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We use the letter A to denote a finite alphabet, Z do denote the set of all integers, and N the set of non-negative integers. We use A ⊆ fin B to denote that A is a finite subset of B, and ℘ fin (A) to denote the set of all finite subsets of A.

We consider a VASS of dimension k ∈ N as a tuple A = (A, k, Q, I, δ, F ) with initial configurations, final states, with transitions that read letters from a finite alphabet A. That is, A is a finite alphabet, Q is a finite statespace, I ⊆ fin Q×N k is the set of initial configurations,1 F ⊆ Q is the set of final states, and δ ⊆ fin Q × A × Z k × Q is the set of transitions. As usual we use (q, x) w -→ (p, ȳ) to denote the run from (q, x) ∈ Q × N k to (p, ȳ) ∈ Q × N k by reading the word w ∈ A * . More precisely, this relations is defined recursively: (q, x) a -→ (p, ȳ) if a ∈ A, x, ȳ ∈ N k and (q, a, ȳx, p) ∈ δ; and for non-empty words u, v ∈ A * , (q, x)

u•v --→ (p, ȳ) if (q, x) u -→ (r, z) and (r, z) v -→ (p,
ȳ) for some (r, z). Let us denote by L(A) the coverability language of A, that is,

L(A) = {w ∈ A * : (q 0 , x) w -→ (q f , ȳ) for some (q 0 , x) ∈ I and (q f , ȳ) ∈ F × N k }.
The universality problem is the problem of, given a VASS A over an alphabet A, whether L(A) = A * . The co-finiteness problem is the problem of, given a VASS A over an alphabet A, whether A * \ L(A) is finite. (One may alternatively call the universality problem the "co-emptiness problem".) Theorem 1. The universality problem for VASS coverability languages is decidable.

Proof. Consider finite sets of configurations Q × N k , which we call macro-states. We say that a macro-state

X ⊆ fin Q × N k is accepting if X ∩ (F × N k ) = ∅.
Consider the ordering over macro-states so that X X if for every (q, x) ∈ X there is (q , ȳ) ∈ X so that q = q and x ≤ ȳ. It is easy to see, by Dickson's lemma, that it is a well-quasi-order. Notice that the set of accepting macro-states is -upward-closed or, in other words, that the set of non-accepting macro-states is -downward-closed.

Finally, consider the one-step relation between macro-states so that

X a -→ X if X = {(p, ȳ) ∈ Q × N k : there is a run (q, x) a -→ (p, ȳ) in A for some (q, x) ∈ X}, which we extend to words as usual. It is not hard to see that it is -downward-compatible: if X a -→ Y and X X then X a -→ Y for some Y Y . Let C A = {w ∈ A * : I w -→ X with X non-accepting} and observe that A * \L(A) = C A . If C A is non-empty, consider any w ∈ C A of minimal length. Then, I = X 0 a1 -→ X 1 a2 -→ • • • an --→ X n for some non-accepting X n and w = a 1 • • • a n .
If there are two positions 0 ≤ i < j ≤ n so that X i X j , then by downward-closure of non-accepting macro states and downwardcompatibility, it follows that the word w = (a

1 • • • a i ) • (a j+1 • • • a n ) is neither in L(A)
and thus that w was not length minimal. Therefore, there are no i < j so that X i X j , which we usually define as (X i ) i being a " -bad sequence".

On the other hand, since is decidable, and since ( a -→) a∈A is decidable, controlled (in the sense of [START_REF] Figueira | Ackermannian and primitive-recursive bounds with Dickson's lemma[END_REF]) and finite-branching (actually, each a -→ is functional), there is a computable bound N on the maximal length of any sequence X 0

a1 -→ X 1 a2 -→ • • • an-1 ---→ X n-1 an --→ X n so that X 0 = I and (X i ) i is a -bad sequence.
Therefore, L(A) = A * if, and only if, there is a word w ∈ A * of length at most N such that w ∈ L(A), whence we obtain decidability for universality.

We show that the co-finiteness problem is also decidable, by reduction to the problem above.

Theorem 2. The co-finiteness problem for VASS coverability languages is decidable.

