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Abstract

Aircraft sizing studies consist in determining the main characteristics of an air-

craft starting from a set of requirements. These studies can be summarized

as global constrained optimization problems. The constraints express physical

feasibility and the requirements to be satisfied; the objectives are market-driven

performances of the aircraft. These optimizations are currently manually con-

ducted as many input data frequently evolve during the study. This work intro-

duced mathematical methods that are useful in a sizing tool to ease, fasten and

enhance the aircraft configuration optimization problem. Using genetic algo-

rithms, large amounts of design points satisfying the requirements were rapidly

produced, despite some issues inherent to the aircraft model: numerical noise

or physically meaningless design points due to the vast design space. Then,

multicriteria optimization methods were introduced, as several criteria were

considered concurrently. As calculation times became important, the aircraft

model was substituted by a surrogate model. Radial basis functions approxi-

mated the constraint and the objective functions. Finally, a possible outcome

of the integration of these different techniques was proposed in order to yield

the engineers a global and operational perception of the design space.

Key words: aircraft sizing, evolutionary algorithms, global and multicriteria

optimization, surrogate models
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1. Introduction

This study has been performed in the context of aircraft sizing studies, i.e.

the problem is to define the conceptual and preliminary design of transportation

aircraft. Aircraft sizing studies consist in determining the main characteristic

parameters of an aircraft, starting from a set of requirements such as range,

payload or take-off field length. Such studies lead to the definition of the main

aircraft parameters, like fuselage length, wing area, or engine thrust.

In mathematical words, aircraft sizing studies can be summarized as global,

multidisciplinary and multicriteria optimization problems under constraints with

typically one thousand parameters. Actually, the constraints express the re-

quirements to be satisfied and physical feasibility, and the objectives are market-

driven characteristics of the aircraft. These characteristics and performance are

assessed from numerical simulations that involve several disciplines, like aero-

dynamics, structure or noise. Intrinsically, aircraft sizing is a multidisciplinary

design optimization (MDO) problem, as defined by the American Institute of

Aeronautics and Astronautics (AIAA) in the AIAA White Paper (1991). More-

over, this is also a typical multicriteria optimization problem because some

objectives are in conflict (e.g. empty weight, fuel burn, noise).

With this kind of problem, the first difficulty engineers face at is to satisfy

simultaneously all the constraints. Indeed, most of the requirements that have

to be satisfied are nonlinear equations and engineers are working on them as

black boxes through numerical simulations. When working on a new problem,

engineers start from an already existing aircraft, comparable to the new one to

design, and they derive its design parameters until reaching a feasible solution

of the new problem.

To solve the aircraft sizing problem, the method proposed here consists in

decomposing it to first focus on constraint satisfaction, to ensure feasibility,

and then target optimality, i.e. perform an optimization, starting from feasible

points found during the first step.
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Indeed, it appears that it could be interesting to uncouple the research of

optimum solutions from the problem of admissible set extraction because of the

complexity to exhibit admissible points. Once admissible points are produced,

it can be legitimate to ask if it is possible to entirely represent the admissible

space. The extraction of large amount of admissible design points is useful to

build an analytical description of the admissible set, and thus of the design

space, which will also make it easier to perform any optimization within this

area of interest.

The method presented in this paper allows to automatically build an analyt-

ical description of the design space, the aim being to facilitate the exploration

and the exploitation of this domain by any optimization process, and also to help

engineers having a critical point of view on the results produced by optimizers.

2. Current design process

The general problem of aircraft sizing that has been treated in this study

can be summarized as an optimization problem with typically:

• 15 design variables, like engine thrust, wing area.

• 20 inequality constraints, like take-off field length (TOFL), or approach

speed.

• And generally one criterion, like maximum take-off weight (MTOW), or

direct operating cost (DOC).

A complete description of the problem can be found in tables 1, 2.

This general problem is not currently treated as a nonlinear programming

problem, its generic formulation, because of the multidisciplinary aspects. In-

deed, the discipline equations and the interconnections between disciplines make

it so complex that it is not possible for classical optimization algorithms to solve

it directly numerically (Roskam, 2005). Moreover, optimization is often used

3



within these disciplines, because they need to satisfy some local constraints

(Torenbeek, 1982). However, combining the computational tasks into a single

optimization problem is impractical, because of the large number of variables

and the amount of time required to execute the analyses. Furthermore, even if

this would be possible, it would not be used by engineers, because:

• They are cautious with the results automatically produced by optimizers;

since the evaluation function is not robust and sometimes fails, it makes

the optimizers fail too, or possibly produce degenerated solution for too

simple models. Improving the optimizer will not change this situation,

but a more robust evaluation function will.

• They need some more information than just finding an optimum, like

knowing the results of sensitivity analysis around the optimum point on

the objectives and the design variables.

Thus, the optimization is currently manually conducted by engineers, based

on experience and knowledge acquired during previous studies, as described be-

low.

The MDO formulation of the problem in the design tool currently used

has been formulated as an intermediary formulation between multidisciplinary

feasible (MDF) and collaborative optimization (CO), formulations described by

Cramer et al. (1994); Alexandrov and Lewis (1999). Indeed, the tool is able to

perform an entire analysis on the discipline constraints and the interdisciplinary

consistency constraints, and it also performs some local optimization inside

disciplines, like for the calculation of the take-off field length (TOFL).

