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9 rue Charles Fourier, 91011 Evry, France

Abstract

Given an undirected edge weighted graph, the graph partitioning problem con-

sists in determining a partition of the node set of the graph into subsets of

prescribed sizes, so as to maximize the sum of the weights of the edges having

both endpoints in the same subset. We introduce a new class of bounds for

this problem relying on the full spectral information of the weighted adjacency

matrix A. The expression of these bounds involves the eigenvalues and partic-

ular geometrical parameters defined using the eigenvectors of A. A connection

is established between these parameters and the maximum cut problem. We

report computational results showing that the new bounds compare favorably

with previous bounds in the literature.
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1. Introduction

LetG = (V,E) be an undirected simple graph having node set V = {1, 2, . . . , n},

edge set E, and let w ∈ RE denote a weight function on the edges. Let k de-

note a positive integer, k < n, and m = (m1,m2, . . . ,mk)T denote a vector

of k positive integers satisfying
∑k
i=1mi = n and m1 ≥ m2 ≥ . . . ≥ mk. We

consider the problem denoted by Pkm which consists in determining a partition

of V into k subsets S1, S2, . . . , Sk of sizes m1,m2, . . . ,mk, respectively, so as

to maximize the sum of the weights of the edges having both endpoints in the

same subset of the partition. This NP-hard problem [17] has applications, e.g.

in microchip design [8, 25], computer program segmentation [12], the design of

power networks [19] and other layout problems [20]. Before presenting some

related work, we introduce some useful notation.

Given a positive integer q, let [q] denote the set of integers {1, 2, . . . , q}. Let

W = (wij)(i,j)∈[n]2 stand for the weighted adjacency matrix of G: Wij = wij

if ij ∈ E and Wij = 0 otherwise. Given two disjoint node subsets A,B, let

w[A,B] denote the sum of the weights of the edges having one endpoint in A

and the other in B:

w[A,B] =
∑

(i,j)∈A×B : ij∈E

wij .

Similarly, w[A] denotes the sum of the weights of the edges with both endpoints

in A:

w[A] =
∑

(i,j)∈A2 : ij∈E,i<j

wij .

Given any matrix M ∈ Rn×n, let λ1(M) ≥ λ2(M) ≥ . . . ≥ λn(M) denote its

eigenvalues in nonincreasing order. For the particular case when M = W , we

shall more simply use λi instead of λi(W ), for all i ∈ [n]. Also, let ν1, ν2, . . . , νn

stand for unit and pairwise orthogonal eigenvectors corresponding to the eigen-

values λ1, λ2, . . . , λn, respectively. Let Z∗ denote the optimal objective value of

Pkm.

Approaches used to solve Pkm and some of its variants include notably:

heuristics [18], linear programming (polyhedral combinatorics) [9, 10] and semidef-
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inite programming [1, 6, 13, 16, 21]. Alternatively, some research focused on

establishing bounds on Z∗ using eigenvalue-based techniques [14, 15, 23]. In

this paper we pursue further investigations along the eigenvalue-based line of

research. Before introducing our new results, we present related works from the

literature.

The following upper bound on Z∗ directly follows from Donath and Hoff-

man’s work [14].

Proposition 1.1. [14] Let U ∈ Rn×n denote any diagonal matrix such that the

sum of all the entries of W + U equals 0. Then the following inequality holds.

Z∗ ≤ w[V ] +
1

2

k∑
i=1

miλi(W + U). (1)

Let ~1n denote the n-dimensional all-ones vector and let L ∈ Rn×n stand for

the weighted Laplacian matrix of the graph G: L = Diag(W~1n)−W , where for

some given vector z ∈ Rn, Diag(z) stands for the diagonal matrix with order

n having vector z for diagonal. Taking for U the diagonal matrix with either

Uii = −2
n w[V ], for all i ∈ [n], or Uii = −

∑
j:ij∈E wij , for all i ∈ [n], we deduce

the next corollary which provides two upper bounds on Z∗ (none of them being

dominated by the other for all instances, see also Section 5).

Corollary 1.2.

Z∗ ≤ 1

2

k∑
i=1

miλi. (2)

Z∗ ≤ w[V ] +
1

2

k∑
i=1

miλi(−L). (3)

The problem Pkm can be formulated as the following binary quadratic pro-

gram (see, e.g. [23]), where the columns of the matrix variable X represent the

incidence vectors of the node subsets defining the partition.

(P )



Z∗ = max 1
2Trace(XTWX)

s.t. X~1k = ~1n,

XT~1n = m,

X ∈ {0, 1}n×k.
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Barnes et al. [3] present a heuristic to solve Pkm that is based on (P ). Their

method iteratively determines a set of nodes to interchange in order to improve

some current partition. This consists in solving a transportation problem that

is derived from (P ) by replacing the original quadratic objective by a linear

approximation whose expression depends on the current solution.

