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Anisotropic nonlinear refractive index measurement
of a photorefractive crystal via spatial self-phase modulation

Omar Boughdad,∗ Aurélien Eloy,∗ Fabrice Mortessagne, Matthieu Bellec,† and Claire Michel‡

Université Côte d’Azur, CNRS, Institut de Physique de Nice, France

We show that the refractive index modification photoinduced in a biased nonlinear photorefractive
crystal can be accurately measured and controlled by means of a background incoherent illumination
and an external electric field. The proposed easy-to-implement method is based on the far-field mea-
surement of the diffraction patterns of a laser beam propagating through a self-defocusing medium
undergoing spatial self-phase modulation. For various experimental conditions, both saturation in-
tensity and maximum refractive index modification have been measured. We also clearly evidence
and characterise the anisotropic nonlinear response of the crystal in the stationary regime.

I. INTRODUCTION

In the past few decades, photorefractive (PR) crys-
tals [1] have been extensively used as a suitable medium
for nonlinear optics applications [2]. With a controllable
bias voltage and under incoherent illumination, the pho-
toinduced optical properties of PR crystals can indeed be
efficiently engineered. Numerous nonlinear optics experi-
ments have been carried out, mainly focused on the study
of the linear and nonlinear light transport properties.
On the one hand, non-diffracting optical beams allow
to fabricate non-permanent photonic lattices, i.e. arrays
of coupled waveguides. It has been widely used to ob-
serve various families of optical discrete solitons [3–5], to
study wave properties of quasicrystals [6] and graphene-
like structures [7, 8] as well as to evidence weak or strong
transverse localisation in disordered lattices [9, 10]. On
the other hand, in homogeneous configuration, nonlinear
patterns formation dynamics [11–13] as well as quantum
hydrodynamical features of light [14–16] have been inves-
tigated.

In order to get better insights on such light transport
properties and allow quantitative comparison with the-
ory and numerics, a key experimental parameter to mon-
itor is the amplitude of the photoinduced refractive index
modification. In principle, this value can be accurately
controlled through an external voltage and an incoher-
ent illumination but, surprisingly, is roughly estimated in
most experiments (typically of the order of 10−4). More-
over, when measured, the calibration method employed
and the associated uncertainties are rarely addressed.
Recently, Armijo et al. proposed an absolute calibration
method to measure the refractive index of photoinduced
1D and 2D photonic lattices [17]. These measurements
are very consistent with theory but specific to lattice con-
figurations in a focusing, highly saturated regime. In a
previous work, we also addressed a method based on the
displacement of a weak optical defect in a strong optical
gaussian environment to extract the maximum refractive

∗ Both authors contributed equally
† matthieu.bellec@inphyni.cnrs.fr
‡ claire.michel@univ-cotedazur.fr

index and the saturation intensity [16]. The measure-
ments were in quite good accordance with the expected
theoretical values but not easy to implement and time
consuming.

When an ultrashort pulse travels in a nonlinear
medium new frequencies appear within its spectrum as
the input intensity increases, via the self-phase modula-
tion effect [18, 19]. Each new frequency is associated to
a 2π-phase shift and thus to a given value of the nonlin-
ear refractive index. Similarly, when a cw spatially lim-
ited wavepacket propagates in a nonlinear medium, new
spatial frequencies are generated as the input intensity
increases. In this case, it simply consists of rings appear-
ing in the far-field, as illustrated in Fig. 1. This approach
already allowed to measure cw nonlinear effects in liquid
crystals [20, 21], graphene suspensions [22] as well as hot
atomic vapours [23, 24] to cite a few.

Here, we exploit spatial self-phase-modulation (sSPM)
to measure the nonlinear photorefractive response of a
Strontium Barium Niobate (SBN) crystal. Both satura-
tion intensity and maximum refractive index modifica-
tion have been measured with respect to the input in-
tensity, external voltage and incoherent illumination am-
plitude. We also clearly evidenced and measured the
anisotropic nonlinear response of the crystal, in good
agreement with reported measurement in lattices [17].

The paper is organised as follow. We first briefly de-
scribe the nonlinear response of the PR crystal, and the
nonlinear propagation of a laser beam polarised along its
crystallographic axis. Then we present the sSPM effect,
which describes the nonlinear interference pattern formed
in the far-field at the output of the nonlinear medium.
This effect results from the nonlinear phase accumulated
by the laser beam along its propagation. Then we show
how this approach allows to measure the absolute nonlin-
ear refractive optical index of the crystal. Experimental
and numerical results are compared.