This tool also helps engineers to find feasible design points. With its ability

to transform the problem by choosing freely the status of variables (fixed, de-

pendent or free, status defined as in Buckley et al. (1992)), the design constraint

values can be imposed to the process, which solves the inverse problem to find

the corresponding admissible design variable values.
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Once a design point satisfying the requirements is found, the design study

can continue using a direct resolution of the aircraft sizing system. Most design

studies rely on sequential parametric trade studies in which one or two design

variables are changed to examine the effect on the design. Carpet plots (like on

Figure 1) can be presented, showing the effect of these variables on each of the

system constraints or objectives.

The number of parameters in this type of study is limited by the number of

dimensions that can be perceived graphically or by the complexity to collect all

information coming from such samplings when there are more than two param-

eters. When the number of parameters to be optimized is so large that trade

studies on the interesting variables are not possible, some kind of alternative

optimization is performed. Values of some important parameters are manually

changed and then, trade studies are performed again on the modified designs.

This kind of trade studies is not performed so frequently, because of the

preparation work that must be done before each sampling. Indeed, some a priori

choices are made on which trade variables to select, and some evolution rules are

imposed to some other degrees of freedom of the study, which are assumed to be

second order parameters. Because it is not possible to make vary all the design

parameters, the search cannot be exhaustive, which can reduce the optimality

of the results.

Sometimes, these trade studies are replaced by inverse resolutions because

generally, optimum solutions are located at the intersection of some constraints.

Thus, thanks to this knowledge engineers have on this problem, they do not

spend time performing trade studies, but directly calculate the configuration

which is of their interest.

The most important and difficult part of this work is to define the evolution

rules, to make them the most relevant and representative possible. This is the

reason why such trade studies are not performed frequently.

This process progresses step-by-step, each aircraft configuration satisfying

some particular requirements is kept as a reference configuration, and then,
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some modifications are applied to it, according to new information on tech-

nologies, or on customer needs. This leads to new trade studies, until design

parameters freeze; a new reference configuration is found, and so on.

Convergence of the overall process has not a real sense for this kind of study,

because there are always new technologies or updates coming from research on

the current aircraft program, which can be added to the current future project

of aircraft. Thus, it is to the decision-maker to stop the study when he/she

considers it is mature enough to start the development phase.

A possibility to take into account multilevel process has also been consid-

ered; there are generally two levels of modelisation in conceptual design, but

they are rarely represented together in the design environment, mainly because

these models do not share the same geometrical representation of the aircraft.

Models with different grained precisions are not mixed in an integrated model

of aircraft. It could be technically possible, but the engineers are very cau-

tious in the results obtained by coarse-grained models because of the lack of

information on the uncertainty related to these models. The general thinking is

that coarsed-grained models may produce erroneous results, but they can have

a good representation of the variations of the model according to the variable

modifications, and sensitivity analyses can give good results using these models.

When multilevel formulation is used, it is done with a lot of precautions. A

really simplified model of aircraft is used to calculate the main parameters of

the configuration, and these values are given to a more sophisticated model of

aircraft, but the transition is made carefully.

Some commercial tools also exist to perform aircraft sizing, like PIANO 5

(Lissys Ltd, 2009). Such a tool is conceived as a preliminary aircraft sizing and

analysis tool, like the one we are currently working with. The main drawbacks

are that this tool is not able to perform reverse computation, and it is primarily

aimed at conventional, commercial, subsonic aircraft certificated to civil stan-
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dards. It is not suitable for military, supersonic or unconventional (e.g. canard

or blended body) configurations.

The aim of the work presented here was to introduce in the current design

tool mathematical methods that can make the global optimization process be

more automatic in the exploration and the exploitation of the design space. As

explained in the introduction, one of the issues in aircraft sizing studies comes

from that the design space is large. It can be a hyperbox from two to twenty

dimensions. What interest the engineers is to refine it to its most interesting

part, increasing chances to find best aircraft configurations.

The methodology described here is composed of three steps:

1. First define the admissible set, because it is difficult to produce feasible

points inside the design space. In a real case study, the proportion of

admissible points is about 5 among 1 000 000 of points randomly selected.

2. Then introduce a new kind of constraints, named quality constraints, which

are actually acceptable margins applied on each criterion, and based on the

optimal values of these criteria through acceptable degradation ratios.

3. Finally reduce the admissible set to an interest domain, where not only

operational constraints are satisfied but also quality constraints.

Thus, the method consists in progressing step-by-step to reach smaller and

smaller subspaces of the design space, the final aim being to find the Pareto front,

which most interesting part is included in the interest domain. Moreover, the

knowledge of these subspaces of the design space will bring us some information

useful to construct an analytical description of the working spaces.

A description of the process proposed here can be found on figure 2.

3. Using evolutionary algorithms

Aircraft sizing activity is basically an inverse problem. We know the perfor-

mance that the system should achieve and we look for its physical characteris-

tics. The studied system is an aircraft evolving in its environment. It is complex
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enough to make it impossible to express directly characteristics as a function

of performance. For this reason, the core of aircraft sizing is necessarily an it-

erative process driving an evaluation function that quantifies the performance

of a given aircraft configuration. The design space is determined by validity

intervals on the design parameters. The domain called the admissible set is the

antecedent of the intersection between the image of the allowed design space

and the satisfied requirement space.

The necessity to find a simple answer to a complex problem has led many en-

gineers to aggregate their evaluation function into a constrained mono-criterion

optimization process (Torenbeek, 1982). The main drawback of this approach is

that it gives a limited view on compromise solutions, since it is obvious that the

final product is never a mathematical optimum but an alchemic compromise.

