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LOG-HESSIAN FORMULA AND THE TALAGRAND CONJECTURE

N. GOZLAN, XUE-MEI LI, M. MADIMAN, C. ROBERTO, P.-M. SAMSON

Abstract. In 1989, Talagrand proposed a conjecture regarding the regularization effect
on integrable functions of a natural Markov semigroup on the Boolean hypercube. While
this conjecture remains unresolved, the analogous conjecture for the Ornstein-Uhlenbeck
semigroup was recently resolved by Eldan-Lee and Lehec, by combining an inequality
for the log-Hessian of this semigroup with a new deviation inequality for log-semiconvex
functions under Gaussian measure. Our first goal is to explore the validity of both these
ingredients for some diffusion semigroups in Rn as well as for the M/M/∞ queue on the
non-negative integers. Our second goal is to prove an analogue of Talagrand’s conjecture
for these settings, even in those cases where these ingredients are not valid.

1. Introduction

The aim of this paper is threefold. First, we give explicit formulas for the log-Hessian
of some diffusion semigroups in Rn, and explicit lower bounds on some discrete ana-
logue of the log-Hessian for the M/M/∞ queuing process on the non-negative integers
N := {0, 1, . . . }. Second, we investigate deviation bounds for log-semiconvex functions,
in the above two settings. Third, we prove in each context an analogue of the Talagrand
Conjecture by different means. In the continuous setting of some class of diffusion semi-
groups in dimension 1, we generalize the approach developed in [17, 14, 26] based on the
log-Hessian and deviation bounds just mentioned; while for the M/M/∞ queuing process,
we use a direct computation.

We will now present the conjecture by Talagrand first in its original version on the
discrete hypercube and then in the continuous setting of the Ornstein-Uhlenbeck process,
before moving to a historical presentation of its resolution in the continuous setting and
the presentation of our results.

Consider the following infinitesimal generator on the n-dimensional hypercube Ωn :=
{−1, 1}n, acting on functions as Lf(σ) = 1

2

∑n
i=1(f(σi)−f(σ)). Here σi is the configuration

with the i-th coordinate flipped (i.e. σi
j = σj for all j 6= i and σi

i = −σi). Denote by

(Ps)s≥0 the associated semigroup (sometimes called “convolution by a biased coin” in the
literature), and by µn ≡ 2−n the uniform measure on Ωn which is reversible for L. In [37],
Talagrand conjectured (see Conjecture 1 in [37]) that for any s > 0, it holds that

lim
t→∞

t sup
n

sup
f∈Fn

µn({σ : Psf(σ) ≥ t}) = 0,

where Fn := {f : Ωn → [0,∞) with ‖f‖1 = 1}, and ‖f‖p := (
∑

σ∈Ωn
|f(σ)|pµn(σ))

1
p stands

for the Lp(µn)-norm of f , p ≥ 1. Moreover Talagrand formulated the following stronger
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statement (Conjecture 2 in [37]) :

(1.1) t sup
f∈Fn

µn({σ : Psf(σ) ≥ t}) ≤ c
1√
log t

, t > 1

for some constant c = cs depending only on s (and not on n). Both conjectures are still
open.

Let us underline that the difficulty of these questions completely relies on the uniformity
in the dimension n. For a fixed integer n, proving (1.1) with a constant c depending on s
and on the dimension n is easy. This can be seen using for instance the following line of
reasoning, that we will call the “strategy of the supremum” in the reminder of the paper.
Observe that for all f : Ωn → R, it holds

Psf(σ) =

∫
f(η)Ks(σ, η)dµn(η),

with Ks(σ, η) =
∏n

i=1(1 + e−sσiηi) and so

sup
f∈Fn

Psf(σ) = sup
η∈Ωn

Ks(σ, η) = (1 + e−s)n, ∀σ ∈ Ωn

Therefore, for t ≥ 0,

t sup
f∈Fn

µn({σ : Psf(σ) ≥ t}) ≤ tµn({σ : sup
f∈Fn

Psf(σ) ≥ t}) = t1{t≤(1+e−s)n}.

In particular,

t sup
f∈Fn

µn({σ : Psf(σ) ≥ t}) = 0

as soon as t > (1 + e−s)n and so, for any fixed s > 0 and n ∈ N it clearly exists a constant
c = cs,n such that (1.1) is satisfied.

If one assumes that ‖f‖p = 1 for some p > 1, then Markov’s inequality would give a
universal upper bound or order 1/tp−1 which is much better than 1/

√
log t. The hyper-

contractivity property of the semigroup [9, 7] also ensures that, if f : Ωn → R and p ≥ 1,
then ‖Psf‖q ≤ ‖f‖p with q = 1 + (p − 1)e2s. But this inequality does not say anything
when p = 1. Talagrand’s conjecture can therefore be seen as a weak L1 type regularization
property of the semigroup.

While the above problems (Conjectures 1 and 2) are still open, a recent series of papers
deals with a natural continuous counterpart to the conjectures, related to the Ornstein-
Uhlenbeck semigroup. Denote by γn the standard Gaussian (probability) measure in
dimension n, with density

Rn ∋ x 7→ (2π)−n/2 exp

{
−|x|2

2

}
,

where | · | denotes the standard Euclidean norm on Rn. For p ≥ 1, let Lp(γn) be the set
of measurable functions f : Rn → R such that |f |p is integrable with respect to γn. Then,
given g ∈ L1(γn), the Ornstein-Uhlenbeck semigroup is defined by the so-called Mehler
representation as

(1.2) P ou
t g(x) :=

∫
g
(
e−tx+

√
1 − e−2ty

)
dγn(y), x ∈ Rn, t ≥ 0.