II. PHOTOREFRACTIVE MODEL AND
NONLINEAR CW LASER PROPAGATION

In this section, we shortly describe the nonlinear pho-
torefractive effect [25] occuring when a photorefractive
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FIG. 1. Sketch of the experimental setup. A focused cw
laser beam propagates in a biased SBN photorefractive crys-
tal. The beam is linearly polarised along x, corresponding
to the c-axis. The crystal is thinner than the Rayleigh length
and placed out of focus which garanties a quasi-constant beam
curvature radius. The spatial (2D) spectrum is measured in
the far-field. The external voltage (resp. the white light illu-
mination) controls the maximum value of the photoinduced
refractive index modification ∆nmax (resp. the saturation in-
tensity Isat).

crystal is illuminated by a laser beam. In the regions of
high intensity, impurities charge carriers go from the va-
lence to the conduction band of the crystal and become
mobile. They therefore move to different locations in the
crystal, and two transport mechanisms are considered.
First, charges can be diffused toward a lower charge con-
centration place. Second, they can be drifted whether by
the internal electric field generated by the photovoltaic
effect, and/or by an external electric field. The driven
motion of the charge carriers occurs in a preferential di-
rection, which is naturally determined by the direction of
the polar axis (c-axis) of the crystal. An exeternal elec-
tric field applied along the c-axis reinforces the directed
motion of the charges. Finally, the electrons (or holes)
recombine with free sites of the crystal lattice, creating a
new distribution of charges, resulting in a spatially dis-
tributed space charge electric field. This field modulates
the optical refractive index of the crystal, through the
linear electro-optic Pockels effect. Depending on the ori-
entation of the external electric field with respect to the
c-axis, the refractive index change can be either positive
(focusing effect) or negative (defocusing effect). For a
linear polarisation in the transverse (x, y) plane, paral-
lel to the crystallographic c-axis, z being the direction of
propagation, the variation of the refractive index in the
transverse plane is then given by:

∆n(I) = −1

2
n3

0r33Esc[I(x, y)], (1)

where n0 = 2.36 in the linear refractive index of the bulk
crystal along the c-axis. In this case, the electro-optic
coefficient is r33 = 250 pm/V and Esc = |Esc(I)| is the
amplitude of the space charge electric field which depends
on the intensity I(x, y) of the optical beam.

A. Anisotropic description

In a biased photorefractive crystal with an external
electric field Eext applied along the c-axis, and in the
framework of the band-transport model proposed by
Kukhtarev et al. [26], the space charge electric field can
be expressed in terms of an electrostatic potential φ. It
consists in a light induced potential φ0 and an external
bias term −|Eext|x, considering the c-axis aligned with
the x-axis. This results in an anisotropic description of
the photorefractive effect, leading to Esc = Eext −∇φ0

[27]. The quantity Esc − Eext = −∇φ0 is often referred
as a screening field within the crystal, generated by the
light induced potential [28]. Considering that the system
is in a steady state, that the photovoltaic effect is negli-
gible, and that the drift effect overcomes diffusion for the
charge carriers migration, the potential equation for the
electrostatic field φ0 is given by

∇2
⊥φ0 + ∇⊥ ln (1 + Ĩ) ·∇⊥φ0 = |Eext|∂x ln (1 + Ĩ), (2)

where ∇⊥ is the gradient in the transverse plane in carte-
sian coordinates. Ĩ = I/Isat is the laser beam intensity
normalised to the saturation intensity (often associated
to a dark intensity), which accounts for the ratio between
the thermal and the photoinduced excitations. In exper-
iments, an incoherent white light illumination is usually
used as a background to artificially create a contribution
to the thermal excitation in a controllable way.