The multicriteria approach is an answer to the research of compromise, but re-

quirement and performance formulations may change, or at least evolve, along

the study lifetime. Finally, it appears that it could be interesting to uncouple

the problem of research of compromise solutions from the problem of ensur-

ing constraint satisfaction. The choice of the optimization process has been

inspired by the FSQP (Feasible Sequential Quadratic Programming) principle

(Zhou et al., 1997), namely to reach the admissible set before performing any

optimization. Moreover, the evaluation function should work better close to

feasible points, this assumption is due to semi-empirical background.

Looking at the complete optimization problem, evolutionary algorithms seem

to be the most adapted methods, because they require little knowledge about

the problem, they favor robustness, and they are well-adapted to multicrite-

ria optimization problems (Coello-Coello et al., 2002; Siarry and Michalewicz,

2008).

Thus, in the following section, we will focus on ensuring constraint satisfac-

tion with evolutionary algorithms. The algorithm will make the design points

of the population gather and spread step-by-step in the requested domains, i.e.

the admissible set and the interest domain.
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3.1. Ensuring constraint satisfaction

Constraint handling is not so straightforward in evolutionary algorithms,

the search operators, mutation and recombination, are “blind” to constraints.

Hence, there is no guarantee that if the parents satisfy some constraints, children

will satisfy them as well (Eiben, 2001; Mezura-Montes, 2009).

There are many ways to overcome this question of constraint handling, like

indirect constraint handling, where constraints are incorporated in the fitness

function, or direct handling, where constraints are left as they are and the Ge-

netic Algorithm (GA) is adapted to enforce them. In this study, the research

of optimum solutions is uncoupled from the problem of admissible set extrac-

tion. Thus, the method consists in decomposing the aircraft sizing problem to

first focus on constraint satisfaction and then, perform an optimization without

considering constraints anymore, starting from feasible points found in the first

step (Venkatraman and Yen, 2005). From now, we focus on the constraint sat-

isfaction problem related to this aircraft sizing problem.

This constraint satisfaction problem (CSP) is treated here as an optimization

problem to give an initial structure for the next steps of the global optimization.

The aim is to automatically produce large amounts of design points satisfying

the requirements, despite the numerical noise introduced by the evaluation func-

tion. Moreover, as the design space is vast, due to the large number of degrees

of freedom, it contains meaningless design points (geometrically or physically

speaking), making the evaluation function sometimes fail.

3.1.1. Existence of solutions

Before starting this study, the demonstration that the admissible set is not

empty was not necessary because engineers currently working on the same prob-

lem exhibited such a point, satisfying all the requirements. But one point inside

the 15-dimension design space is not sufficient to assess the difficulty to produce

admissible points. To collect more information about the admissible set shape,

the method consists in trying to find other admissible points without using any
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constraint satisfaction method. This would also give a first guess of the difficulty

to reach the admissible set.

The idea is to use a Monte Carlo method by performing a uniform random

sampling inside the search interval of each variable, and then, to apply the

evaluation function on these design parameters and to check the constraint

values. Finally, among 106 calculated points,

• 52% could be evaluated,

• 5 satisfied all the constraints (feasible points),

• 190 satisfied all the constraints but one.

Thus, finding admissible points is far from being trivial, and the constraint

satisfaction method will have to be adequately fitted.

3.1.2. Method

To solve the CSP, the chosen method was to consider this problem as an

optimization problem, using a penalty method. A specific function was de-

duced from the constraints, applying linear penalties with physically meaning-

ful thresholds on violation of the constraints. Thus, the objective function is a

weighted sum of component-wise penalties. Weights are set to ensure homoge-

neous contributions of all constraints, as explained in Badufle et al. (2005).

Let ε be a criterion on constraint satisfaction: ε reaches its global minimum

value (i.e. zero) at all admissible design points. The optimization problem to

be actually solved is:

min
x∈X

ε(F (x)) where


x ∈ X ⊂ Rn

F : X → Y ⊂ Rq

ε : Y → R

(1)

F being the evaluation function, X the design space and Y the objective space.

There are three main requirements to choose the optimization method to

solve this CSP:
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• It had to be robust against possible evaluation failures,

• It had to manage both continuous and discrete variables,

• At last, it had to produce a homogeneous sampling of the admissible set,

i.e. a quite uniform distribution of feasible points in the admissible set.

Consequently, for the sake of the good exploration of the design space and

of the variety of admissible points, the chosen method to be implemented is

the Non-dominated Sorting Genetic Algorithm (NSGA), developed by Srinivas

and Deb (1994), because it fulfills the needs listed above. In addition to the

standard fitness, this method sorts the population depending on the distance

to the closest design point in the population. Consequently, the individuals do

not tend to aggregate.

The genetic algorithm implementation was done with the following specifi-

cations:

• Each gene represents one degree of freedom, thus each individual is com-

posed of 15 genes.

• The initial population is composed of 50 individuals, whose genes are

obtained from uniform randomized sampling inside respective bounds.

• Reproduction is done by mixing genes of two population subsets: the

first one is containing the best individuals; the second one is containing a

random sample of the current population. Elitism is limited on purpose, to

favour robustness. One child is obtained per crossing of two individuals.

The number of children is also 50, the crossed population size is thus

between 50 and 100 individuals once clones are discarded.

