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Abstract. Graphical Event Models (GEMs) can approximate any smooth
multivariate temporal point processes and can be used for capturing the
dynamics of events occurring in continuous time for applications with
event logs like web logs or gene expression data. In this paper, we propose
a multi-task transfer learning algorithm for Timescale GEMs (TGEMs):
the aim is to learn the set of k models given k corresponding datasets
from k distinct but related tasks. The goal of our algorithm is to find
the set of models with the maximal posterior probability. The procedure
encourages the learned structures to become similar and simultaneously
modifies the structures in order to avoid local minima. Our algorithm is
inspired from an universal consistent algorithm for TGEM learning that
retrieves both qualitative and quantitative dependencies from event logs.
We show on a toy example that our algorithm could help to learn related
tasks even with limited data.

Keywords: Graphical Event Model (GEM), Transfer Learning, Multi-
task Learning (MTL), Multivariate temporal point process, Process Min-
ing

1 Introduction

While probabilistic graphical models such as Dynamic Bayesian Networks [5, 7]
allow modeling of temporal dependencies in discrete time, some recent works
are dedicated to modeling continuous time processes, with for instance, Contin-
uous Time Bayesian Networks [10], Poisson Networks [12], Conjoint Piecewise-
Constant Conditional Intensity Models [11].

In [6], Gunawardana and Meek have introduced Graphical Event Models
(GEMs) that generalize such models, and Timescale GEM (TGEMs) which are
GEMs where the temporal range and granularity of each temporal dependency
is made explicit. TGEMs provide a way to understand temporal relationships
between some variables, through a graph whose nodes are those variables and
whose edges are the dependencies between them. In the case that the observed
phenomena is a sequence of events, we can call it a process, so nodes are events
and an edge between nodei and nodej means that the appearance of eventi has
some influence on the occurrence frequency of eventj .
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In the same work, they have proposed an asymptotically consistent greedy
algorithm to learn the structure and parameters of one single TGEM from an
event log file. However, one may want to learn multiple processes that might be
close. In order to complete this goal, multi-task transfer learning [3] is useful
since it allows to learn k related models from k corresponding data sets.

In this paper, we propose an algorithm for transfer learning with TGEM,
to allow simultaneous Multi Task Learning (MTL), inspired from Niculescu’s
method for MTL [8, 9] with Bayesian Networks. Section 2 is a recall of the back-
ground elements useful afterwards, which include Timescale Graphical Event
Models definition and current learning methods. Section 3 explains the global
strategy used for learning multiple TGEMs, and proposes a method for likeli-
hood and prior calculation in order to find the k structures that maximize the
posterior probability of the structures given the data. Finally, a toy example in
Section 4 illustrates the interest of MTL on TGEMs and Section 5 concludes on
the contribution of this paper and the perspectives of research afterwards.

2 Background

This section is a reminder about formal definition of TGEMs and about the
greedy search algorithm used for TGEM learning. More details about TGEM
definition and learning can be found in Ref. [6].

The data D we use for learning consists in a timed sequence of events until
time t∗:

D = {(t1, l1), ..., (ti, li), ..., (tn, ln)}, (1)

where t0 = 0 < ti < ti+1 < t∗ and 1 ≤ i ≤ n − 1. li are labels from a finite
vocabulary. The history h(t) at any time t is the subset of events that occurred
before t.

2.1 Timescale Graphical Event Models

A Timescale Graphical Event Model M = (G, T ) is a probabilistic graphical
model that can represent data D as given above, using conditional intensity
functions. The directed graph G = (L, E) represents the dependencies between
events, with L the labels of the events, E the edges of the graph. T = {Te}e∈E
associates each edge e to a list of consecutive timescales Te where |Te| ≥ 1. A
timescale has the form (a, b], with a ≥ 0 and b > a.

We call temporal range the moment during which the timescales of some
parent has an impact on the child node. On Fig. 1, the temporal range of A on
C takes place between t and t−2 with a certain intensity and between t−2 and
t− 4 with another one.