B. Isotropic approximation

If the spatial dimension of the optical beam is much
larger than the spatial scale of the electric field, the
system adopts a (1+1) dimensional geometry, with a
quasi-homogeneous illumination of the crystal [25]. In
this case, the description of the photorefractive effect is
slightly different than the previous case and leads to an
isotropic 1D description of the phenomenon [29]. The
space charge electric field thus comes to a simpler expres-
sion, Esc = Eext/(1 + Ĩ). In this model, the refractive
index variation reads:

∆n(I) = −1

2
n3

0r33Eext
1

1 + Ĩ
. (3)

In the latter expression, the light intensity induces a
screening of the refractive index variation. Indeed, when
the laser intensity is zero, the absolute refractive index
variation |∆n| is maximised. On the contrary, this vari-

ation tends to zero when Ĩ becomes much greater than
unity. The screening effect saturates for high enough
laser intensities, and the level of saturation is controlled
by the parameter Isat. Although not strictly valid in the
(2+1)D configuration, this isotropic description will be
considered for the analysis of the experimental results.
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C. Nonlinear cw laser propagation

We model the propagation of a laser beam of ampli-
tude E(x, y, z) and intensity I = |E|2, polarised along
the c-axis of the crystal with the nonlinear Schrödinger
equation (NLSE):

i∂zE = − 1

2k0n0
∇2
⊥E − iαE + k0∆n(I)E, (4)

where z is the propagation direction, k0 = 2π/λ0 with λ0

the vacuum wavelength of the laser beam, n0 the base in-
dex of refraction of the bulk crystal, ∆n(I) the nonlinear
variation of the refractive index described by equations
(1) to (3), and α the linear absorption coefficient of the
bulk material. The absorption coefficient has been mea-
sured experimentally and is estimated at α = 1.319 cm−1

at 532 nm.
Applying a change of variable, that is E = A ·

eik0∆nmaxz with ∆nmax = 1
2n

3
0r33Eext leads to a new

propagation equation for A :

i∂zA = − 1

2k0n0
∇2
⊥A−iαA+k0∆nmax

(
Ĩ

1 + Ĩ

)
A. (5)

This corresponds to a change of reference for the bulk
refractive index, and defines a new expression for the
nonlinear variation of the refractive index that reads :

∆n(I) =
1

2
n3

0r33Eext
Ĩ

1 + Ĩ
= ∆nmax

Ĩ

1 + Ĩ
, (6)

in which the saturation of ∆n with respect to the laser
intensity appears clearly. The coefficient ∆nmax thus cor-
responds to the maximum variation of the nonlinear re-
fractive index so that ∆nmax = 1

2n
3
0r33Eext.

III. SPATIAL SELF-PHASE MODULATION
AND NONLINEAR REFRACTIVE INDEX

MEASUREMENT

In order to fully characterise the nonlinear index vari-
ation induced by a laser beam, we take advantage of
the spatial self-phase modulation (sSPM) to measure the
accumulated nonlinear phase shift of a Gaussian beam
propagating through the SBN crystal. sSPM is a non-
linear effect which refers to the modulation of the phase
in the transverse plane of a laser beam propagating in a
nonlinear medium. This phase modulation is proportion-
nal to the transverse intensity profile of the laser beam.
Given the relation (6), the variation of the intensity in
the transverse plane as well as along the propagation re-
sults in a nonlinear phase shift ∆ΨNL(x, y) that can be
written as:

∆ΨNL(x, y) = k0

∫ Lz

0

∆n(r, z) dz, (7)

with Lz the length of the photorefractive crystal. For a
laser beam with a transverse Gaussian profile of radius at
1/e2 denoted wp, one can show that, in a non-saturated
regime,

∆ΨNL(x, y) = ∆Ψ0 exp
(
−r2/w2

p

)
, (8)

r being the radial coordinate such as r = (x, y). Con-
sequently, for each point r1 on the curve of ∆ΨNL, it
is always possible to find a second point, r2, having the
same slope. Hence, fields coming from regions close to
r1 and r2 present the same wavevector and two-wave in-
terferences are expected. If ∆Ψ0 � 2π, the diffraction
pattern the far-field is composed of a set of concentric
rings. Bright or dark rings, that is to say maximum
constructive (resp. destructive) interference, occur when
∆ΨNL(r1) − ∆ΨNL(r2) = mπ, with m an even (resp.
odd) integer. Finally, the number of rings Nrings can be
estimated thanks to the relation [20]:

Nrings '
∆Ψ0

2π
. (9)

In the following, we present the use of sSPM to access
experimentally the nonlinear refractive index of SBN by
counting the rings appearing in the diffraction pattern in
the far-field.