• Selection of one individual is done according to its fitness, which is in-

versely proportional to its penalty value. To explore uniformly the admis-

sible set and avoid niching effect, the fitness is weighted according to the

distance between points in the population.
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• Mutation strategy has to be done by a specific function. Considering that

dx = ε(F (x)) is an estimate of the distance to the admissible set, the

mutation probability is calculated through a function P , depending on

dx. The function P has to satisfy 3 basic properties:

1. P (0) = 0: if the distance to the admissible set is zero, then the point

has reached it, there is no reason to mute any gene. The mutation

probability is then 0.

2. P (dx) > 0 when dx → 0+: if dx is not zero, even in the neighbourhood

of 0, the point has to mute to increase chances to reach the admissible

set.

3. P (dx) = Pmax when dx ≥ dmax: the mutation probability increases

towards a threshold reached at a certain distance from the admissible

set. When far enough, being a bit closer or further is not relevant.

To satisfy these 3 basic properties, the simplest function is a piecewise

affine function, which is continuous, except in zero (see figure 3).

• Algorithm convergence is obtained when all population points have reached

the admissible set.

The algorithm used to solve our CSP can be seen in table 3.

3.1.3. Numerical results

The first task was to tune the parameters defining the mutation probability

function, like the threshold dmax beyond which the probability to mute has

reached its maximum value. Among all the possible parameterizations, a trade-

off must be found between optimality and variability (see figures 4 and 5).

In test phases, the calculations were stopped after 50 generations. It is

worth noting that the initialisation of any computation lasts 1 minute, and the

evaluation of one design point takes typically 20 seconds. The calculation time

for one generation of 50 points was roughly thirty minutes and it took globally

twenty-five hours to evaluate 50 generations. Calculations were computed on

an Ultra SPARC III machine at 1.2 GHz.
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With the chosen set of mutation function parameters (see figure 5), the al-

gorithm was tested on 10 different initial populations. After 50 generations, in

8 computations among 10, at least one point reached the admissible set, and

in 5 computations among the 10, all points in the population were admissible.

The chosen parameterization was the one which showed the fastest convergence

speed, with a sufficient global search inside the design space.

To assess the efficiency of this way of computing admissible points, this

implementation of a genetic algorithm has been compared with a gradient based-

method: FSQP. This method was chosen among different softwares performing

optimization (some of them are described by Mongeau et al. (2000)) because it

is dedicated to problems where the objective evaluation is difficult out of the

admissible domain. Moreover, this choice was sensible as FSQP was designed

to first exhibit an admissible point, before optimizing the criterion.

FSQP was used in “constraint satisfaction mode” (Zhou et al., 1997), i.e.

with no objective function. The main problem to deal with was about discrete

degrees of freedom. As the algorithm can not manage them, the process was

split into two steps. First, FSQP considered that all degrees of freedom are

continuous. This process did not make the evaluation function fail. Indeed, all

the equations contained in the aircraft model consider that all the variables are

continuous. When engineers are dealing with discrete variables, they are always

inputs of the equations, like the number of passengers or the number of engines.

Thus, it allowed also FSQP to get a gradient relative to these discrete degrees

of freedom using finite differences.

After this first pass results, the discrete degrees of freedom values were

rounded to the nearest integers, and then, FSQP was run again for another

optimization, but this time, discrete variables were fixed to these values and

not optimized anymore.

To make an unbiased comparison between the efficiency of the genetic algo-

rithm and FSQP to reach the admissible set, the comparison was made on a
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random initial population on which the genetic algorithm was run. Then, FSQP

performed successively as many constraint satisfactions using as starting point

each individual of the initial genetic algorithm population.

The results of the comparison can be seen in the table 4. In this context,

genetic algorithms showed more robustness and efficiency than FSQP, as ex-

pected.

3.1.4. Conclusion on constraint satisfaction

The methodology presented here automatically produces large amounts of

admissible design points in the context of aircraft sizing. An implementation

of genetic algorithms dedicated to solve a constraint satisfaction problem suc-

ceeds in 50% of the cases to bring the complete population in the admissible

set. Moreover, in this aircraft sizing context, genetic algorithms show more ro-

bustness but also, more surprisingly, higher productivity than a gold standard

dedicated method like FSQP (see table 4).

In addition, this is done in a relatively short time frame, compared with the

time engineers need to exhibit a single admissible point.

To explain the failure cases, one can notice that the number of individuals

in the current population, nearly 100 individuals including the parents and the

children, is small relatively to the 15-dimensional design space. So the genetic

algorithm can exhibit a local minimum.

Moreover, all the calculations were stopped after 50 generations, they could

have converged if the calculation had lasted longer. But due to limited time,

it was not affordable to let the calculations go on until convergence. Increasing

the population size and maximizing the population dispersion would probably

improve the success rate of the algorithm.

The next step is to reduce once more the design space to a smaller set than

the admissible domain, to facilitate the optimizer’s task to find the best aircraft

configurations.
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3.2. Notion of quality constraints

The aim is to define a method to refine the design space to its most interesting

part, increasing chances to find best aircraft configurations. The first step of this

method was to solve the constraint satisfaction problem related to this aircraft

sizing problem.

To refine the admissible set to a smaller subset, the notion of quality of the

results was introduced. Quality is based on allowed degradation of the best

values of criteria that can be found inside the admissible set. Quality is thus

based on the decision-maker needs, wishes and knowledge.