In all the models generalizing in the GEM family, the conditional intensity
function is used to specify how the present depends on the past in an evolutionary
process. This conditional intensity λl of a given event is usually a piecewise-
constant function and varies according to the history of the parents in the model.
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Fig. 1. One example of TGEM. L = {A,B,C}, E = {AC} and T = {TAC =
(0, 2], (2, 4]}. The occurrence of event C at time t will depend on possible occurrence of
A in time windows [t-4, t-2) and [t-2, t). The occurrences of A and B are independent
from other events.

λl(t|h) = λl,Cl(h,t) where the index Cl(h, t) is the parent count vector of l: the
number of occurrences of the parents in the timescales. For the entire paper, we
consider that every element of Cl(h, t) is either 0 or 1, thus only the fact that a
parent has occurred or not within the corresponding timescale is important.

The marginal likelihood of a TGEMM according to data D can be computed
at any time t, as defined in [6]:

p(D|M, λ) =
∏
l∈L

∏
j∈pcv

λ
nt,l,j(D)
l,j e−λl,jdt,l,j(D), (2)

with nt,l,j(D) and dt,l,j(D) respectively the total, at time t, number of occur-
rences of the event l within its parents configuration j, and duration of this
configuration.

2.2 Learning TGEM for a Single Task

Single Task Learning (STL) consists in finding the optimal TGEM (its graph G
and its timescales T ) from a dataset D as defined in Section 2.1.

A greedy BIC procedure for TGEM structure learning has been proven as
asymptotically consistent in [6]. This strategy is to maximize the BIC score by
performing the search on two stages, a Forward search by adding edges and
refining the suitability of the timescales, and a Backward search which simplifies
the model and deletes unnecessary edges.

The Forward search starts from the empty model M0 and computes the
neighborhood until convergence to finally reach the modelMFS . The neighbor-
hoodNFS(M) ofM is computed with the three operators (add, split and extend)
defined below. M′ ∈ NFS(M) ⇔ ∃O ∈ O = {Oadd(e), Osplit(Te), Oextend(e)}
such as O(M) =M′.

The Backward search starts with MFS and generates all neighbors M′ ∈
NBS(M) such as O(M′) =M until convergence.

The BIC score used for the structure learning procedure is, at time t∗:

BICt∗(M) = log p(D|M, λt∗(D))−
∑
l∈L

|Cl| log t∗, (3)

with λt∗(D) the optimal parameters obtained by likelihood estimation and |Cl|
the number of distinct parents configurations of node l.
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The subfamily of TGEMs used by the structure learning procedure is called
Recursive Timescale Graphical Event Models. A RTGEM refers to any TGEM
that can be reached by performing recursively the following operators, starting
from an empty model.

The add edge operator Oadd(e) takes as input an edge to be added to the
graph with the default timescale T = (0, hdef ] with hdef the default horizon. The
split timescale operator Osplit(Te) takes as input a timescale (a, b] of a specific
existing edge and substitutes it by (a, a+b2 ], (a+b2 , b]. The extend horizon operator
Oextend(e) takes as input an existing edge with horizon h and adds a timescale
to this edge (h, 2h] to double its horizon.

Gunawardana and Meek [6] have also proven than RTGEMs can approximate
any non-explosive non-deterministic smooth marked point process with finite
horizon.

2.3 Distance Between Two RTGEMs

In order to estimate the distance between two RTGEMs, Antakly and al. [1] have
proposed an extension of the usual Structural Hamming Distance. The distance
between two RTGEMs M1 = ((L, E1), T1) and M2 = ((L, E2), T2) with the
same set of labels, is defined by:

d(M1,M2) =
∑
e∈Esd

1 +
∑

e∈Einter

d(T1,e, T2,e), (4)

where Esd are the edges that are present in just one of the two models, and
Einter are present in both models. Ti,e are the timescales for edge e in modelMi

and vi is the list of endpoints1 of modelMi. The distance between the timescales
is defined by:

d(T1,e, T2,e) =
vnid

vnid + vid
, (5)

where vnid = |v1\v2| + |v2\v1| and vid = |v1 ∩ v2| is the number of endpoints
that exist respectively in one and two of timescales T1,e and T2,e.