IV. EXPERIMENTAL SETUP

The experimental set-up is depicted in Fig. 1. The
nonlinear medium is a 5 × 5 × 20 mm3 SBN:61 crystal,
doped with cerium (0.002 %) to enhance its photoconduc-
tivity. The crystal is shone by a laser beam (wavelength
λ0 = 532 nm) with a Gaussian transverse profile whose
radius at 1/e2 is 220µm at the entrance of the PR crystal,
propagating along the z axis. The position of the crystal
along z is fixed in order to keep constant the incident ra-
dius of curvature of the wavefronts estimated to be 21 cm
on the entrance facet, and considered constant along the
propagation of the light through the crystal. The polar-
isation of the light is maintained horizontal (i.e. along
x), and parallel to the c-axis to maximise the electroop-
tic coefficient r33 of SBN. Two electrodes allow to create
an external electric field Eext along the c-axis. Changing
Eext results in a modification of the maximal nonlinear
refractive index ∆nmax, as indicated in Eq.(3). The dy-
namics of the saturation of the photorefractive effect is
controlled by illuminating the crystal with an incoher-
ent white light, providing a control over Isat and so the
dark intensity. As explained previously, the white light
enhances thermal effects that increase the charge carri-
ers’ mobility, leading to an easier recombination process.
The presence of white light thus increases Isat, hence one
needs a higher laser intensity to saturate the refractive
index variation. The illumination remains unmoved over
all experiments, only its power is varied, in order to en-
sure the best possible control over the variation of Isat.
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FIG. 2. Intensity distribution of the spatial spectrum mea-
sured in the far-field, i.e. (kx, ky) plane, for different initial
laser intensities. (a) Experimental measurements. (b) Numer-
ical image obtained for I = 100 mW.cm−2, by solving the cou-
pled Eqs. (4) and (2). (c) Numerical image obtained for the
same optical intensity by solving the Eq. (4) in the isotropic
approximation. For each panel, kx (resp. ky) spans from -52.5
mm−1 to 52.5 mm−1 (resp. -36 mm−1 to 36 mm−1).

The maximum accessible white light power is estimated
to be 3 W, provided by a halogen lamp of nominal power
60 W. Practically, the nonlinearity is thus controlled by
changing the intensity I of the laser, the electric field Eext

and the saturation intensity Isat. Finally, the Fourier
transform of the outgoing light is imaged on a sCMOS
camera placed one meter away from the output facet.
This distance is large enough to considerer being in the
far-field.

V. RESULTS AND DISCUSSION

Figure 2(a) presents the intensity spatial distribution
of the spatial spectrum measured in the far-field (kx, ky),
for various input intensities I. A ring structure appears
as I increases. The shape is clearly not symmetric. As
will be discussed later, this is due to the anisotropic re-
sponse of the crystal.
First, let us focus on the behaviour along the kx axis
which corresponds to the c-axis conjugate. We plot the
kx-profiles on the Fig. 3(a). To improve the signal-to-
noise ratio, we integrate the signal over 40 pixels along
the ky axis. With increasing optical intensities, more and
more rings appear, indicating an increase of the nonlin-
ear phase shift. Typical profiles at I = 9 mW.cm−2 and
I = 49 mW.cm−2 are shown in the Fig. 3(b-c). The gray
points count twice the number of rings Nring. The mea-
surement of the nonlinear refractive index based on sSPM
requires a precise analysis of the curvature of the central
spot. Indeed, as detailed in [30–32], the nonlinear phase
shift ∆Ψ0 is 2πNrings for a bright (i.e. concave) central
spot and (2Nrings − 1)π for the dark (i.e. convex) case.

FIG. 3. (a) Experimental spectrum profiles (cut along kx) for
various input intensities. Black (resp. white) corresponds to
the maximum (resp. minimum) spectral power which is nor-
malised to 1 for each measurement. The widths of the profiles
have been artificially increased for clarity. (b-c) Typical pro-
files at I = 9 mW.cm−2 and I = 49 mW.cm−2 (red and blue
curves respectively). The gray points count twice the num-
ber of rings Nring. The concave (resp. convexe) behaviour
at kx = 0 (dashed gray line) in the red (resp. blue) curve
defines the nonlinear phase shift as ∆Ψ0 = 2πNrings [resp.
∆Ψ0 = (2Nrings − 1)π], see text for details.