Let Cmax
i denote the best value of the ith criterion, and Ri denote the

degradation ratio, Rmax
i being the maximum degradation value allowed for the

ith criterion. The degradation ratio is defined as in the formula (2):

Ri =
|Cmax

i − Ci|
Cmax

i

≤ Rmax
i (2)

where Ci is the current value of the ith criterion.

The relation (2) is similar to a constraint equation. The degradations of

the values of each criterion of the current point have to be less than the upper

bound given by Rmax
i . The quality of a point depends on the values of its

criteria related to the values of each degradation ratio. Thus, a new type of

constraints has been added to the initial problem, called quality constraints.

The Acceptable Domain is defined as the subset of the admissible set where

degradation ratios are less than Rmax
i , for all criteria, i.e. where quality con-

straints are satisfied (Badufle et al., 2006). The figure 6 is illustrating quality

constraints for two criteria.

Thus, to define the acceptable domain, the optimal values of each criterion

has to be known, so as many mono-criterion optimizations as considered criteria

must be performed. The idea is to use FSQP, as it is a fast standard method

that is able to handle constraint satisfaction.
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The optimizations were started from an initial point located at the barycen-

tre of the admissible population found thanks to genetic algorithms. Thus, the

initial point was already admissible; FSQP did not have to put any initial point

inside the admissible set, which is one of the main difficulties that occurs when

performing an optimization starting from a point randomly chosen among the

design space.

The first question was to know if FSQP would have the same problem than

when it was configured to produce admissible points, i.e. if it would have to

calculate points that make the computation fail during the optimization. To

assess this failure probability, a Monte Carlo method was used once again, this

time on the admissible domain. Among 106 calculated points, randomly selected

in the admissible domain, 80% could be evaluated.

The probability that FSQP finds a point that makes the computation fail

during the optimization is not negligible. Fortunately, each time FSQP ran, the

optimization did not stop, because the failing points were computed as interme-

diary points used to find the descent direction. In this case, when finding failing

points, FSQP chose a descent direction that maybe was not optimal. But the

amount of failing points in the admissible set is sufficiently small so that FSQP

succeeded in finding the optimum. The main issue was the computation time,

between 20 to 28 hours for one criterion.

Now that the acceptable domain is defined, refining the design space can

continue by gathering the admissible population inside this domain. The idea

is to use the same GA than the one developed to find admissible points; this

time, new constraints were added to the optimization problem constraints to

define the objective function, those defined as quality constraints. The initial

population is the admissible population found at the first step of the optimiza-

tion. After running GA, at each computation, each point of the population

inside the acceptable domain has criteria values that are close to the optimum

values in the sense that the degradation ratios are small. Thus, the main effort

is to produce points satisfying the problem constraints, then satisfying quality
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constraints is straigthforward.

The aim of the methodology detailed here is to produce large amounts of

points that are in the vicinity of optimum points, starting from a huge design

space and depending on several criteria to optimize. This methodology pro-

ceed step-by-step, by first producing admissible points, then defining what is

called the vicinity of optimum points, i.e. the acceptable domain, and finally,

producing as many points as needed, that are in the vicinity of optimum points.

3.3. Pareto front

In the end, the Pareto front is the last subset of the admissible domain we

want to reach. It is the final answer of the multicriteria optimization problem.

The Pareto front corresponds to the set of all efficient points (Pareto, 1896).

Pareto solutions are such that any improvement in one objective can occur only

if at least another objective is degraded. Therefore, it can be stated that no

Pareto point is objectively better than another, the choice of one versus another

can only be made on the basis of subjective judgment.

To produce some points on the Pareto front, the idea is to keep on working

with the implemented GA, NSGA, with some modifications to adapt it to the

problem.

The ranking function is used to classify the points according to their Pareto

rank, i.e. if they are non-dominated, their rank is the smallest, it is assigned

to 1, but if they are dominated, their rank is higher than 1. To calculate it,

non-dominated points are removed from the current population, and then, the

non-dominated points among the remaining points have their rank assigned to 2,

and so on.

In this problem, ensuring constraint satisfaction is a complex task, espe-

cially with the introduction of quality constraints. Thus, ranking is performed

in two steps. The population is split into two subpopulations, depending on

constraints. If one point satisfies all the operational and quality constraints,

it is included in the first population; if it does not satisfy one of these con-
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straints, it is included in the second population. Then, ranking is performed

as described above, the best ranks are set to the non-dominated points of the

population which satisfy all the constraints, and then, the process continues

with the non-dominated points of the second population, which have their rank

assigned to the last rank value of the first population, plus 1. This is a way to

ensure feasibility first and optimality in second.

The other ranking function, the fitness function, is the same as previously

described (in section 3.1.2, page 11). It includes a dependency on the distance

between points in the population.

At each generation, the currently produced non-dominated points are saved

in another population containing already produced non-dominated points. The

new ones are compared to the others, and only the non-dominated points of this

pool will remain for the next generation, as it is done by the SPEA algorithm

(Zitzler and Thiele, 1999). Another condition is added in the selection function.

One point will remain in the non-dominated population if it is at a distance

to its neighbors greater than the minimum one imposed by the decision-maker.

This condition ensures that the points of the Pareto front are well-distributed

in the design space.

The algorithm used to solve our CSP can be found in table 5.

To assess the capability of this adaptation of NSGA to produce Pareto points,

it was tested on some of the test problems found in Deb (1999); Collette and

Siarry (2002). Finally, it obtained satisfactory results to find non-convex or

discontinuous Pareto fronts (Badufle, 2007).