Rendl and Wolkowicz [23] reformulate the problem (P ) as an equivalent

mathematical program having a linear objective function to be optimized over

(n−1)×(k−1) orthogonal matrices satisfying some linear contraints. From this

reformulation, they are able to derive upper bounds on Z∗ involving the k − 1

largest eigenvalues of the matrix Ŵ = V TWV , where V is an n× (n−1) matrix

satisfying V TV = In−1 and V T~1n = 0. They also consider perturbations of the

main diagonal of W to improve bounds (see [23] for details).

In the statement of Pkn, removing the restrictions on the sizes of the node

subsets defining the partition and taking for the edge weights w′ij =−wij , for all

ij ∈ E, we obtain a problem equivalent to the maximum k-cut problem which

consists in partitioning the node set into k subsets (unrestricted w.r.t. their

sizes) so as to maximize the sum of the weights of the edges having their end-

points in different parts. For the case when k = 2, i.e., the so-called maximum

cut problem, a new class of bounds involving the whole spectral information

from the weighted adjacency matrix was introduced in [4, 5]. This approach

was generalized in [2] to the maximum k-cut problem, leading to some improve-

ments over other spectral bounds from the literature. In this paper, we are able

to extend this work and provide a new class of spectral bounds for Pkm.

The outline is as follows. In Section 2, we introduce a new class of bounds

for Pkn involving the whole spectrum of the weighted adjacency matrix. Then,

in Section 3, we consider more closely the computation of some geometrical pa-

rameters involved in the expression of the new bounds, establishing a connection

with a maximum cut problem. In Section 4, we present diagonal perturbations

which may lead to some improvements of the bounds. Finally, in Section 5, we

report some computational results, before we conclude in Section 6.
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2. Spectral bounds

With no loss of generality, we assume the graph G is complete (setting zero

weights on non existing edges). In what follows, the inner scalar product is

denoted by 〈·, ·〉, and the Euclidean norm by ‖ · ‖.

Let r ∈ R \ {1} and (i, j) ∈ [k] × [n]. Let Bi stand for the set of vectors

in {r, 1}n having exactly mi entries equal to the value r. Let di,j denote the

distance between Bi and the linear subspace lin(ν1, ν2, . . . , νj) that is generated

by the first j eigenvectors of W :

di,j = min {‖z − y‖ : z ∈ Bi, y ∈ lin (ν1, ν2, . . . , νj)} . (4)

Theorem 2.1. Let r ∈ R \ {1}. Then, the following inequality holds:

Z∗ ≤ 1

2(r − 1)2

λ1n
(
k + r2 − 1

)
− 2w[V ](2r + k − 2) +

∑
l∈[n−1]

(λl+1 − λl)

∑
i∈[k]

d2i,l


(5)

Proof. Let (V1, V2, . . . , Vk) denote a partition of V corresponding to an optimal

solution of Pkm.

For all i ∈ [k], let the vector yi ∈ {r, 1}n be defined as follows: yil = r if

l ∈ Vi and 1 otherwise. We have:

〈yi,Wyi〉 = 2r2w[Vi] + 2
∑
j∈[k]\{i} w[Vj ] + 2r

∑
j∈[k]\{i} w[Vi, Vj ]+

2
∑

(j,l)∈([k]\{i})2 :
j<l

w[Vj , Vl].
(6)

Let us now compute the sum of each term occurring in the right-hand-side of

(6) over all i ∈ [k].∑
i∈[k] 2r2w[Vi] = 2r2Z∗,∑
i∈[k] 2

∑
j∈[k]\{i} w[Vj ] = 2 (k − 1)Z∗,∑

i∈[k] 2r
∑
j∈[k]\{i} w[Vi, Vj ] = 4r(w[V ]− Z∗),∑

i∈[k] 2
∑

(j,l)∈([k]\{i})2 :
j<l

w[Vj , Vl] = 2(k − 2)(w[V ]− Z∗).

Thus, we deduce∑
i∈[k]

〈yi,Wyi〉 = 2Z∗(r2 − 2r + 1) + 2w[V ](2r + k − 2). (7)
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We now derive an upper bound on 〈yi,Wyi〉 making use of the spectrum of

W . Before this, we mention some preliminary properties. Note that since W

is symmetric we may assume (ν1, ν2, . . . , νn) forms an orthonormal basis, and

consider the expression of yi in this basis: yi =
∑
l∈[n] αlνl with α ∈ Rn. Then,

we have ‖yi‖2 =
∑
l∈[n] α

2
l = n+mi(r

2 − 1), which gives

〈yi,Wyi〉 =
∑
l∈[n] λlα

2
l

= λ1
(
n+mi(r

2 − 1)−
∑n
l=2 α

2
l

)
+
∑n
l=2 λlα

2
l

= λ1
(
n+mi(r

2 − 1)
)

+
∑n
l=2 (λl − λ1)α2

l .