2.4 Example of Single Task Learning

The aim of this example is to illustrate the previously introduced notions. We
consider the two models of user behavior on e-banking sites described by the
underlying RTGEMs MR

1 (Fig. 2) and MR
2 (Fig. 3). We also consider that we

have (relatively small) web logs D1 and D2 for both sites.
The procedure when considering 2 models separately is to apply the Forward-

Backward search introduced in Section 2.2, with a default horizon of edge h = 10.
Figure 4 (resp. 5) describes the RTGEM MSTL

1 (resp. MSTL
2 ) obtained at the

end of this STL algorithm applied to the event log D1 (resp. D2).

1 It is another way of representing timescales. T = (0, a], (a, b], (b, c] is equivalent to
v = [0, a, b, c].
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Log in Check account
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Fig. 2. Model MR
1

Log out

Log in Check account

Transfer money

(0, 5]

(0, 5], (5, 10]

(0, 5]

Fig. 3. Model MR
2

Log out

Log in Check account

Transfer money
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(0, 10]

Fig. 4. Model MSTL
1 learned from D1

Log out

Log in Check account

Transfer money

(0, 5]

(0, 5], (5, 10]

(0, 5]

Fig. 5. Model MSTL
2 learned from D2

This single task learning doesn’t take advantage of similarities between both
tasks, and can lead to inaccurate results when there is a lack of data. For instance,
in this toy example, the event log D1 is not sufficient to identify the dependence
between Check Account and Transfer Money in MSTL

1 .

3 Learning Multiple RTGEMs for Related Tasks

3.1 Problem Statement

In the previous section, we were interested in learning one single RTGEM from
one single dataset. We now want to learn a set Sbest = {M∗1, . . . ,M∗k} of k
RTGEMs from k datasets D = {D1, . . . , Dk}. The datasets contains event logs

as defined in Section 2.1, with overlapping labels L =
⋂k
q=1 Lq 6= ∅.

We are then interested in maximizing the posterior probability of the set of
models given the data:

Sbest = argmaxM1,...,Mk
(p(M1, ...,Mk|D1, . . . , Dk)). (6)
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According to Bayes rules, this posterior probability is proportional to the prior
of the models and the marginal likelihood of the set:

p(M1, . . . ,Mk|D1, ..., Dk) ∝ p(M1, ...,Mk)p(D1, ..., Dk|M1, ...,Mk). (7)

When considering a priori parameters independence, the marginal likelihood
over the set of models can be factorized into the product of the marginal likeli-
hood of each data set, and our problem statement can now be expressed as:

Sbest = argmaxM1,...,Mk
(p(M1, ...,Mk)

k∏
q=1

p(Dq|Mq)). (8)

In order to solve this task, we have to compute the marginal likelihood of each
modelMq, as well as the prior of the joint distribution over the modelsM1 ...Mk

and finally we need a strategy to find the best set.

3.2 Marginal Likelihood

It was demonstrated by Chickering and Heckerman in [4] that the marginal
log-likelihood of a Bayesian Network can be approximated by its BIC score.
We will conjecture in this paper that the same approximation can be made for
Timescale Graphical Event Models, which is the approximation made by [6] and
[2]. For a model Mq at time t∗, the marginal log-likelihood log p(Dq|Mq) can
be approximated by the BIC score defined in equation (3) (Section 2.2).

3.3 Prior

The probability p(M1, . . . ,Mk) is called the prior because it represents the a
priori knowledge of how similar the models might be. The two extreme cases
are therefore, if the models have to be:

– independent: p(M1, . . . ,Mk) =
∏k
q=1 p(Mq),

– equal: p(M1, . . . ,Mk) should be 1 if there is no difference between models,
and 0 otherwise.