Generally, this adaptation of a genetic algorithm is efficient in producing

Pareto points, when working on generic problems or on this particular design

problem. The main issue with this design problem is the computation time. In-

deed, it took approximately 90 minutes to compute one generation of 100 points.

The only stop condition of the algorithm is the maximum number of genera-

tions. Thus, if the computations are stopped after 50 generations, the results

only concerning the computation of the Pareto front were obtained after at least
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three days. Moreover, the improvement between the results obtained at the gen-

eration 10 and those obtained at the last generation is not not worth the extra

time needed.

In preliminary design, engineers can not afford to wait three days to get

the results of one computation, especially at the beginning of the study, when

requirements drastically and rapidly evolve. For instance, the number of pas-

sengers or the range of the aircraft, and the aerodynamic input data can change

several times a month. The problem when willing to obtain a Pareto front is

that the computation must process a large amount of calculations. Thus, a

mean has to be found to overcome this problem of computation time.

4. Using Response Surfaces

4.1. Motivation

According to Dennis and Torczon (1995), a consistent theme in the engineer-

ing optimization literature is that the time and cost required for the detailed

analysis of a single design is often so great that it becomes prohibitive to im-

plement a “black-box” optimization approach to the design problem. The point

of using approximation techniques is to reduce the number of full or detailed

analyses required during the course of the optimization iterations.

Typically, the objective function is expensive to evaluate because there are

large numbers of system variables that must be determined for each choice of

design parameters before the criteria can be evaluated.

Approximation models have several properties that make them attractive

for use with optimization (Simpson, 1998; Sobieski and Kroo, 2000):

• They yield insight into the relationship between input design variables and

output responses,

• They provide fast analysis tools for optimization and design space explo-

ration,
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• They avoid potential numerical difficulties that can occur (singularity,

steps, etc.),

• They represent noisy analysis with an inherently smooth model,

• They provide a natural way of implementing coarse-grained paralleliza-

tion,

• They facilitate the integration of discipline-dependent analysis codes.

There is a standard engineering practice for attacking multidisciplinary opti-

mization problems with expensive evaluation functions f (Booker et al., 1999):

1. Choose a surrogate s for f that is either

• A simplified physical model of f , or

• An approximation of f obtained by evaluating f at selected design

sites and interpolating or smoothing the function values thus obtained.

2. Minimize the surrogate s on its definition space to obtain xs.

3. Compute f(xs) to determine if improvement has been made over the best

x found to date.

Many papers deal with the open question of how to manage the interplay

between the optimization and the fidelity of the approximation models, the aim

being to insure that the process converges towards a solution of the original

problem. Some methods, like those described by Dennis and Torczon (1995);

Booker et al. (1999), increase the fidelity of the approximation during the op-

timization, getting it more precise in the vicinity of a minimizer, or when it

becomes clear that the approximation is not doing a good job in identifying

trends in the objective. The aim is to compromise between the research of a

minimizer and the construction of an approximation that gives a reasonable

estimation of the behavior of the objective.
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In the following section, two approximation techniques are surveyed, re-

sponse surface approximations and artificial neural network models, the aim

being to choose a surrogate model to replace the expensive evaluation function

of the problem treated here.

4.2. Selected methods

4.2.1. Polynomials using linear approximation

The idea of using Taylor series developments came from the observation

that most of the time, the admissible set is convex and the different optima of

the mono-criterion optimizations are located on the boundary of the admissible

space, more precisely at points where some constraints are active simultaneously.

Thus, to simplify the expression of the constraints in the general optimization

problem, i.e. G(x) ≤ 0 in its nonlinear form, the idea is to replace it by a linear

inequation of the form A.x ≤ b.

An easy way to find this approximate expression is to linearize the constraints

at some points located on the boundary of the admissible set. The problem

becomes now to project some admissible points, obtained when solving the

constraint satisfaction problem in the first step of the optimization process, on

the boundary of the admissible space.

Still working with genetic algorithms, this time the fitness function depends

on the distance of the current point from the boundary of the admissible set, thus

from the closest constraint. The way to generate children is unchanged. Only

the mutation operator has been modified. The points mutate in the direction

of the constraints that move them the farthest away from the barycentre of the

admissible point cluster. The distance of the displacement is randomly sorted

between zero and the distance to this closest constraint. A minimum distance

is also imposed between points in the design space, like it is done in NSGA. The

aim is to obtain well-distributed points along the boundary of the admissible

space.

Because of the intrinsic random nature of GA operators, it is difficult for

the algorithm to find points that exactly reach the boundary of the admissible
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set. Thus, it is considered that the process has converged when the distance

of a particular point from one constraint is smaller than a given small dis-

tance. When all points have converged this way, they are projected on the

boundary. This minimum distance is a compromise between convergence and

well-distributed repartition of points. It has to be not too small to allow the

algorithm to converge, but also not too large. Otherwise, the algorithm would

manage to converge too fast and would not have enough time to distribute the

points along the boundary of the admissible space.

Now having well-distributed points on the boundary of the admissible set,

the constraints can be linearized around these points. The gradient is calculated

using finite differences, but since this operation is expensive, the constraints are

not linearized systematically around every point that has reached it. Thus, for

each active constraint, the points located on the extremities of this particular

constraint are identified and the constraint is linearized around these points.