From the definition of the distance defined above we deduce d2i,j ≤
∑n
l=j+1 α

2
l ,∀j ∈

[n − 1]. Iteratively making use of the inequality α2
j ≥ d2i,j−1 −

∑n
l=j+1 α

2
l for

j = 2, . . . , n, we obtain

〈yi,Wyi〉 ≤ λ1
(
n+mi(r

2 − 1)
)

+
∑

l∈[n−1]

(λl+1 − λl)d2i,l.

Summing these inequalities for all i ∈ [k], we get

∑
i∈[k]

〈yi,Wyi〉 ≤ λ1n
(
k + r2 − 1

)
+

∑
l∈[n−1]

(λl+1 − λl)

∑
i∈[k]

d2i,l

. (8)

Finally, combining (7) and (8), the result follows.

Remark Enforcing the value ‘1’ among the two possible values for the com-

ponents of the vectors used in the definition of the distances (4) is done just

to slightly simplify the presentation. We are basically interested in the dis-

tance between lin(ν1, ν2, . . . , νj) and a set of vectors whose components are

restricted to take any of two distinct values and must satisfy some cardinal-

ity constraints on the number of occurrences of each value. If we denote by

dj,r1,r2 the distance between lin(ν1, ν2, . . . , νj) and the set of vectors {r1, r2}n

with (r1, r2) ∈ (R \ {0})×R, then dj,r1,r2 = |r1|dj, r2r1 , for all j ∈ [n], and the

results we get by using such vectors are equivalent to the ones presented.

Note that all the terms occurring in the last sum of the inequality (5) are

nonpositive, so that removing from the right-hand side some or all of the terms
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involved in this sum, the expression obtained still provides an upper bound on

Z∗, generally weaker than (5), but easier to compute (see Section 3).

The bound (5) on Z∗ also raises the problem which consists in determining

the best value of the parameter r (i.e., the one minimizing the right-hand side

of (5)). Presently, we do not have a general answer for the latter. However, if

we consider the following upper bound, obtained from (5) by removing the last

term (i.e., the sum over l ∈ [n− 1]),

Z∗ ≤ 1

2(r − 1)2
[
λ1n

(
k + r2 − 1

)
− 2w[V ](2r + k − 2)

]
, (9)

then, one can easily show that the best value for r is r = 1 − k. From the

computational results reported in Section 5, this seems to be a fairly robust

choice.

3. On computing distances

Generally, computing the distances (di,j) is NP-hard. In fact, even fixing

r = −1, k = 2 and taking m1 = m2 = n
2 , the decision problem associated with

the problem that consists in determining the single distance d1,n−1(= d2,n−1)

(for arbitrary vectors ν1, ν2, . . . , νn given as input) is NP-complete. This can

be shown similarly to the proof of Proposition 4.4 in [4], by reduction from the

partition problem with an added cardinality constraint (see [17, p. 223]).

In constrast with this, we show in this section that the distances (di,1)i∈[k]

are easy to compute, providing simple closed form expressions for the case of

uniform partitions in regular graphs and unit weights. Then, (in Section 3.2),

we establish connections between the distance problem (4) and a cardinality

constrained maximum cut problem. This will be used in experiments to be

described later.

3.1. A particular case: distances of the form di,1

In this section we present a case when distances can be computed efficiently:

the distances of the form di,1.
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Proposition 3.1. Let i ∈ [k] and define I1 (I2) as the set of indices in [n]

corresponding to the mi smallest (resp. largest) entries of the vector ν1. For

j = 1, 2, let wj ∈ Bi be defined as follows: wjl = r if l ∈ Ij, and 1 otherwise.

Then d2i,1 = n+mi(r
2 − 1)−maxj=1,2

〈
wj , ν1

〉2
.

Proof. Let z denote any vector in Bi and d stand for the distance between z

and lin(ν1). We have

‖z‖2 = mir
2 + n−mi = 〈ν1, z〉2 + d2,

where the second equation follows from the expression of z in an orthonormal

basis of eigenvectors. Since d is minimized when |〈ν1, z〉| is maximum, the result

follows.

If G is a connected d-regular graph with unit weights, then the largest eigen-

value of W is d with multiplicity 1 and it is associated with the eigenvector

corresponding to the all-ones vector. From Proposition 3.1, we can derive the

following closed form expression of the squared distances (d2i,1)i∈[k] for that case.

Corollary 3.2. If G is a connected d-regular graph with unit weights, then,

d2i,1 = mi

(
1− mi

n

)
(r − 1)2, for all i ∈ [k].

The next proposition considers the more particular case of uniform partitions

in complete graphs and establishes connections with other bounds from the

literature.

Proposition 3.3. For the case of complete graphs with unit edge weights and

uniform partitions (i.e., m1 = m2 = . . . = mk = n
k , assuming n is a multiple

of k), the spectral upper bound (5) has value n(n−k)
2k , for any r 6= 1. And this

coincides with the upper bounds (2) and (3) introduced before.