By a change of variable, we may also write

(1.3) P ou
t g(x) =

1

Zt

∫
g(z)Mt(x, z)dz, x ∈ Rn, t ≥ 0,

where

Mt(x, z) := exp

{
− |z − e−tx|2

2(1 − e−2t)

}
= e−c2

t |etz−x|2/2 x, z ∈ Rn, t ≥ 0
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and Zt = (2π(1 − e−2t))n/2 is the normalizing constant and

(1.4) ct :=
e−t

√
1 − e−2t

t > 0.

The semigroup (P ou
t )t≥0 is associated to the infinitesimal diffusion operator Lou := ∆−x·∇

and enjoys the exact same hypercontractivity property as the convolution by biased coin
operator on the discrete hypercube defined above. It is therefore natural to ask for an
upper bound for

Ss(t) := t sup
f≥0,‖f‖1=1

γn({σ : P ou
s f(σ) ≥ t}), s > 0.

In [14, 26] Eldan, Lee and Lehec fully solved the problem by proving that for any s > 0
there exists a constant cs ∈ (0,∞) (depending only on s and not on the dimension n) such
that Ss(t) ≤ cs√

log t
for all t > 1 and this bound is optimal in the sense that the factor√

log t cannot be improved. In an earlier paper [4], Ball, Barthe, Bednorz, Oleszkiewicz
and Wolff already obtained a similar bound but with a constant cs,n depending on the
dimension n plus some extra log log t factor in the numerator. Later Eldan and Lee [14],
using tools from stochastic calculus, proved that the above bound holds with a constant
cs independent on n but again with the extra log log t factor in the numerator. Finally
Lehec [26], following [14], removed the log log t factor.

In both Eldan-Lee and Lehec’s papers, the two key ingredients are the following:

(1) for any s > 0, the Ornstein-Uhlenbeck semigroup satisfies, for all non-negative
function g ∈ L1(γn),

Hess (log P ou
s g) ≥ −c2

sId,

where Hess denotes the Hessian matrix and Id the identity matrix of Rn.
(2) for any positive function g with Hess (log g) ≥ −βId, for some β ≥ 0, and

∫
g dγn =

1, one has

γn({g ≥ t}) ≤ Cβ

t
√

log t
∀t > 1,

with Cβ = αmax(1, β).

More recently, following the above strategy, four of the authors [17] gave an alternative
elementary proof of Eldan-Lee-Lehec’s result in dimension 1, opening new lines of in-
vestigation. At this point we note that problem (1) is also at the heart of some of the
fundamental problems in the Analysis of Loop Spaces. A program of Gross [21] is to prove
Logarithmic Sobolev and Poincaré inequalities from Gaussian measures to Brownian mo-
tion and conditioned Brownian motion measures. The main problem involves constructing
an Ornstein-Uhlenbeck process on the space of loops, obtaining integration by parts for-
mula for these measures, and Poincaré inequalities. The latter is notoriously difficult,
with counter examples by Eberle [13] and defective inequalities by Gong-Ma [16]. The
Poincaré inequality is only proven to hold for very few classes of manifolds: see Aida [2]
for asymptotically flat manifolds and Chen-Li-Wu [11] for hyperbolic spaces. The idea is
to compare log pt, its gradient and Hessian with that of the Heat kernel on the Euclidean

space and one wishes to obtain information on tHess log p(t, x, y) + Hess
(

d2(x,y)
2

)
.

In Section 2, we investigate Item (1) above for general diffusion semigroups (Ps)s≥0, in
any dimension. In fact, using the Feynman-Kac formula, we are able to give an explicit
representation for Hess(logPsg) that leads, under some assumptions, to a similar bound
as in Item (1). We also investigate Item (2) for diffusions, in dimension 1 only, of the

form L = d2

dx2 − h′ d
dx (which corresponds to the Ornstein-Uhlenbeck operator for the

choice h(x) = 1
2x

2), when 0 < c ≤ h′′ ≤ C. Our results might therefore be seen as
perturbations (though potentially unbounded) of the Ornstein-Uhlenbeck setting. Then
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we apply the approach developed in [17] to prove the Talagrand Conjecture for such
diffusions in dimension 1.

In Section 3, we investigate Item (1) and Item (2) in the discrete setting of the M/M/∞
queuing process on the integers. We will prove that, in that setting, a result similar to that
of Item (1) still holds. On the other hand it appears that the picture is very different for
Item (2) in the discrete setting. In fact, if g is “log-convex”, in the sense that ∆ log g ≥ 0,
where ∆ is a discrete analogue of the Laplacian (see Section 3 for the definition), then
a statement similar to Item (2) holds. In contrast, we will construct counterexamples
of the result of Item (2) for g satisfying ∆ log g = −β, with β > 0. The first property
transfers to Talagrand’s conjecture for the M/M/∞ queuing process. More precisely,
if g is “log-convex” (in the discrete sense), then the strategy developed in [17] leads to a
positive conclusion regarding the Talagrand Conjecture but restricted to convex functions.
However, as shown in Section 3.5, the strategy of the supremum presented above appears
to be powerful in the case of the M/M/∞ semigroup on the integers and will allow us to
(fully) prove the conjecture in this setting.

It should be noticed here that the strategy of the supremum holds in the case of the
Ornstein-Uhlenbeck semigroup in dimension 1 [4], but does not seem to apply to the per-
turbations of the Ornstein-Uhlenbeck considered in this paper. Therefore the situation is
very different between the continuous and the discrete setting, and somehow in opposi-
tion (at least for the M/M/∞ queuing process and the family of diffusion semigroups we
consider): the strategy of the supremum works in the discrete, but not in the continuous;
in contrast, the strategy consisting of proving (1) and (2) above works in the continuous,
but fails in the discrete setting.