The solution offered in [8] for Bayesian Networks is to use a constant δ ∈ [0, 1]
that penalizes every difference between the models structure when calculating
the prior. Niculescu-Mizil and Caruana propose two different priors: one of them
considers the minimum number of modifications necessary to make each edge the
same in every structure (Edit Prior), and the other one considers the differences
per pair of structures (Paired Prior). However, finding the minimum of edits
to make all the edges the same is more difficult in TGEMs than in Bayesian
Networks. Indeed, there are only two possibilities (present, not present) when
considering an arc of a Bayesian Network, while the search space for a single
arc of a TGEM is infinite because of the timescales that can always be split
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or extended. For this reason, the prior we suggest for TGEM learning is an
adaptation of the Paired Prior and is defined as follows:

p(M1, ...,Mk) = Zδ,k
∏

1≤q≤k

p(Mq)
1

1+(k−1)δ

∏
1≤q<q′≤k

(1− δ)
d(Mq,Mq′ )

k−1 , (9)

where Zδ,k is a normalization constant and d(Mq,Mq′) is the distance between
two RTGEMs introduced in Section 2.3. In transfer learning context, all the
models may not have identical labels. However, for the distance computing,
we will only consider shared labels from both models Linter = L1 ∩ L2 where
M1 = ((L1, E1), T1) and M2 = ((L2, E2), T2).

The choice of the penalty δ affects the prior such as the higher δ, the closer
the models have to be. When δ = 0, the differences d(Mq,Mq′) will not affect
p(M1, . . . ,Mk), so the models are considered as independent. When δ = 1, any
distance other than zero between the models makes p(M1, . . . ,Mk) = 0 so the
models have to be equal if we want a non-zero prior.

3.4 Finding the Best Set

The strategy named MTL Forward-Backward search that we propose to learn
multiple TGEMs is inspired from the one proposed for Single Task Learning in
Section 2.2. The strategy uses two steps, one MTL Forward search (algorithm
1) that starts from an empty set S0 (i.e. a set of empty graphs) and one MTL
Backward search (algorithm 2) that starts with the set SFS resulting from the
MTL Forward search.

The scoring function p(S|D) optimized here is obtained from equation (8)
with the posterior distribution defined in equation 9 and a marginal log-likelihood
approximated by the BIC score defined in equation (3).

Algorithm 1 MTL Forward search

Input: D = {D1, · · ·Dk},S0
Output: SFS

1: S ← S0
2: repeat
3: refined← false
4: for S ′ ∈ NFS(S) do
5: if p(S ′|D) > p(S|D) then
6: S ← S ′

7: refined← true
8: end if
9: end for

10: until not refined
11: SFS ← S
12: return SFS

Algorithm 2 MTL Backward search

Input: D = {D1, · · ·Dk},SFS

Output: SBS

1: S ← SBS

2: repeat
3: coarsened← false
4: for S ′ ∈ NBS(S) do
5: if p(S ′|D) > p(S|D) then
6: S ← S ′

7: refined← true
8: break
9: end if

10: end for
11: until not coarsened
12: SBS ← S
13: return SBS
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Log out

Log in Check account

Transfer money

(0, 10]

(0, 10]

Log out

Log in Check account

Transfer money

(0, 10]

(0, 5], (5, 10]

Fig. 6. S = {M1,M2}, set of models obtained during MTL Forward search

As highlighted in [9], changing only one model in the set at each iteration
will usually weakly increase the score function or will lead to local optima, so our
greedy algorithm has to test modifications in several models at the same time.
For this reason, the neighborhoods NFS(S) or NBS(S) are generated thanks to
the three operators (add, split and extend) introduced in Section 2.2, but applied
to all the possible subsets of models in S.

As also observed by Niculescu-Mizil and Caruana for Bayesian Networks,
the size of a set of models neighborhood grows much faster than the size of
a single model neighborhood. However, the search of the best solution in each
neighborhood can be optimized by using a Branch and Bound algorithm, in a
similar way to [9], that we can not describe here due to a lack of space.