Proof. From Corollary 3.2, we deduce d2i,1 = n
k

(
1− 1

k

)
(r − 1)2, for all i ∈ [k].

Using this and substituting in formula (5), leads to the first result. We now prove

that the spectral bound (5) coincides with the upper bounds given by (2) and (3)

for the given particular case. For any b-regular graph we have λi(−L) = λi − b,
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where λi(−L) denotes the i-th largest eigenvalue of the opposite of the Laplacian

matrix. Also, since G is complete with unit weights, we have λ1 = n − 1 and

λi = −1, for all i ∈ {2, 3, . . . , n}. Using in addition mi = n
k , for all i ∈ [k] in

formulae (2) and (3), the assertion follows.

3.2. Reducing the computation of distances to maximum cut problems

The squared distance d2i,j can be expressed as follows: d2i,j = n + mi(r
2 −

1)− Z∗D0, where Z∗D0 stands for the optimal objective value of

(D0)


Z∗D0 = max zTV V T z

s.t.
∑n
l=1 zl = n+mi(r − 1),

z ∈ {1, r}n,

where V ∈ Rn×j stands for the matrix whose k-th column corresponds to the

k-th eigenvector νk of W . Let us now convert (D0) into an equivalent quadratic

optimization problem with variables taking values in {−1, 1}. To do so, consider

the following change of variables:

y =
2

1− r

(
z −

(
1

2
+
r

2

)
~1n

)
⇐⇒ z =

1− r
2

y +

(
1 + r

2

)
~1n.

Then, problem (D0) becomes

(D1)


max a2yTMy + 2ayTMb+ bTMb

s.t.
∑n
l=1 yl = n− 2mi,

y ∈ {−1, 1}n,

with M = V V T , a = 1−r
2 , b =

(
1+r
2

)
~1n. Problem (D1) is equivalent to the

following problem

(D2)



max −uTQu

s.t. u0 = 1,∑n
l=1 ul = n− 2mi,

u = (u0, u1, . . . , un)T ∈ {−1, 1}n+1,
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where Q is the symmetric matrix of order n+ 1 having rows and columns in-

dexed by 0, 1, . . . , n, and defined by
Q00 = 0,

Q0l = Ql0 = −abTMel, l ∈ [n],

Qlm = −a2Mlm, (l,m) ∈ [n]2,

where el stands for the l-th unit vector in dimension n. Problem (D2) can be

seen to be equivalent to a maximum cut problem. Consider a complete graph

G = (V,E) of order n + 1, with node set V = {0, 1, . . . , n} and edge weights

wlm = Qlm, lm ∈ E. Given a node subset S ⊆ V , let δ(S) denote the cut

defined by S, i.e., the set of all edges in G having exactly one endpoint in S.

Then, the problem which consists in finding a maximum weight cut δ(S) in G

such that 0 ∈ S and |S \ {0}| = n−mi can be formulated as follows

(D2)



max 1
4

(
Qtot − uTQu

)
s.t. u0 = 1,∑n

l=1 ul = n− 2mi,

u = (u0, u1, . . . , un)T ∈ {−1, 1}n+1,

with Qtot =
∑n
l=0

∑n
m=0Qlm. This is clearly equivalent to (D2).

This connection with the maximum cut problem provides us with a possi-

ble approach in order to compute the distances (in particular for dealing with

graphs for which n > 20, otherwise all the distances may be computed in a few

seconds by brute enumeration of integer vectors). Indeed, a branch-and-bound

algorithm making use of the following semidefinite program (a relaxation of

(D2) strengthened with a cardinality constraint) may be designed.

max 1
4 (Qtot − Trace(QX))

s.t. Xll = 1, l ∈ {0, 1, . . . , n}∑n
l=1X0l = n− 2mi,∑
1≤l<m≤nXlm = 2

(
n
2 −mi

)2 − n
2 ,

X � 0,

X ∈ R(n+1)×(n+1),
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where the constraint X � 0 means that the matrix X is symmetric and positive

semidefinite. The formulation can be strengthened with the triangle inequalities

and solved by a bundle algorithm, following the approach by Rendl et al. [22].

An important point to be stressed w.r.t. computation times, is that, differently

from the experiments reported in [22], the weights are no longer integral in our

case. So we cannot conclude with optimality at some node of the branch-and-cut

tree as soon as the gap between the upper bound stemming from the relaxation,

and some known lower bound is strictly less than one. But we shall rather make

use of some precision parameter given as input.

4. Diagonal perturbations

Observe that the upper bound (5) still holds if we modify the diagonal entries

of W in such a way that their sum equals 0. Also, the ”truncated bound”

Z∗ ≤ 1

2(r − 1)2
[
λ1n

(
k + r2 − 1

)
− 2w[V ](2r + k − 2)

]
,

which is derived from (5), may suggest to proceed to a modification of the

diagonal entries of W so as to minimize the maximum eigenvalue of the resulting

matrix. Consider then the following problem.