In fact, as will be shown in Section 4 by considering yet another class of semigroups
(namely, the Laguerre semigroups on (0,∞)), the picture can be different from the two
previous ones. Namely we will show that neither Item (1) nor item (2) holds for the
Laguerre semigroup, but the analogue of Talagrand’s conjecture still holds.

We may summarize the different situations in the following diagram (in the present
paper we investigate and prove results in the last three columns):

Semi-group: Ornst.-Uhl. 0 ≤ c ≤ h′′ ≤ C M/M/∞ Laguerre
Item (1): Lower Yes (under some

bound on Yes assumptions Yes No
(log Ptf)′′ on h)

Item (2): Deviation Yes (under some
bounds for semi- Yes assumptions No (β > 0) No (β > 0)

log-convex functions on h) Yes (β = 0)
((log f)′′ ≥ −β)

Talagrand’s (1) + (2) (1) + (2) strat. sup. strat. sup.

conjecture [14, 26, 17] or 1
t
√

log t

√
log log t

t
√

log t
1

t
√

log t

dim n = 1 strat. sup. [4]
Talagrand’s (1) + (2)
conjecture [14, 26] unknown unknown unknown
dim n > 1

The paper is organized as follows. In the next section, we deal with the continuous
setting of diffusion semigroups (we give a formula for the log Hessian and apply our result
to the Talagrand Conjecture in dimension 1). Section 3 is dedicated to the M/M/∞
queuing process: again bounds on some discrete analogue of the log-Hessian are given,
with a partial application to Talagrand’s conjecture (restricted to log-convex functions).
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In Section 3.5, we develop the strategy of the supremum to fully prove the conjecture.
Finally, in the last section we quickly deal with Laguerre semigroups.
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2. Diffusion semigroups

In this section, we derive an explicit formula for the Hessian (second-order space de-
rivative) of logPtf for general diffusion semigroups. As a warm up, we start with the
easy case of the Ornstein-Uhlenbeck semigroup itself, in dimension 1, in Section 2.1. Sec-
tion 2.2 contains the proof of the formula for the Hessian, which is the technical heart of
our results on diffusion semigroups. In the subsequent subsections, focusing on dimension
1, we use this formula to first show semi-log-convexity of Ptf (Section 2.3), then explore
deviation inequalities for semi-log-convex functions (Section 2.4), and finally put these
together to prove that the Talagrand Conjecture holds (Section 2.5) for a wide class of
diffusion semigroups.

Notation:

• C∞
K denotes the set of C∞ real valued functions with compact support.

• D(n), n = 0, 1, ..., denotes the set of Cn real valued functions whose derivatives and
the function itself have polynomial growth.

2.1. Bounds on the Ornstein-Uhlenbeck semigroup in dimension 1. In this sec-
tion we deal with the dimension 1 for simplicity, and set γ := γ1 with density denoted

ϕ(x) = (2π)−1/2e−x2/2, x ∈ R. Denote by

Hn(x) := ex2/2(−1)n dn

dxn

(
e−x2/2

)

the Hermite polynomial of degree n = 0, 1, . . . , with the convention that H0 ≡ 1. It is well
known that the family of Hermite polynomial is an orthonormal basis of L2(γ). Simple
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computations lead to H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x etc. Now, by a direct
induction argument, the following identities hold:

(P ou
t g)(n)(x) = cn

t

∫
g
(
e−tx+

√
1 − e−2ty

)
Hn(y)dγ(y), n ∈ N,

with ct defined by (1.4). Fix a positive integrable function g and, for any x ∈ R, denote
by Ex the expectation with respect to the probability measure with density

y 7→ g
(
e−tx+

√
1 − e−2ty

)
/

∫
g
(
e−tx+

√
1 − e−2ty

)
dγ(y)

with respect to the Gaussian measure γ. The above identities then read

dn(x) :=
(P ou

t g)(n)(x)

P ou
t g(x)

= cn
t Ex(Hn(Y )), x ∈ R, n ∈ N.

Our next step is to explore the first derivatives of x 7→ ut(x) := logP ou
t g(x). Letting

for simplicity gt(x) := P ou
t g(x), we get after simple algebra

u′
t(x) =

g′
t

gt
(x) = d1(x) = ctEx[H1(Y )] = ctEx[Y ]

u′′
t (x) =

g′′
t

gt
(x) −

(
g′

t

gt

)2

(x) = d2(x) − d2
1(x) = c2

t

(
Ex[H2(Y )] − Ex[H1(Y )]2

)
= c2

t (−1 + µ2(x)) ,

where µ2(x) = Ex[Y 2] − Ex[Y ]2 ≥ 0. In particular,

(logP ou
t g)′′(x) = u′′

t (x) ≥ −c2
t

which corresponds to Item (1) in the Introduction.

2.2. Representation for the Hessian of perturbed Ornstein-Uhlenbeck semi-

groups. In this section, we give an explicit formula for the Hessian of logPt for a wide
class of diffusion operators. We need to introduce some additional notation. For a, σ > 0,
consider the general Ornstein-Uhlenbeck operator Lou

σ,a on Rn

Lou
σ,a =

1

2
σ2∆ − ax · ∇,

where the dot stands for the scalar product. Observe that the Ornstein-Uhlenbeck operator
given in the introduction corresponds to σ =

√
2 and a = 1. In what follows, we will write

Lou instead of Lou
σ,a in order not to overload the notation. Let (Bt)t≥0 be a standard

Brownian motion on Rn on a (filtered) probability space (Ω,P) which we fix. For any
x ∈ Rn let (Xx

s )s≥0 be the (unique strong) solution to

Xx
t = x+ σBt − a

∫ t

0
Xx

s ds.