Then, the values of the other points that have reached the same constraint are

calculated using the obtained linearized expressions. If this value is not suffi-

ciently precise according to the decision-maker, then the constraint is linearized

once again around this particular point.

To use an optimization technique coming from Linear Programming, the

objective function has to be linearized too. Depending on the criterion to opti-

mize, the method succeeds or fails in finding the right step to make the process

converge towards the optimum. Indeed, we suppose the failures are due to the

gradient values of some criteria that are too close to zero. But as the method

works for some other criteria, the failure of the process is not imputable to the

methodology.

Since it seems difficult to use a linearization of the constraints to simplify the

optimization formulation, another approximation method, Radial Basis Func-

tions networks, was tested because they are easy to implement and to adapt to

this particular problem.
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4.2.2. Radial Basis Functions

The second kind of surrogate model tested here is radial basis functions,

further denoted RBF. This approximation technique is classified in the category

of artificial neural networks. This network is formed from three layers of neurons,

as described in Krishnamurthy (2003). The activation function depends on the

distance of the input x from the corresponding centre c. The network output

is obtained by linearly combining the responses of the hidden neurons to the

input:

f̃(x) =
k∑

i=1

wi h
(∥∥x− ci

∥∥
2

)
. (3)

where:

• The radial functions h are function of the radial distance
∥∥x − ci

∥∥
2

from

node i,

• The wi are fitting parameters to be determined,

• k is the number of sample or data points with known function values yi

such that f̃(xi) = yi.

Finding an approximation using RBF can be viewed as a minimization prob-

lem, where the objective function is the error as defined in the following equa-

tion:

E(f̃) =
1
2

k∑
i=1

(
yi − f̃(xi)

)2 +
1
2
λ
∥∥Df̃

∥∥2 (4)

where:

• D is a differential operator which controls how many of the derivatives

should be taken into account to characterize the smoothness of f̃ ,

• λ is a regularization parameter which controls the tradeoff between attach-

ing strictly to the training patterns and reconstructing a smooth mapping

as reflected in the measure of derivatives
∥∥Df̃

∥∥.
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The simplest RBF network is obtained by setting the inputs of all training

patterns as centers, ci = xi, and λ = 0. In classical RBF based methods, the

interpolation of a surface is performed as a linear combination of radial func-

tions as in the relation (3).

For the simplicity of the implementation, each node of the RBF network

is taken among the points of all the populations obtained until now, and the

parameter λ defined in the equation (4) is assigned to zero, to avoid calculating

any gradient of the function.

The network is constructed like in Fritzke (1994), one more basis function

is added until the mean error of the approximated function calculated on the

known points has reached the decision-maker threshold. The centre of this

additionnal basis function is located at the point of largest error in the learning

data basis. The figure 7 is illustrating the principle explained above.

4.2.3. Results obtained using RBF

According to Kodiyalam (2001), the learning population on which the net-

work is constructed is really important. The more the points are distributed in

all the design space, the more information can be extracted. The risk in using

RBF networks is that they can oscillate. Thus, a great part of the construction

of the approximation is to choose the learning population.

Tests were done on two different learning data bases, constructed with the

populations already calculated. The first learning data basis contained the

initial population, with points randomly sorted in the design space, and the

points projected on the constraints. The second population contained the lattest

plus the set of the admissible points.

When analysing the results obtained on the approximation fidelity with

these two learning data bases, it appears that the first set, the one contain-

ing less points, is the most efficient as learning data basis. Indeed, the network

constructed with the second population oscillated along the active constraints,

which is the place where the approximation has to be the most precise.
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Relative errors introduced by the approximation model can be seen in ta-

ble 6 on some of the constraints. As the fidelity with the first approximation

was acceptable, the computation could continue, using the network instead of

the evaluation function.

The operations done with the approximation are:

• To optimize the criteria separately (to define the quality constraints),

• To project the admissible points inside the acceptable domain,

• And finally to compute the Pareto front.

Optimizing one criterion with FSQP using the approximation takes less than

10 seconds. Then, producing points of the acceptable domain takes between

3 and 5 minutes, depending on the value of the allowed degradations. And

concerning the last operation, computing one generation to produce the Pareto

front takes less than 15 seconds.

Thus, in half a day time, engineers can compute several hundred of gen-

erations to refine the Pareto front. And if finally, they judge the front is not

precise enough, they can use the real evaluation function, starting from the front

already produced. Moreover, this RBF network can be used as an analytical de-

scription of the design space, and sensitivities analyses can easily and efficiently

be performed.

5. General conclusion

This study deals with a multicriteria, multidisciplinary and constrained op-

timization problem coming from an industrial context, aircraft sizing. The

problem consists in defining the conceptual and preliminary design of an air-

craft, starting from a set of requirements. The main difficulty with this problem

comes from the evaluation function, which is implicit and time-consuming, but

also from the general context of aircraft sizing. Indeed, requirements and as-

sumptions rapidly evolve during the study.
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By using RBF networks to approximate the evaluation function, we build an

analytical description of our design space and objectives, that enables engineers

to perform more computations in the same time frame and to produce more

solutions than what they are used to, i.e. not only one solution of a weighted

sum of all the criteria to consider, but a Pareto front. Thus, engineers will

have the possibility to choose an alternative solution among the Pareto set

according to a new selection criterion. The advantage of this methodology is

that it is fully automated, the main part of work for the engineers is to define

their optimization problem, i.e. which variables are degrees of freedom, what

are the boundaries of the design space, and which are the constraints and the

criteria. In practice, the computations can be launched during the night so that

engineers can exploit the results the next day.