(P0)



min −
∑n
l=1 zll + λn

s.t. zlm = wlm, l 6= m,

λI − Z � 0,

Z ∈ Rn×n, λ ∈ R.

In formulation (P0), the matrix Z corresponds to W with possibly nonzero

diagonal entries. Observe that in any optimal solution (Z∗, λ∗) of (P0), λ∗

always coincides with the maximum eigenvalue of Z∗ and (P0) always admits

an optimal solution (Z∗, λ∗) such that
∑n
l=1 z

∗
ll = 0. (Indeed, if (Ẑ, λ̂) is an

optimal solution of (P0) with σ =
∑n
l=1 ẑll 6= 0, then (Z ′, λ′) = (Ẑ − σ

nI, λ̂−
σ
n )

is another optimal solution and the trace of Z ′ equals 0.) So by solving (P0)

we can obtain diagonal entries for the matrix W summing up to zero and such
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that the maximum eigenvalue of the resulting matrix is minimized. Setting

X = λI − Z, an optimal solution of problem (P0) can be obtained by solving

(P1)



min Trace(X)

s.t. xlm = −wlm, l 6= m,

X � 0,

X ∈ Rn×n.

More precisely, if X∗ is an optimal solution of (P1), then an optimal solution of

(P0) is given by (σ
∗

n I −X
∗, σ

∗

n ), where σ∗ =
∑n
l=1 x

∗
ll. In the next section we

will illustrate the impact of such diagonal perturbations on the quality of the

resulting bounds.

5. Computational experiments

In this section, after we describe the practical setting, we report computa-

tional results. First, we study the impact of the parameterizations on the new

bounds. We then consider in more detail the computation of bounds for an

instance (uniform bisection) taken from the literature. Lastly, we report results

on non-uniform partitions.

5.1. Practical setting

All the computational experiments were performed on a laptop using a pro-

cessor Intel Core i7-2640M CPU @ 2.80GHz x 4, 7.7 Gio RAM. Our implemen-

tation is in C language. The SDPs were solved by CSDP [7]. The graphs used

in our experiments are as follows, where d stands for a real value in [0, 1].

• A1, A2: they correspond to the graphs given in Tables 2 and 3 p.425 from

[14], respectively.

• Cn: the cycle with n nodes.

• Kn: the complete graph with n nodes.
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• Pi(n, d): a planar graph of order n, with density parameter d ∈ [0, 1]

randomly generated using rudy [24] (so that the number of edges is about

3(n − 2)d. Recall that the maximum number of edges of a planar graph

with order n greater than 2 is 3(n − 2)) . The index i is an integer to

identify a particular graph instance of this type.

• Ri(n, p): a random graph with order n and density parameter d (so that

the number of edges is about n(n−1)
2 d) generated using rudy [24]. The

index i stands for an identifier for a particular graph instance of this type.

The notation “(W )” close to the name of an instance means that it is edge-

weighted, the weights being uniformly and randomly generated in [−100, 100],

otherwise all the edge weights have value one. (We indicate in Appendix A the

input data to generate the instances different from A1 and A2 with rudy [24].)

The upper bounds (2) and (3) are denoted by ubA and ubL, respectively. The

upper bounds (5) is denoted by ubS if the original matrix is used and by ubSD

if a diagonal perturbation is performed (as described in Section 4).

5.2. The incidence of the parameter r and diagonal perturbations

We report in Table 1 the results obtained on randomly generated instances

for the case of uniform 4-partitions. Results on the same instances but for

the case of uniform bipartition are deferred in Appendix B. Considering val-

ues in the set {−k + 0.1q : q ∈ {0, 1, . . . , 20}} for r, the one leading to the best

bound, denoted by rbest in what follows, was always equal to 1 − k = −1 for

the case of uniform bipartition (so that we do not report it in Table B.4). This

contrasts with the results obtained for uniform 4-partitions where some (mod-

erate) improvements may be obtained for some values different from but close

to 1 − k. It is also worth noting that diagonal perturbations may not lead to

an improvement of the bound obtained without such perturbation. In fact, in

our experiments, it appears that using diagonal perturbations tends to provide

better results than the case of no perturbation on instances with random edge

weights. A still open question the results suggest is whether there could be

13



some way to determine a priori (i.e., just from the weighted adjacency matrix

and possibly its spectrum) whether using diagonal perturbations is the better

choice.