This is the so-called Ornstein-Uhlenbeck process (with parameters a, σ) starting at x ; its
infinitesimal generator is Lou. For any t > 0, the law of Xx

t will be denoted by γx
t and is

given by the (general) Mehler formula

dγx
t (y) =

1

Zt
Mt(x, y) dy

with

Mt(x, y) = Mσ,a
t (x, y) = exp

(
−a|y − e−atx|2
σ2(1 − e−2at)

)
, y ∈ Rn,

and Zt a normalizing constant. We will denote by γ the equilibrium measure of the process
given by

γ(dy) =
1

Z
exp

(
−a|y|2

σ2

)
dy, Z =

(
πσ2

a

)n/2

.
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Note that when a = 1 and σ =
√

2, then γ = γn is the standard Gaussian distribution on
Rn.

We also consider the following perturbation of the Ornstein-Uhlenbeck operator

LV = Lou − V

where V : Rn → R is a potential that acts multiplicatively, namely LV f = Louf−V f . The
associated semigroup will be denoted by (P V

t )t≥0. We recall that P V
t can be represented

by the Feynman-Kac formula:

Proposition 2.1. Suppose that V : Rn → R is continuous and bounded from below and
define for t ≥ 0 the operator P V

t by

P V
t f(x) = E

[
f(Xx

t )e−
∫ t

0
V (Xx

s ) ds
]
, ∀x ∈ Rn, ∀f ∈ L2(γ).

Then (P V
t )t≥0 is a semigroup on L2(γ) with infinitesimal generator LV .

In the sequel we will need the following definition.

Definition 2.2. Let t > 0, x ∈ R and let f ∈ L2(γ) \ {0} be a non-negative function. We
define the probability measure Qf,x on Ω (which depends also on t and V ) by

Qf,x(Γ) =
1

P V
t f(x)

∫

Γ
f(Xx

t )e−
∫ t

0
V (Xx

s )ds dP

and use Ef,x for the expectation with respect to Qf,x.

The following result gives an explicit representation for the Hessian of log P V
t f :

Theorem 2.3. Suppose that V : Rn → R is bounded from below and in D(2). For t > 0
and x ∈ Rn, set

Ax
t := −

∫ t

0
∇V (Xx

s )
sinh(a(t − s))

sinh(at)
ds+

2ae−at

σ2(1 − e−2at)
(Xx

t − e−atx).

Let f ∈ L2(γ) \ {0} be non-negative ; with the notation of Definition 2.2, it holds

∇(P V
t f)(x) = Ef,x(Ax

t )

and

Hess(logP V
t f)(x) +

2ae−2at

σ2(1 − e−2at)
Id

= −
∫ t

0

(
sinh(a(t − s))

sinh(at)

)2

Ef,x(Hess V (Xx
s ))ds+ Ef,x(Ax

t ⊗Ax
t ) − Ef,x(Ax

t ) ⊗ Ef,x(Ax
t ).

(2.1)

The notation ∇ denotes the gradient with respect to the standard Euclidean metric
(note that the Riemannian metric, intrinsic to the equation, is ∇̃ = σ2∇).

The interested reader may find a series of articles on first/second order Feynman-Kac
formulas for general elliptic diffusions on manifolds in [36, 15, 33, 3]. Moreover Hessian
estimates can be found in [28, 30] under general conditions that are non-trivial to check
(exchanging orders of operators, non-explosion, existence of global smooth flows). In
the proof of Theorem 2.3, we are able to compute the derivatives thanks to an explicit
formulation of Ornstein-Uhlenbeck bridge (which appears to be linear in its initial position)
and the introduction of the probability Qf,x (see [31, 29] for more on elliptic diffusion
bridges).
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Remark 2.4. Observe that, when V ≡ 0, a = 1 and σ2 = 2, P V
t is the Ornstein-Uhlenbeck

semigroup. In dimension 1, after a change of variable, (2.1) reads

(log P V
t f)′′(x) = −c2

t + Varf,x(Ax
t ) −

∫ t

0
αt(s)

2Ef,x(V ′′(Xx
s ))ds

= u′′
t = c2

t (−1 + µ2(x)) ,

using the notation of Section 2.1.

Proof of Theorem 2.3. Fix x ∈ R and t ≥ 0. According to Proposition 2.1, it holds

P V
t f(x) = E

(
f(Xx

t )e−
∫ t

0
V (Xx

s )ds
)

= Z−1
∫

Rn
f(y)E

(
e−
∫ t

0
V (Xx

s )ds|Xx
t = y

)
Mt(x, y) dy,

where Z = Zt is the normalisation constant for Mt(x, y) that does not depend on x.
Conditioning on Xx

t = y, (Xx
s )0≤s≤t is distributed as the Ornstein-Uhlenbeck bridge

(Y x,y
s )0≤s≤t, which begins at x and ends at y at the final time t. To determine the

dependence of the functions with respect to the variable x, we use an explicit representation
of Ys ≡ Y x,y

s as solution of the following equation

dYs = σdBs − aYsds + σ2∇x logMt−s(Ys, y)ds,

with the initial value Y0 = x and where ∇x stands for the derivative with respect to the
x variable. It has a singular drift at the terminal time t and so it is initially defined for
s < t, and then extended by continuity to Xs = z for s ≥ t. We have

∇x logMt(x, y) = (y − e−atx)
2ae−at

σ2(1 − e−2at)
= dt(y − e−atx),

(which is a drift pulling toward y), where we set dt := 2ae−at

σ2(1−e−2at) . Thus we get

(2.2) dYs = σdBs +
2aye−a(t−s)

1 − e−2a(t−s)
ds− a

1 + e−2a(t−s)

1 − e−2a(t−s)
Ysds.