Another advantage that was not used here, is that genetic algorithms can

easily be parallelized, making the computation even faster.

In future aircraft sizing studies, some new conflicting criteria will have to be

taken into account, like community noise, or climate impact. Producing Pareto

fronts will bring more flexibility when defining and solving these new aircraft

sizing problems.
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Figure 1: Example of carpet plot

On figure 1, we have two design parameters, engine size and wing area.

MTOW, approach speed and TOFL are calculated for several values of these

degrees of freedom. The limit value of the constraints, here approach speed and

TOFL, are interpolated to be represented on the graph. Then, the minimum

value of the criterion, here the MTOW, is found graphically, and the corre-

sponding values of the design parameters are deduced.

Figure 2: Overall process of the proposed resolution method
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Figure 3: Probability function for mutation strategy

Figure 4: Typical convergence of NSGA when producing admissible points; Hp=50%; Lp=5%;

T=1

Figure 5: Typical convergence of NSGA when producing admissible points; Hp=5%; Lp=0.5%;

T=3
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Figure 6: Illustration of quality constraints

On figure 6, we have two degrees of freedom, three operational constraints

and two criteria. The descent directions of the criteria are represented by the

dashed arrows and the quality constraints by the dashed lines.

As a remark, one can notice that a part of the Pareto front can be included

in the boundary of the acceptable domain.

Figure 7: Illustration of RBF network interpolating a polynomial function

On figure 7, the function to interpolate is the black plain line. The approxi-

mation function is the dashed line. Four RBF basis functions were used, which

are represented on this figure.
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Description Lower Current Upper

bound value bound

External wing sweep 30 deg 34.4 deg 36 deg

Wing reference area 320 m2 359.5 m2 400 m2

Wing half span 25 m 29 m 33 m

Internal kink spanwise relative position 29% 35% 40%

External kink spanwise relative position 60% 65% 70%

Slat area coefficient 0.5 0.71 1

Additional fuselage frames before wingbox* -2 0 +2

Number of frames into the wingbox* 8 10 12

Wing root thickness over chord ratio 12% 13.5% 15%

Internal kink thickness over chord ratio 8% 9.1% 10%

External kink thickness over chord ratio 8% 9.2% 10%

Wing tip thickness over chord ratio 8% 9.2% 10%

Engine rubbering factor 0.8 0.85 0.9

Take-off thrust coefficient 0.8 0.92 1

Engine spanwise relative position 30% 38% 40%

Main landing gear spanwise position 4 m 5 m 10 m

Table 1: Design variables of a typical aircraft sizing problem

Variables annoted with the symbol * are discrete variables.
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Description Constraint

Cabin length ratio at 25% of MAC = 51.5%

Time to climb for nominal mission ≤ 29 min

Climb ceiling ≥ 35000 ft

Buffeting ceiling ≥ 35000 ft

Cruise ceiling ≥ 35000 ft

Approach speed ≤ 140.2 kt

Maximal pitch on ground ≥ 11.6 deg

Regulatory take-off field length ≤ 2800 m

Fuel margin ≥ 1.6

Ground clearance ≥ 0.84 m

Air inlet to door clearance ≥ 2 m

Maximum bank angle on ground ≥ 6 deg

Slat to wing area ratio 8% ≤ · ≤ 9%

Aileron to wing area ratio 3% ≤ · ≤ 4%

Rear spar clearance for landing gear integration ≥ 0 m

Slat to wing chord ratio at internal kink position 12% ≤ · ≤ 14%

Table 2: Constraints of a typical aircraft sizing problem
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Population initialisation

Population evaluation: Objectives = ε(F (x))

Rank population

While (Σ(Objectives(:)) > 0) then (some points do not satisfy at least one constraint)

Cross population

Mutate parent population using our probability function P (dx)

Remove clones from population

Evaluate children population objectives

Rank population

Reduce population

End

Table 3: NSGA pseudo code to produce admissible points

Genetic
FSQP

Algorithms

Convergence time (hour) 3.25 5.66

Admissible points (out of 50) 50 16

Success rate (admissible point/initial point) 100% 32%

Efficiency (admissible point/hour) 15.4 2.8

Table 4: Comparison between GA and FSQP in producing admissible points starting from a

random population of 50 individuals
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First population coming from previous computation (we know constraints are satisfied)

Criteria evaluation

Rank population

Initialise non-dominated population

While (NumberOfGenerations <= NbGenerationMax) then

Cross population

Mutate parent population

Remove clones from population

Evaluate children population objectives

Evaluate constraints

Evaluate criteria

Rank population

First, rank population of points satisfying constraints

Then, rank population of points not satisfying constraints

Reduce population, keeping best individuals

Save non-dominated points

End

Table 5: NSGA pseudo code to produce Pareto points

Constraint name
First population Second population

Relative error Nb of centers Relative error Nb of centers

Take-off field length 2.6% 20 16.6% 35

Approach speed 0.08% 13 1.5% 21

Aspect ratio 5.5% 17 6.4% 27

Fuselage fuel ratio 0.3% 9 11.5% 28

Climb speed 4.6% 5 45.1% 28

Scaling factor
0.4% 9 21.9% 23

on engine thrust

Table 6: Relative errors in the approximation of some of the constraints. The first population

was kept to construct the approximation.
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