Table 1: Upper bounds on Z∗ for k = 4,m1 = m2 = m3 = m4 = 5

Instance |V | |E| ubA ubL ubS ubS ubSD ubSD

(r = 1− k) (rbest) (r = 1− k) (rbest)

A1 20 55 35.35 40.35 34.08 34.08 (−3.0) 38.74 38.74 (−3.0)

A2 20 51 32.84 40.74 32.64 32.47 (−2.9) 37.05 37.05 (−3.0)

C20 20 20 18.55 18.55 16.06 16.06 (−3.1) 16.06 16.06 (−3.0)

C20 (W ) 20 20 1179.99 1860.82 932.94 930.79 (−3.1) 920.43 920.43 (−3.0)

K20 20 190 40 40 40 40 (−3.0) 40 40 (−3.0)

K20 (W ) 20 190 3809.81 4544.49 2479.79 2473.85 (−2.8) 2389.11 2365.44 (−2.5)

P1(20, .7) 20 37 28.68 31.58 28.94 27.64 (−2.5) 30.33 30.33 (−3.0)

P2(20, .7) 20 37 30.81 32.32 30.53 29.53 (−2.5) 30.82 30.82 (−3.0)

P3(20, .7) (W ) 20 37 1622.79 2146.92 1520.15 1442.44 (−2.0) 1055.98 1048.58 (−3.3)

P4(20, .7) (W ) 20 37 1695.25 2040.50 1130.09 1129.40 (−3.1) 957.31 951.54 (−2.5)

P5(20, .9) 20 48 36.05 38.78 35.86 35.48 (−2.7) 37.80 37.80 (−3.0)

P6(20, .9) 20 48 35.08 38.58 34.35 32.79 (−2.4) 36.06 36.06 (−3.0)

P7(20, .9) (W ) 20 48 1714.06 2092.61 1096.65 1096.57 (−2.9) 899.48 888.52 (−2.6)

P8(20, .9) (W ) 20 48 1839.05 2200.52 1521.58 1500.01 (−2.4) 1263.41 1263.41 (−3.0)

R1(20, .25) 20 48 31.03 39.86 29.58 29.19 (−3.3) 34.47 34.47 (−3.0)

R2(20, .25) 20 48 30.47 39.96 30.13 30.13 (−3.0) 34.11 34.11 (−3.7)

R3(20, .25) (W ) 20 48 1771.31 2451.06 1463.36 1439.70 (−2.2) 1214.02 1210.14 (−3.3)

R4(20, .25) (W ) 20 48 1948.73 2727.36 1331.97 1318.41 (−2.6) 1233.05 1230.85 (−2.5)

R5(20, .5) 20 95 45.59 55.27 43.05 42.97 (−3.1) 50.60 50.60 (−3.0)

R6(20, .5) 20 95 42.86 57.29 41.00 40.91 (−3.1) 51.52 51.52 (−3.0)

R7(20, .5) (W ) 20 95 2360.04 3473.43 1914.83 1873.89 (−4.0) 1692.45 1690.44 (−2.6)

R8(20, .5) (W ) 20 95 2635.78 3627.60 2022.28 2022.28 (−3.0) 1810.00 1806.71 (−3.2)

R9(20, .8) 20 152 53.37 63.31 50.56 50.45 (−3.1) 57.47 57.47 (−3.0)

R10(20, .8) 20 152 53.03 67.32 51.70 51.50 (−3.1) 62.09 62.09 (−3.0)

R11(20, .8) (W ) 20 152 3133.83 4114.32 2543.88 2483.59 (−4.0) 2270.22 2263.82 (−2.8)

R12(20, .8) (W ) 20 152 3293.73 4560.00 2258.13 2253.70 (−3.2) 2229.71 2228.03 (−2.9)

14



Another point that we investigated is: What is the impact of diagonal per-

turbations on the contribution of each term of the last sum in (5)? This is of

interest with respect to “truncated” versions of the bound (5), but also in view

of the fact that computing all the distances involved in the bounds is difficult

in general. Knowing a priori the most important terms in the last sum of (5),

some potentially interesting approximations of this bound can be obtained by

computing a limited number of terms. In Figure 1, we represent the percentage

of the quantity

(λq+1 − λq)
(∑

i∈[k] d
2
i,q

)
∑
l∈[n−1](λl+1 − λl)

(∑
i∈[k] d

2
i,l

) ,
for each q ∈ [n−1] (horizontal axis) for the instances K20 (W ) (on the left) and

P (20, .7) (W ) (on the right) for the case of uniform 4-partitions. It illustrates

the relevant terms (and thus also the relevant spectral information) for comput-

ing the bounds before (black bars) and after (gray bars) diagonal perturbations.

From the experiments that we could carry out so far, when improvements are

obtained by perturbing the diagonal, we tend to observe a decrease of the con-

tribution of the first terms. In particular, for the second example illustrated,

the contribution of the first term of the sum in the bound (5) becomes zero after

diagonal perturbation, whereas it has the largest one before this modification.

Figure 1: The incidence of diagonal perturbations on the terms of the bound (5)
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5.3. Some detailed performance on an instance from the literature

We now illustrate the performance of spectral bounds for the graph taken

from [11, p. 67]. It is a 40-node and 3-regular graph. In addition to providing us

with a comparison between the quality of the bounds obtained using a truncation

of (5) and those from [23], the reported results give some indication on the

computational effort to determine the distances involved in (5).