The difference Y x,y
s − Y 0,y

s solves a time dependent linear equation and is given, for all
s ∈ [0, t], by

(2.3) Y x,y
s − Y 0,y

s = αt(s)x, where αt(s) :=
sinh(a(t − s))

sinh(at)
.

Therefore we have

(2.4)

P V
t f(x) =

∫

Rn
f(y)E

(
e−
∫ t

0
V (Y x,y

s )ds
)
Mt(x, y)dy

=

∫

Rn
f(y)E

(
e−
∫ t

0
V (αt(s)x+Y 0,y

s )ds
)
Mt(x, y)dy,

Take f ∈ C∞
K ; since Y 0,y

s does not depend on x, it holds

(2.5) ∇x

(
e−
∫ t

0
V (Y x,y

s )ds
)

= −e−
∫ t

0
V (Y x,y

s )ds
∫ t

0
αt(s)∇V (Y x,y

s )ds.

So,

∇(P V
t f)(x) = −

∫

Rn
f(y)E

(
e−
∫ t

0
V (Y x,y

s )ds
∫ t

0
∇V (Y x,y

s )αt(s) ds

)
Mt(x, y)dy

+

∫

Rn
f(y)E

(
e−
∫ t

0
V (Y x,y

s )ds
)

∇xMt(x, y)dy.

(2.6)

Plugging in the expression for ∇x logMt(x, y) and reversing the conditioning process, we
see that

∇(P V
t f)(x) = −

∫ t

0
E

(
f(Xx

t ) e−
∫ t

0
V (Xx

s )ds∇V (Xx
s )

)
αt(s) ds + dtE

(
e−
∫ t

0
V (Xx

s )dsf(Xx
t )(Xx

t − e−atx)

)
.
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Therefore, for 0 ≤ s ≤ t,

∇(log P V
t f)(x) = Ef,x(Ax

t ).

In the calculations above, we have taken liberty to differentiate under the integration sign,
which holds for any smooth functions with compact support. Since Y x,y

s is Gaussian and
has moments of all order and |∇V | growth at most polynomially, if a sequence fn ∈ C∞

K

converges to f ∈ L2(γ) then the right hand side of the latter converges uniformly. Hence
P V

t f is differentiable and the identity holds for any f ∈ L2(γ).
Using the same conditioning strategy, we can similarly compute the second order deriv-

ative of P V
t f , treated as a symmetric matrix. For this we go back to (2.6) and differentiate

under the integral signs: for any w ∈ Rn,

〈Hess(P V
t f)(x), w ⊗ w〉

= −
∫
f(y)E

(
e−
∫ t

0
V (Y x,y

s )ds
∫ t

0
αt(s)

2〈Hess V (Y x,y
s ), w ⊗w〉 ds

)
Mt(x, y)dy

+

∫
f(y)E

(
e−
∫ t

0
V (Y x,y

s )ds
(∫ t

0
αt(s)〈∇V (Y x,y

s ), w〉 ds
)2
)
Mt(x, y)dy

− 2

∫
f(y)E

(
e−
∫ t

0
V (Zx,y

s )ds
∫ t

0
〈∇V (Y x,y

s ), w〉αt(s)ds

)
〈∇xMt(x, y), w〉dy

+ E

(
e−
∫ t

0
V (Xx

s )dsf(Xx
t )〈HessxMt(x, z), w ⊗ w〉dy

)
.

The differentiation procedure holds for f in C∞
K , and the same approximation argument

as before shows that it holds also for any f ∈ L2(γ). Next we observe that the following
identity holds

Hessx logMt(x, y) = −dte
−atId

where Id is the n× n identity matrix. Therefore,

HessxMt(x, y)

Mt(x, y)
= Hessx logMt(x, y) + ∇x logMt(x, y) ⊗ ∇x logMt(x, y)

= −dte
−atId + d2

t (y − e−atx) ⊗ (y − e−atx).

Using (2.3) and (2.5) we get

〈Hess(P V
t f)(x), w ⊗ w〉
P V

t f(x)

= −
∫ t

0
αt(s)

2Ef,x(〈Hess V (Xx
s ), w ⊗ w〉)ds + Ef,x

((∫ t

0
αt(s)〈∇V (Xx

s ), w〉ds
)2
)

− 2Ef,x

(∫ t

0
〈∇V (Xx

s ), w〉αt(s)ds dt〈Xx
t − e−atx,w〉

)
+ d2

tEf,x

(
〈Xx

t − e−atx,w〉2
)

− dte
−at|w|2

= −
∫ t

0
αt(s)

2Ef,x(〈Hess V (Xx
s ), w ⊗ w〉)ds

+ Ef,x

((
−
∫ t

0
αt(s)〈∇V (Xx

s ), w〉ds + dt〈Xt − e−atx,w〉
)2
)

− dte
−at|w|2

= −
∫ t

0
αt(s)

2Ef,x(〈Hess V (Xx
s ), w ⊗ w〉)ds + Ef,x(〈Ax

t , w〉2) − dte
−at|w|2.