Towards showing this, let us fix a VASS A = (A, Q, I, δ, F ) of dimension k, and let us define q w p as the fact that there is a run on w from state q to state p in the underlying NFA of A (i.e., we disregard the vectors), we call this a pseudorun. We will sometimes write q w F to denote q w q f for some q f ∈ F . Let P = ℘ fin (Q × N k ) × ℘(Q). We define the profile of A between two words u, v ∈ A * as an element (X, T ) ∈ P, where X is the set of all configurations that sit between u and v in accepting pseudoruns on u • v which happen to be runs on u; and T is the set of the states leading to acceptance through pseudoruns. Formally, profile(u|v) = (X, right-type(v)) ∈ P, where right-type(v) = {p ∈ Q : p v F }, and X = {(q, ȳ) : (q i , x) u -→ (q, x) v F for some (q i , x) ∈ I}.

We define the following ordering over P: (X, τ ) (X , τ ) iff τ = τ ; and for all (q, x) ∈ X there is (p, ȳ) ∈ X such that p = q and x ≤ ȳ.

Lemma 3. ( , P) is a well-quasi-order.

Proof. By Dickson's lemma.

Lemma 4. If profile(u|v) profile(u |v) and uv ∈ L(A), then u v ∈ L(A).

Proof. By monotonicity of VASS.

Lemma 5. If profile(uw|v) profile(u|wv) then profile(uw i |v) profile(uw|v) for all

i ≥ 1.
Proof. Notice that it suffices to prove that profile(uw i |v) profile(uw i-1 |v) for any arbitrary i ≥ 1; the statement then follows by transitivity of .

Since right-type(v) = right-type(wv) by the hypothesis profile(uw|v) profile(u|wv), we obtain right-type(v) = right-type(w j v) for every j.

(

Given an arbitrary (r, n) inside the first component of profile(uw i |v), we show that there is some (r, n+ ) in profile(uw i-1 |v) for some n+ ≥ n. Suppose that (r, n) originates from some (q, m) in profile(uw|w i-1 v), that is,

I (q 0 , x) uw --→ (q, m) w i-1 ---→ (r, n) v F.
(

Since q

w i-1 v
F by (2), we have q ∈ right-type(w i-1 v) = right-type(v) by ( 1). In other words, q v F . Therefore, (q, m) is in profile(uw|v) profile(u|wv), and thus some (q, m+ ) is in profile(u|wv) for some m+ ≥ m, that is,

I (q 0 , x) u -→ (q, m+ ) wv F.
(3) Since (q, m)

w i-1
---→ (r, n) by ( 2), then (q, m+ )

w i-1
---→ (r, n+ ) for some n+ ≥ n, by monotonicity. Further, since r v F by (2), we obtain

I (q 0 , x) u -→ (q, m+ ) w i-1 ---→ (r, n+ ) v F, (4) 
meaning that (r, n+ ) is in profile(uw i-1 |v). This, together with (1), means that profile(uw i |v) profile(uw i-1 |v).

Using the above three lemmas, we can now prove Theorem 2 by reduction to the universality problem.

Proof of Theorem 2. Let A = (Q, I, δ, F ) be a k-dimension VASS on the alphabet A. Notice that there is a computable function f so that for every letter a ∈ A and words u, v ∈ A * , |profile(u|av)| ≤ f (|profile(ua|v)|), where the size | • | consists of the number of bits needed to encode the profile. Further, for every word w ∈ L(A) we have profile(w|ε) = (∅, ∅). Therefore, since is a wqo (Lemma 3), there is a computable bound N so that every z ∈ L(A) of size larger than N can be decomposed z = u • w • v so that profile(uw|v) profile(u|wv).

Suppose there is a word in the complement of L(A) of size larger than N . Then, by Lemma 5 and the discussion before we have, for all j, that profile(uw j |v) profile(uw|v) for some uwv ∈ L(A), w = ε. By the counter-positive statement of Lemma 4, there are infinitely many distinct words in the complement of L(A). Summing up, the complement of L(A) is finite if, and only if, it contains words of size at most N .

Therefore, we have to test if there is a word of size > N missing from L(A). For doing this, we first guess a prefix w ∈ A * of size N + 1, and we compute I = {(q, ȳ) : (q 0 , x) w -→ (q, ȳ) for some (q 0 , x) ∈ I}. We now need to check that for some v ∈ A * we have wv ∈ L(A), in other words, that the universality problem for A = (Q, I , δ, F ) is negative. By Theorem 1 this is decidable and thus so is the co-finiteness problem.

Note that we allow to have a set of initial configurations. Previous works[START_REF] Jančar | Petri nets and regular processes[END_REF] have studied the containment or universality problem assuming only one initial state. The humdrum extension to a set of initial states is albeit necessary for obtaining the decidability result of Theorem
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