Bounds are computed for the case k = 2, m1 = m2 = 20. In Table 2, we

mention the value of the bound (5) truncated to the first q terms in the last sum

(the ones involving the distances di,1, . . . , di,q for i = 1, 2). The diagonal of the

weight matrix is perturbed as mentioned in Section 4. It is denoted by ubSDq.

We also report the total time needed to compute these bounds (in seconds)

and set a time limit of one hour: at some iteration q the computation of the

distance di,q only starts if the current total computation time is less than this

limit; but after it has started to compute it, we let it proceed until the distance

is computed (hence some times reported exceed this limit). In addition, close to

the time we indicate (in brackets) the number of nodes explored in the branch

and bound algorithm to compute the distance di,q (see Section 3). Similarly to

[23] we consider three variants of the uniform bisection problem for this graph:

one with unit weights (V 1), and two others V 2, V 3 corresponding the structure

of the edge weights C1 and C2 described in [11, p. 67], respectively. ubSDq

stands for the bound (5) truncated to the first q terms in the last sum and the

notation “-” indicates that the time limit was exceeded. The optimal objective

values for V 1, V 2 and V 3 are 54, 297 and 322, respectively. The best bounds

reported in [23] for these instances are 57.35, 307.10 and 330.42, respectively.

So, for all the three cases the spectral bound (5) with modified diagonal entries

leads to better results, even when truncated to the first ten terms of the last

sum.

Another feature we observe in our experiments is the increase of the com-

putational effort to compute the distances di,j for an increasing index i. Given

some limited amount of time to compute “truncated bounds”, this suggests (as

done in the experiments described above) to compute the terms of the last sum

16



Table 2: Upper bounds on Z∗ with diagonal perturbation

V 1 V 2 V 3

q ubSDq Time ubSDq Time ubSDq Time

0 60.00 0.01 316.00 0.01 341.00 0.01

1 58.61 0.01 310.09 0.01 334.21 0.01

2 58.18 0.09 (3) 308.86 0.02 (1) 332.50 0.04 (1)

3 57.98 2.58 (3) 308.41 0.50 (1) 331.69 3.71 (3)

4 57.73 3.34 (1) 307.34 0.96 (1) 330.81 4.69 (3)

5 57.44 11.80 (7) 307.03 3.75 (7) 330.58 5.04 (1)

6 57.36 22.29 (15) 306.81 5.96 (3) 330.19 6.30 (3)

7 56.92 43.75 (29) 306.15 42.25 (99) 329.35 14.87 (13)

8 56.79 117.49 (219) 305.38 92.34 (155) 328.82 21.33 (19)

9 56.69 311.35 (521) 304.35 177.97 (285) 328.69 36.38 (59)

10 56.60 419.19 (339) 304.16 261.83 (303) 328.46 50.83 (55)

11 56.45 587.42 (599) 303.96 357.52 (373) 328.14 96.73 (159)

12 56.39 902.71 (1211) 303.68 468.59 (457) 327.78 136.14 (171)

13 56.29 1319.13 (1823) 303.59 620.71 (709) 327.48 170.21 (199)

14 56.25 1736.12 (2081) 303.28 868.43 (1237) 327.19 246.18 (375)

15 56.22 2458.07 (3585) 302.97 1263.15 (1849) 327.10 350.17 (551)

16 56.15 3821.50 (6931) 302.76 1614.51 (2023) 326.87 465.41 (699)

17 - - 302.45 2077.00 (3137) 326.83 536.21 (599)

18 - - 302.13 2695.19 (4147) 326.72 767.60 (1787)

19 - - 302.05 3183.48 (3509) 326.38 1203.90 (4075)

20 - - 301.83 4295.62 (9049) 326.18 1720.67 (4591)

21 - - - - 326.01 2389.04 (6583)

22 - - - - 325.96 3725.91 (13131)
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in (5) for an increasing index i.

5.4. Experiments for non-uniform partitions

In order to get some idea of the quality of the bounds (5) for non-uniform

partitions, we now consider partitioning the graph A2 into two blocks of un-

equal sizes: m1 and 20-m1, for comparison with the spectral bounds from

[23] (see Table 8 in this reference). The results are given in Table 3 making

use of the following additional notation: RW1 stands for the upper bound

given by Corollary 4.3 in [23], and RW2 for the one given by Theorem 5.1

in [23]. Among the tested values for the parameter r for computing ubS,

({r = −2 + 0.1q : q ∈ {0, 1, . . . , 20}}), the best one, leading to the given results,

was always equal to 1−k = −1. Among the different upper bounds ubSD dom-

inates all the others for these evaluations. This raises the question of whether

a dominance relation exists, in particular between the bounds ubSD and RW1

or RW2, at least for some families of instances. This is left for future research.

Another feature the results display is an increasing relative gap of the bound

ubSD (i.e., the quantity ubSD−Z∗

Z∗ ) when the difference between the sizes of the

two blocks increases.