We then use the identity

Hess(log P V
t f)(x) =

Hess(P V
t f)(x)

P V
t f(x)

− ∇(P V
t f)(x) ⊗ ∇(P V

t f)(x)

P V
t f(x)2
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to obtain the following

Hess(log P V
t f)(x) = − dte

−atId −
∫ t

0
αt(s)

2Ef,x(Hess V (Xx
s ))ds

+ Ef,x(Ax
t ⊗Ax

t ) − Ef,x(Ax
t ) ⊗ Ef,x(Ax

t ).

This completes the proof. �

Remark 2.5. Using Equation (2.2) we see that the Ornstein-Uhlenbeck starting from x
conditioned to reach z at time t has the following explicit reprersentation:

Zx,z
s = αt(s)x+ z

∫ s

0

a sinh(a(t − s))

sinh2(a(t − r))
dr + σ

∫ s

0

sinh(a(t − s))

sinh(a(t − r))
dBr.

The one dimensional case can be found in [12], see also [6] and the reference therein.

Remark 2.6. In some situations, it might be also useful to control the second order
derivative of the semigroup by the derivatives of f themselves. For example, in [18, 19], the
authors deal with log-semi-convex functions in order to get a characterization of transport
inequalities. The result below shows how such a log-semi-convexity transfers to the semi-
group. More precisely, assume that, in addition of the hypotheses of the theorem, f : Rn →
R is in D(2) then, with the notation in the proof of the theorem, it also holds

Hess(logP V
t f)(x) = e−2atEf,x(Hess(log f)(Xx

t )) −
∫ t

0
Ef,x(Hess(V )(Xx

s ))e−2asds(2.7)

+ Ef,x(Ãx
t ⊗ Ãx

t ) − Ef,x(Ãx
t ) ⊗ Ef,x(Ãx

t )

where Ãx
t :=

∫ t
0 ∇V (Xx

s )e−asds.

Observe that Xx
s = e−asx+ σ

∫ s
0 e

−a(s−r)dBr so that, using the Feynman-Kac formula,

P V
t f(x) = E

(
f

(
e−atx+ σ

∫ t

0
e−a(t−r)dBr

)
e−
∫ t

0
V (e−asx+σ

∫ s

0
e−a(s−r)dBr)ds

)

it holds

∇P V
t f(x) = e−atE

(
∇f(Xx

t )e−
∫ t

0
V (Xx

s )ds
)

− E

(
f(Xx

t )

∫ t

0
∇V (Xx

s )e−asdse−
∫ t

0
V (Xx

s )ds
)
.

Differentiating one more time, we get

Hess(P V
t f)(x) = e−2atE

(
Hess(f)(Xx

t )e−
∫ t

0
V (Xx

s )ds
)

− 2E

(
∇f(Xx

t ) ⊗
∫ t

0
∇V (Xx

s )e−asdse−
∫ t

0
V (Xx

s )ds
)

− E

(
f(Xx

t )

∫ t

0
HessV (Xx

s )e−2asdse−
∫ t

0
V (Xx

s )ds
)

+ E

(
f(Xx

t )

∫ t

0
∇V (Xx

s )e−asds⊗
∫ t

0
∇V (Xx

s )e−asds e−
∫ t

0
V (Xx

s )ds
)

from which the expected result follows.

2.3. Semi-log-convexity for diffusion semigroups. Thanks to the result of the pre-
vious section and with the help of the h-transform, we can obtain explicit formula for the
log-Hessian of general diffusion semigroups. In turn we may obtain explicit lower bounds
that will be useful for applications.

Given W : Rn → R, smooth enough, and the operator LV = ∆ − x · ∇ − V on L2(γn),

we define the operator LW on L2(eW/2γn) by the unitary transform (h-transform) below:

LW f := e−W/2LV (eW/2f)

= ∆f − (x− ∇W ) · ∇f +

(
1

2
∆W +

1

4
|∇W |2 − 1

2
x · ∇W − V

)
f,
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whose associated semi-group PW
t is intertwined with P V

t by

PW
t f = e−W/2P V

t (eW/2f).

Let h : Rn → R and define dµh(x) = e−hdx. If we seek a representation for the reversible
operator

Lh := ∆ − ∇h · ∇
on L2(µh) of the form Lhf = LW f = e−W/2LV (eW/2f), we choose W and then V so that

∇
(

|x|2
2

−W

)
= ∇h and

1

2
∆W +

1

4
|∇W |2 − 1

2
x · ∇W − V = 0.

A function f belongs to L2(µh) if and only if feW/2 belongs to L2(γn). We denote by
(Pt)t≥0 the semi-group associated to the diffusion operator Lh := ∆ − ∇h · ∇. The
operator Lh is essentially self-adjoint on C∞

K , see [27]. Theorem 2.3 and Remark 2.6 (with

a = 1 and σ =
√

2) then admits the following immediate corollary.

Corollary 2.7. Let h : Rn → R belongs to D(4). Set µh(dx) = e−h(x)dx and

W (x) :=
|x|2
2

− h(x), V (x) :=
1

2
(n− ∆h) − 1

4
(|x|2 − |∇h|2), x ∈ Rn.