4 Toy Example of Multi Task Learning

Let us take the simple example (labels are identical) used in Section 2.4, and
consider now a Multi Task Learning by applying the MTL Forward-Backward
search proposed in Section 3. It is not necessary that the labels are the same,
just that they overlap. Figure 6 describes the set of RTGEMs {M1,M2}) jointly
obtained at the end of the third iteration of the MTL Forward phase. The optimal
sequence of operators was:

1. M1,2:Oadd(Log in, Check account) (adding the edge in both models),
2. M1,2:Oadd(Transfer money, Log out) (adding the edge in both models),
3. M2:Osplit(Transfer money, Log out, (0,10]) (splitting the edge inM2 only).

Let us develop now the next step of this phase. As usual in greedy algo-
rithms, the neighborhood of S, NFS(S), will be explored in order to find the
next considered set of models. This neighborhood consists in all the pairs of
models {M1,M2} generated from S by applying one single operator to M1

only, M2 only, and both M1 and M2.
Each box in Fig. 7 contains one neighbor of S corresponding to the operator

Oadd(Check account, Transfer money) applied to M1 only, M2 only, or both
M1 and M2 (and respectively leading to S1,S2 and S12).
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Log out
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Log out

Log in Check account

Transfer money

(0, 10]
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Fig. 7. Some neighbors of S during MTL Forward search: considering to add an edge
between Check account and Transfer money (Oadd(Check account, Transfer money))
to M1 only, M2 only, or both M1 and M2 and respectively leading to (from top to
bottom) S1,S2 and S12.

We consider now our objective function (equation (8)) with the Paired prior
of equation (9) for our set of two models to determine which of the neighbors
will be the one selected for the next step of the phase.

In a need for simplicity, we assume that p(M1) = p(M2). To select the most
likely set, we look for

argmaxM1,M2
(p(D1|M1) · p(D2|M2) · (1− δ)d(M1,M2)) . (10)
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The distance between the modelsM1 andM2 on the sets S,S1,S2 and S12.
from figures 6 and 7 are dS1(M1,M2) = dS2(M1,M2) = 4

3 and dS(M1,M2) =
dS12(M1,M2) = 1

3 .

pS1(D1|M1) < pS(D1|M1), andM2 is the same in both S1 and S. From pre-
vious calculations of distances, we know that the penalty term (1− δ)dS(M1,M2)

is higher than (1− δ)dS1 (M1,M2), so S1 has a lower posterior than S.

We assume that there is a strong dependency between Check account and
Transfer money in D2, that makes the presence of the arc from Check account
to Transfer Money in M2 more likely than its absence in M1. We can express
it with:

pS12(D1|M1)

pS2(D1|M1)
>
pS12(D2|M2)

pS2(D2|M2)
. (11)

Therefore, from (1 − δ) 1
3 > (1 − δ) 4

3 and equation (11), S12 happens to be
more likely than S2, and both are better sets than S. Finally, S12 is selected for
the next step of the MTL Forward search and the edge between Check Account
and Transfer Money is now present inM1 when it was not considered inMSTL

1

because of the lack of data.

We can see in this example that using our Multi-task learning algorithm can
help to learn several related tasks even with limited data by using information
from their related tasks.

5 Conclusion

Multi Task Learning is one kind of Transfer Learning, well studied in Machine
Learning, but no so developed for probabilistic graphical models such as Bayesian
Networks. Graphical Event Models are probabilistic graphical models dedicated
to modeling continuous time processes. Single Task Learning such models from
event logs have been very recently studied in a few works.

In this paper we proposed an algorithm for Multi Task Learning with Time-
scale Graphical Event Models. This algorithm, MTL Forward-Backward search,
is an adaptation of the one proposed for Bayesian networks by [9] that also
combines the efficient TGEM structure learning method proposed by [6] and
the TGEM distance recently proposed in [1]. In this preliminary work, we also
illustrated this algorithm with a simple toy example in order to give the intuition
of its interest.

In the future, we plan to finalize the implementation of our algorithm, and
to apply it on real world case studies in computer security. We also look forward
to generalize this approach to another very recent GEM approach (Proximal
GEM)[2].

We are also interested in studying beyond Multi-task learning and looking
at other Transfer Learning tasks for Graphical Event Models, and dealing with
both Incremental and Transfer Learning.
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