Note that in both cases, the contribution to the nonlinear
phase shift of the appearance of a new ring is 2π [20], if
the curvature of the central spot remains unchanged. For
example, in Fig. 3(b), we have Nring = 4 and a convex
curve at kx = 0 (see inset) which gives ∆Ψ0 = 7π. In the
Fig. 3(c), we have Nring = 1, a concave curve at kx = 0
and thus ∆Ψ0 = 2π. Finally, one obtains the nonlin-
ear index of refraction ∆n as a function of the nonlinear
phase, ∆n = ∆Ψ0/(k0Lz), with Lz = 20 mm.

Moreover, the diameter of the rings saturates after
a certain intensity. As discussed above, such a satura-
tion effect is expected for a photorefractive nonlinearity
(in both isotropic and anisotropic descriptions). Then,
at very high optical intensity (above 300 mW.cm−2),
the power inside the central spot increases, reducing
the contrast of the outer rings. This observation can
be explained considering Eq. (6). In the regime where
I � Isat, the nonlinear refractive index is independent
of I, implying that the medium becomes homogeneous.
Therefore, no interference patterns can be observed in the
far-field and one gets a clear Gaussian diffracted pattern.
This behavior has been also found in our simulations.
For a Kerr nonlinearity, the numerics did not reveal such
a behavior. This indicates that it is only related to the
saturable nature of the PR nonlinearity.

From the rings counting procedure and the curvature
analysis at kx = 0, the absolute value of ∆n is plotted in
the Fig. 4 versus the optical intensity I of the incoming
beam for different sets of external electric field and white
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FIG. 4. Nonlinear index of refraction along the c-axis for a given set of parameters of white light intensity and external electric
field with respect to the incident optical intensity and corresponding fits using a isotopic saturable model (eq. (6)). (a) Same
applied external electric field of 1.5 × 105 V.m−1 and different white light power [0.36, 0.96, 1.92] W. (b) Same applied white
light power (1.92 W), giving Isat ' 25 mW.cm2 and different electric field [0.5, 1, 1.5]× 105 V.m−1, from left to right. On both
panels, vertical error bars are estimated looking at the cuts of the images and represent an uncertainty of one ring on the rings
count at high intensity. Horizontal errors bars are smaller than the symbols.

light intensity. In both configurations, we observe an
increase of |∆n| for small I and a clear saturation at high
intensity. Let us first consider the case of Fig. 4(a) where
Eext = 1.5 × 105 V.m−1 is fixed. From left (blue-filled
circles) to right (red diamonds), the white light power is
increased from 0.36 W to 1.92 W. The values reached on
the plateau, ∆nmax, by the three curves are very close
to each other. Moreover when the white light intensity
gets higher, the optical intensities needed to reach the
plateau gets higher as well. The data are fitted taking
into account the isotropic model defined by eq. (6) along
the c-axis of the crystal. The absolute variation of the
nonlinear refractive index is then |∆n(I)| = |∆nmax| ×
Ĩ/(1 + Ĩ). The three fitted curves are shown on Fig. 4(a)
and the fitted parameters are presented in Tab. I. The
values extracted from the experimental data are in good
agreement with the theoretical value, |∆nmax| = 2.32 ×
10−4 given by Eq. (6).

We present on Fig. 4(b) the case where the white
light is set at PWL = 1.9 W such as Isat is fixed
to 25.7 mW.cm2 and different external electric fields
[0.5, 1, 1.5] × 105 V.m−1, from left to right. Here, it is
clear that the plateau is reached for the same incident
optical intensity, which is expected as the saturation in-
tensity is fixed. On the other hand, the maximum value
obtained for ∆nmax gets smaller as Eext decreases. The
extracted free parameters of the fits, |∆nmax| and Isat,
are summarised in Tab. I.

As a summary, results presented in Figs. 4 (a) and (b)
and in Tab. I show that we have a control over the dy-
namics and asymptotic value of the nonlinear refractive
index of the crystal with respect to the laser beam inten-
sity. Indeed, we are able to measure an absolute value for
the maximal nonlinear index of refraction in good agree-
ment with the theory. Moreover, the estimation of the

saturation intensity Isat seems to be accurate and grows,
as predicted, with the white light intensity. Those mea-
surements thus suggest that the spatial self-phase mod-
ulation is a suitable tool to predict the behaviour of the
photorefractive nonlinearity.