Assume that V is bounded from below. Let f ∈ L2(µh) \ {0} be non negative and, for
all x ∈ Rn, denote by EW

f,x the expectation with respect to the probability measure Q
e

W
2 f,x

introduced in Definition 2.2. Then

(2.8)

Hess(log Ptf)(x) = −1

2
(Id − Hess(h)(x)) + EW

f,x(Ax
t ⊗Ax

t ) − EW
f,x(Ax

t ) ⊗ EW
f,x(Ax

t )

− c2
t Id −

∫ t

0

(
sinh(t− s)

sinh(t)

)2

EW
f,x(Hess V (Xx

s ))ds

where

Ax
t := −

∫ t

0
∇V (Xx

s )
sinh(t − s)

sinh(t)
ds+

e−t

1 − e−2t
(Xx

t − e−tx)

and ct is given by (1.4). Assume in addition f ∈ D(4), then for Ãx
t :=

∫ t
0 ∇V (Xx

s )e−asds,
the following holds

Hess(log Ptf)(x) = −1

2
(Id − Hess(h)(x)) + e−2atEW

f,x(Hess(log f)(Xx
t ))

(2.9)

+ EW
f,x(Ãx

t ⊗ Ãx
t ) − EW

f,x(Ãx
t ) ⊗ EW

f,x(Ãx
t ) −

∫ t

0
EW

f,x(Hess(V )(Xx
s ))e−2asds.

Observe that, as for Theorem 2.3, Corollary 2.7 contains the case of the Ornstein-
Uhlenbeck semigroup which corresponds to the trivial case W = V = 0.

For applications, especially in dimension 1, it will be useful to get a lower bound on
(log Pt)

′′. To that respect (2.8) is useful since we can remove the non negative (co)variance
term. Then one is left with estimates on h′′ and V ′′.

Proposition 2.8. Let h : R → R be of class D(4) with µh(dx) := e−h(x)dx a finite proba-

bility measure. Set V (x) := 1
2(1 − h′′(x)) − 1

4(x2 − h′2(x)), x ∈ R and assume that V is

bounded from below. Then, given f ∈ L2(µh) non-negative, for all x ∈ R and t ≥ 0, one
has

(2.10) (log Ptf)′′(x) ≥ −c2
t − 1

2
(1 − h′′(x)) − 1

2
sup
y∈R

V ′′(y).
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Proof. This is a direct consequence of Corollary 2.7 above and the fact that
∫ t

0

(
sinh(t− s)

sinh(t)

)2

ds =
e2t − e−2t − 4t

2(e2t + e−2t − 2)
≤ 1

2
, t ≥ 0.

�

As an example of application, one can consider h(x) = x2

2 + (1 + x2)p/2, with p ≤ 2.

Then it is easy to see that h satisfies the hypotheses of the latter and that −1
2(1−h′′(x))−

1
2 supy∈R V

′′(y) ≥ −cp for some constant cp depending only on p.

2.4. Deviation bounds for semi-log-convex functions. The aim of this section is
to prove a deviation bound for semi-log-convex functions, following [17]. Namely, the
following holds.

Theorem 2.9. Let µh be a probability measure on R of the form dµh(x) = e−h(x) dx
with h : R → R a symmetric C2 function. Assume that there exist c, C > 0 such that
c ≤ h′′ ≤ C. Then, for any C2 function f : R → (0,∞) such that (log f)′′ ≥ −β for some
β ≥ 0, it holds

µh

({
f ≥ t

∫
f dµh

})
≤
(C + β

c

) 1

t
√

log t
, ∀t ≥ 2.

Remark 2.10. The assumption h symmetric is here for simplicity. A similar statement
would hold with h non symmetric. The special case h(x) = x2/2 is given in [17] with a
factor (1 + β)/

√
2 which is slightly better than 1 +β (since c = C = 1 when h(x) = x2/2).

The proof of Theorem 2.9 relies on the following technical lemma whose proof can be
found at the end of this section.

Lemma 2.11. Let µh be a probability measure on R of the form dµh(x) = e−h(x) dx with
h : R → R a symmetric C2 function. Assume that there exists C > 0 such that 0 ≤ h′′ ≤ C.
Then, for any ϕ : R → R of class C2 such that ϕ′′ ≥ −β for some β ≥ 0, it holds

ϕ(x) − log

(∫
eϕ dµh

)
≤ 1

2
log

(
C + β

2π

)
+ h(x), ∀x ∈ R.

Proof of Theorem 2.9. Set ϕ = log f , which satisfies ϕ′′ ≥ −β. Without loss of generality

one can assume that
∫
eϕ dµh = 1. Define a = 1

2 log
(

C+β
2π

)
. From Lemma 2.11 and by

symmetry of h we have, for all t > 2(a+ h(0))

µh({ϕ ≥ t}) ≤ µh({h(x) ≥ t− a}) ≤ 2

∫ ∞

h−1(t−a)
e−h(x)dx ≤ 2eae−t

h′(h−1(t − a)))

where we used the following bound, valid for any s > 0 (recall that h′ is increasing on R+)
∫ ∞

s
e−h(x)dx ≤

∫ ∞

s

h′(x)

h′(s)
e−h(x)dx =

e−h(s)

h′(s)
.

Now observe that, since h is smooth and symmetric, h′(0) = 0 so that h(x) ≤ h(0)+ 1
2Cx

2

and h′(x) ≥ cx, x ≥ 0. Therefore

h′(h−1(x)) ≥ h′




√

2(x− h(0))

C



 ≥ c

√
2(x− h(0))

C
for any x ≥ h(0).

In turn, since we fixed t ≥ 2(a+h(0)), 2 ((t− a) − h(0)) ≥ t and thus, thanks to the latter

h′(h−1(t− a))) ≥ c

√
2 ((t− a) − h(0))

C
≥ c

√
t

C
.
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We conclude that, for any t ≥ 2(a+ h(0)),

µh({ϕ ≥ t}) ≤ 2
√
Cea

c

e−t

√
t

≤ 2
C + β

c
√

2π

e−t

√
t

Next we deal with t ∈ (0, 2(a + h(0))). Using Markov’s inequality, since
∫
eϕdµh = 1, we

have

µh({ϕ ≥ t}) ≤ e−t ≤
√

2(a+ h(0))
e−t

√
t
.