Table 3: Upper bounds on Z∗ for non-uniform bipartitions and unit weights

m1 Z∗ ubA ubL RW1 [23] RW2 [23] ubS ubSD

19 50 58.98 50.57 55.71 50.14 50.09 50.01

17 46 56.07 49.72 53.20 48.82 48.09 46.86

15 42 53.17 48.86 49.41 47.80 45.55 44.02

13 40 50.26 48.01 45.87 47.11 43.15 41.93

11 38 47.35 47.16 43.10 46.77 41.26 40.50

6. Conclusion

In this paper we introduced a new class of bounds for graph partitioning.

Their expression involves the eigenvalues and eigenvectors of the weighted ad-
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jacency matrix. Computational experiments on small instances show they com-

pare well with other bounds from the literature. Computational experiments

on larger instances are under work. Future research will focus on the design of

a heuristic relying on these bounds in order to compute good-quality solutions

and lower bounds.
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Appendix A. Input data to generate the test graphs with “rudy”

Instance Command line

C20 rudy -circuit 20

C20 (W ) rudy -circuit 20 -random -100 100 4001

K20 rudy -clique 20

K20 (W ) rudy -clique 20 -random -100 100 2001

P1(20, .7) rudy -planar 20 70 1001

P2(20, .7) rudy -planar 20 70 2001

P3(20, .7) (W ) rudy -planar 20 70 1001 -random -100 100 1001

P4(20, .7) (W ) rudy -planar 20 70 2001 -random -100 100 2001

P5(20, .9) rudy -planar 20 90 3001

P6(20, .9) rudy -planar 20 90 4001

P7(20, .9) (W ) rudy -planar 20 90 3001 -random -100 100 3001

P8(20, .9) (W ) rudy -planar 20 90 4001 -random -100 100 4001

R1(20, .25) rudy -rnd graph 20 25 1001

R2(20, .25) rudy -rnd graph 20 25 2001

R3(20, .25) (W ) rudy -rnd graph 20 25 1001 -random -100 100 1001

R4(20, .25) (W ) rudy -rnd graph 20 25 2001 -random -100 100 2001

R5(20, .5) rudy -rnd graph 20 50 1002

R6(20, .5) rudy -rnd graph 20 50 2002

R7(20, .5) (W ) rudy -rnd graph 20 50 1002 -random -100 100 1002

R8(20, .5) (W ) rudy -rnd graph 20 50 2002 -random -100 100 2002

R9(20, .8) rudy -rnd graph 20 80 1003

R10(20, .8) rudy -rnd graph 20 80 2003

R11(20, .8) (W ) rudy -rnd graph 20 80 1003 -random -100 100 1003

R12(20, .8) (W ) rudy -rnd graph 20 80 2003 -random -100 100 2003
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Appendix B. Computational results on uniform bipartitions

Table B.4: Upper bounds on Z∗ for k = 2, m1 = m2 = 10

Instance |V | |E| ubA ubL ubS ubSD

(r = 1− k) (r = 1− k)

A1 20 55 47.13 48.16 43.62 43.50

A2 20 51 45.90 46.73 40.04 39.82

C20 20 20 19.51 19.51 18.40 18.40

C20 (W ) 20 20 1226.39 2270.83 851.53 848.11

K20 20 190 90.00 90.00 90.00 90.00

K20 (W ) 20 190 4514.77 5565.12 1757.62 1713.28

P1(20, .7) 20 37 37.54 34.30 31.16 30.79

P2(20, .7) 20 37 39.27 34.761 32.00 31.34

P3(20, .7) (W ) 20 37 2046.91 2475.91 1099.56 926.41

P4(20, .7) (W ) 20 37 1988.21 2433.07 691.89 634.12

P5(20, .9) 20 48 48.70 44.63 41.83 41.13

P6(20, .9) 20 48 46.85 42.61 38.60 38.51

P7(20, .9) (W ) 20 48 1957.74 2653.26 570.84 517.17

P8(20, .9) (W ) 20 48 2253.33 2483.39 1329.64 1204.09

R1(20, .25) 20 48 41.06 44.03 36.04 36.79

R2(20, .25) 20 48 42.52 48.00 36.68 36.96

R3(20, .25) (W ) 20 48 2130.71 2795.79 1111.41 1021.17

R4(20, .25) (W ) 20 48 2261.75 3390.18 942.82 889.35

R5(20, .5) 20 95 66.18 73.22 62.28 64.46

R6(20, .5) 20 95 63.34 81.26 59.94 62.54

R7(20, .5) (W ) 20 95 2864.42 4246.53 1382.00 1239.73

R8(20, .5) (W ) 20 95 3278.15 4714.09 1559.22 1462.65

R9(20, .8) 20 152 89.23 97.25 86.15 88.39

R10(20, .8) 20 152 89.61 98.99 85.62 87.46

R11(20, .8) (W ) 20 152 3663.43 4903.61 1951.99 1810.17

R12(20, .8) (W ) 20 152 3737.65 4966.83 1856.24 1736.67
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