, cross-entropy (Hastie
et al., 2002) is used for building decision trees. In the unsupervised settings entropy can be de-
fined in the similar way, i.e., H(X) = −pX log pX−(1−pX) log(1−pX), where pX = |X ′|.

To evaluate diversity of a pattern setX we introduce shattering matrix as a |G|×|X | binary
matrix induced by a set of columns {|X|′ | X ∈ X}. The (normalized) entropy of X is then
given by H(X ,D) = −

∑
r∈Q pr log(pr) (HN (X ,D) = −H(X ,D)/log |Q|), where Q is a

set of unique rows of the shattering matrix, pr = nr/|G|, nr is the support of row r ∈ Q. The
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t1 AB C
t2 B C DE
t3 DE
t4 A C D E
t5 A C

(a)

AC DE CDE BC
t1 × ×
t2 × × ×
t3 × ×
t4 × × ×
t5 ×

(b)

t1 AB C
t2 B C DE
t3 DE
t4 A C DE
t5 A C

(c)

X usage(X) P (X)
AC 3 3/8
DE 3 3/8
BC 1 1/8
B 1 1/8

(d)

FIG. 1 – A binary dataset (a) , a shattering matrix induces by closed itemsets of frequency at
least 2 (b), a covering by patterns AC, DE, BC and B (c), and the probability distribution
AC, DE, BC and B induced by the covering (d).

entropy H(X ,D) characterizes diversity of all possible groups of objects that can be induced
by combinations of patterns. The normalized entropy HN (X ,D) characterises “skewness” of
the frequency distribution of the obtained groups.

Example. Let us consider an example in Fig. 1. Entropy of the shattering matrix (b) for data-
setD (a) induced by patternsX = {AC,DE,CDE,BC} is H(X ,D) = −5 ·1/5 log(1/5) =
2.32, since all the rows in the shattering matrix are different.

It is clear to see thatQ is a partition of G. Let PART (G) be collection of partitions on G.
The function d : PART (G)×PART (G)→ R≥0 given by d(P,Q) = H(P|Q) +H(Q|P ),
where P,Q ∈ PART (G), is a metric on PART (G) (De Mántaras, 1991).

The object-based entropy of patterns can be defined differently. Let us consider a cover C of
binary datasetD by patterns X , where every object is covered by a set of disjoint patterns from
X . The loglikelihood of X w.r.t. cover C is defined as l(C) =

∑
x∈X usage(X) logP (X),

where usage(X) is frequency of X in C and probability of X is given by

P (X) =
usage(X)∑

X∗∈X usage(X∗)
. (1)

It follows directly from the formulas above that entropy of X under the given probability
distribution is related to the loglikelihood as follows : (

∑
X∈X usage(X)) ·H(X ) = −l(C).

Example. The entropy of the pattern set in Fig. 1 w.r.t. the probability distribution (d)
induced by a covering (c) is equal to H(X ) = −2 · (3/8 log 3/8 + 1/8 log 1/8) = 1.81.

In the supervised settings, a partition can be reformulated in terms of classification, i.e., the
rows of a shattering matrix correspond to classes of objects. That point of view gave raise to
normalized/expected mutual information and the adjusted Rand index (Vinh et al., 2009). Some
variations of these measures were proposed in (Vinh et al., 2010). In (Rosenberg et Hirschberg,
2007) it was proposed to assess homogeneity and completeness of classification (or clustering,
if the ground true is known) using conditional entropy of two labelings.

3.2 Attribute-based Approaches
Similarly to object-based entropy, we can define entropy on an attribute set M . Moreover,

the probability of singleton patterns m ∈ M (see Formula 1) can be used to define the length
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mP ({m}) lm
A 3/15 lA
B 2/15 lB
C 4/15 lC
D 3/15 lD
E 3/15 lE

(a)

X P (X) lX
AC 3/8 lAC

DE 3/8 lDE

BC 1/8 lBC

B 1/8 lB
(b)

t1 lAC + lB
t2 lBC + lDE

t3 lDE

t4 lAC + lDE

t5 lAC

(e) L(D|CT )

X length(X) lX
AC lA + lC lAC

DE lD + lE lDE

BC lB + lC lBC

B lB lB
(b) L(CT |D)

FIG. 2 – Patterns and encoding of a dataset from Fig. 1 : (a) singletons and their associated
code length lm = − logP ({m}) ; (b) a code table corresponding to covering given in Fig. 1,
(c) ; (c) encoding of dataset by patterns given in Fig. 2, (b) ; (d) encoding of patterns in the
code table.

of pattern X ⊆M under the Shannon code scheme as

length(X) = −
∑
m∈X

logP ({m}). (2)

3.3 Combined Entropy
In Sections 3.1 and 3.2 we considered different entropy-based approaches to assessing/mining

pattern sets. They are based either on object or attribute distributions. The modern methods
for PM are based on objectives that use the both entropy types (Vreeken et al., 2011; Siebes
et Kersten, 2011; Smets et Vreeken, 2012). All of them mine patterns under the Minimum
Description Length principle (Grünwald, 2007). The goal is to minimize the two-part descrip-
tion length L(D, CT ) = L(CT |D) + L(D|CT ), where CT is a two-column code table, that
contains patterns and their code lengths, and D is a binary dataset. The length of dataset D
encoded by patterns from CT is given by L(D|CT ) =

∑
X∈CT usage(X) · lX . The length of

CT is given by length of its right and left columns, i.e., L(CT |D) =
∑

X∈CT length(X)+lX ,
where length(X) is given in Formula 2 and lX = − logP (X), probability P (X) is compu-
ted by Formula 1. An example of encoding is s given in Fig. 2. The details on the presented
MDL-approach can be found in (Vreeken et al., 2011).

4 Conclusion
In this paper we consider how entropy can be incorporated in Pattern Mining for transac-

tional databases (categorical/binary datasets). The most successful approaches are based on the
combination of object- and attribute-based entropies (based on MDL principle).

One of the most challenging directions of future work is the adaptation of entropy-based
measures to numerical Pattern Mining.
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Summary
In this paper we consider different entropy-based approaches to Pattern Mining. We discuss

how entropy on pattern sets can be defined and how it can be incorporated into different stages
of mining, from computing candidates to interesting patterns to assessing quality of pattern
sets.