As mentioned previously and shown on Fig. 2(a), the
recorded images present a shape radically different from
the expected circular rings. To get better understand-
ing on the observed anisotropy, we solved numerically
the coupled Eqs. (4) and (2). The results shown in
Fig. 2(b) for I = 100 mW.cm−2 is, at least qualitatively,
in very good accordance with the corresponding experi-
mental image. To compare with, we present in Fig. 2(c),
the numerics obtained at the same input intensity in the
isotropic approximation, solving directly Eq. (5). This
allows us to clearly attribute the non-symmetric shape
of the spectrum to the anisotropic response of the crys-
tal, described by Eqs. (1) and (2).
To be more quantitative, we apply the same experimen-
tal procedure on profiles obtained along ky to extract
the nonlinear refractive index for each input intensity.
Although not shown here, a saturation is also observed.

TABLE I. Summary of the fitted parameters extracted us-
ing an isotropic saturable model on the data presented on
Fig. 4(a) and Fig. 4(b).

Symbols |∆nmax| (×10−4) Isat (mW.cm2)
Same Eext ◦ 2.99± 0.02 9.0± 0.2
Fig. 4(a) 4 3.03± 0.08 25.7± 0.9

♦ 2.64± 0.06 74.7± 3.3
Same Isat 4 3.03± 0.08 25.7± 0.9
Fig. 4(b) ◦ 1.86± 0.05 23.9± 0.9

♦ 1.09± 0.06 24.9± 2.2
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FIG. 5. Measurement of the anisotropy of SBN. Blue circles:
ratio of the fitted |∆nmax| along the kx direction and the or-
thogonal direction, errorbars: uncertainty given by the fitting
procedure. Blue solid line: mean value of the data, light-blue
area: standard deviation of the data. Red diamonds: aspect
ratios extracted directly from the images, averaged over the
10 images having the highest intensity. Error bars correspond
to the standard deviation.

We present on Fig. 5 the ratios of |∆nmax| along kx over
along ky extracted from the fits for all the different sets of
parameters Eext and Isat (blue-filled circles). Those val-
ues are compared to the aspect ratios extracted from the
images (Fig. 2(a)), defined as the ratio between the diam-
eter of the outer ring along the kx-direction and along the
perpendicular direction and averaged over the 10 images
having the highest intensity (red-filled diamonds). We
observe a very good agreement between the two meth-
ods used to estimate the anisotropy of the nonlinear
crystal, and the value of 1.6 is coherent with the liter-
ature [17]. Moreover, our simulations indicate a slightly
higher anisotropy of 2.0. This measurement suggests that
one can take benefit of the spatial self-phase modulation
to access and characterise properly the anisotropy of a
photorefractive crystal such as SBN. If we want to de-
scribe entirely the diffracted pattern in the far-field, the
anisotropic description of the PR effect is required. How-
ever, if we are only interested in measuring the nonlinear
refractive index of the medium along the c-axis (kx con-
jugated), the isotropic approximation is quantitatively
pertinent.

VI. CONCLUSION

To conclude, we have presented an absolute measure-
ment of the nonlinear refractive index of a SBN pho-

torefractive crystal by studying diffraction patterns in
the far-field taking benefit of spatial self-phase modula-
tion. When a gaussian wavepacket is initially injected
in a medium with isotropic nonlinear response, the ex-
pected signature of the sSPM consists in the appearance
of new spatial frequencies in the far-field with the ob-
servations of concentric rings. We have shown experi-
mentally that for the photorefractive crystal, the spec-
tral intensity distribution is not symmetric. By means of
numerical simulations, we confirmed that such signal is
due to the anisotropic response of the crystal. We anal-
ysed the spatial spectrum and measured the nonlinear
refractive index versus input optical intensity for vari-
ous experimental conditions (external voltage and white
light illumination). Our measurements are in very good
agreement with the isotropic model of the photorefrac-
tive effect when we consider the spectrum along kx which
is the conjugated of the c-axis. Finally, the anisotropy
we measured is 1.6.

The proposed experimental technique is quick, easy to
implement and might be applicable to any nonlinear crys-
tals. This is of great importance in the context of linear
and nonlinear light transport investigations where pre-
cise calibration of the photoinduced nonlinear refractive
index is required.

It’s worth mentioning that we didn’t discuss the tran-
sient regime of the photorefractive response which, in the
present case, is of the order of few tens of seconds. Dur-
ing the transient, the refractive index goes from zero to
its maximum value. This regime opens new perspectives
in probing the nonlinear light dynamics and will be the
subject of future studies.
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