Since
∫
e−h dx = 1 and h(0) + cx2

2 ≤ h(x), we have 2h(0) ≤ log 2π
c so that

√
2a+ 2h(0) ≤

√
log((C + β)/c) ≤ C + β

c

where the last inequality follows from a direct computation. �

Proof of Lemma 2.11. We follow [17, Lemma 2.1]. The bound is trivial if
∫
eϕ dµh = +∞

so let us assume that
∫
eϕdµh = 1. Define g(x) = ϕ(x) − h(x) + αx2

2 , x ∈ R, with
α = C + β. The function g is convex on R and so, by Fenchel-Legendre duality, it holds
g(x) = supy∈R {xy − g∗(y)}, x ∈ R, where g∗(y) := supx∈R {yx− g(x)}, y ∈ R, is the
convex conjugate of g. Therefore, for all y ∈ R,

1 =

∫
eϕ(x)−h(x) dx =

∫
eg(x)−α x2

2 dx ≥ e−g∗(y)
∫
exy−α x2

2 dx = e−g∗(y)

√
2π

α
e

y2

2α .

So g∗(y) ≥ 1
2 log

(
2π
α

)
+ y2

2α , for all y ∈ R. Therefore,

g(x) ≤ 1

2
log

(
α

2π

)
+ sup

y∈R

{
xy − y2

2α

}
=

1

2
log

(
α

2π

)
+ α

x2

2
,

which proves the claim. �

2.5. The Talagrand Conjecture for a class of diffusion, in dimension 1. In this
section we prove that for some class of potentials h, the associated diffusion semigroup
satisfies the Talagrand Conjecture, in dimension 1.

Theorem 2.12. Let µh be a probability measure on R of the form dµh(x) = e−h(x) dx
with h : R → R a symmetric function of class D4 such that c ≤ h′′ ≤ C where c, C are
positive numbers. Set V (x) := 1

2(1 − h′′) − 1
4(x2 − h′2). Assume V is bounded below, with

supx≥0 V
′′(x) < ∞. Finally denote by (Pt)t≥0 the semi-group associated to the diffusion

operator Lh := ∂2

∂x2 − h′(x) ∂
∂x symmetric in L2(µh).

Then, for all s > 0, there exists a constant D (that depends only on s, c, C and
supx≥0 V

′′(x)) such that for all non-negative g ∈ L1(µh)

µh({Psg ≥ t

∫
gdµh}) ≤ D

1

t
√

log t
∀t ≥ 2.

Example 2.13. As an example of application, one can consider h(x) = x2

2 + (1 + x2)p/2,
with p ≤ 2 which satisfies the assumption of the Theorem. Note that this example corre-
sponds to an unbounded perturbation of the Gaussian potential.

Many bounded perturbations of the Gaussian potential also enter the framework of the
above theorem. However, due to the assumption V bounded below, even apparently very
tiny perturbation of the Gaussian potential does not enter the framework of the theorem,

as for example h(x) = x2

2 + cos(x)! We believe that the reason is technical and that the
Talagrand’s conjecture should hold also in this case.
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Proof. Fix g ∈ L2(µh) positive and s > 0. Thanks to Proposition 2.8,

(log Psg)
′′ ≥ −c2

s − 1

2
(1 − c) − 1

2
‖V ′′‖∞ ≥ −β

with β := max(0, c2
s + 1

2(1 − c) + 1
2‖V ′′‖∞) ≥ 0. Therefore, by Theorem 2.9 applied to

f = Psg, one can conclude that, for all t ≥ 2,

µh({Psg ≥ t

∫
g dµh}) ≤ C + β

c

1

t
√

log t

which is the desired conclusion for g ∈ L2(µh). Applying the previous bound to g ∧ n,
n ≥ 1, for non-negative g ∈ L1(µh) and letting n → ∞ completes the proof. �

3. The M/M/∞ semigroup

In this section we deal with the M/M/∞ queuing process, which is a discrete analogue
of the Ornstein-Uhlenbeck process on the integers N := {0, 1 . . . }. First we obtain lower
bounds of ∆ logPtf , where ∆ is the discrete Laplacian. Then, we investigate the deviation
property of semi-log-convex functions and prove that such a property, contrary to the
continuous setting, does not hold unless the function is log-convex. In the last subsection,
we prove that the Talagrand Conjecture holds by means of the strategy of the supremum
presented in the introduction. We start with the notation.

3.1. Notation and setting. In all what follows, we will deal with the following classical
probability distributions on N :

• B(n, p) stands for the binomial probability measure of parameters n ∈ N and p ∈
[0, 1), with the convention that B(n, 0) = δ0 (the Dirac mass at 0) and B(n, 1) = δn.
When n = 1, we simply denote by B(p) the Bernoulli distribution of parameter p.

• P(θ) stands for the Poisson probability measure of intensity θ whose probability
distribution function will be denoted by πθ and is given by πθ(k) = e−θθk/k!,
k ∈ N. At some points, we will make a slight abuse of notation and write πθ(A) =∑

a∈A πθ(a), for A ⊂ N.

The M/M/∞ queuing process is defined through its infinitesimal generator L, acting
on functions on the integers as

(3.1) Lf(n) := nµ [f(n− 1) − f(n)] + λ [f(n+ 1) − f(n)] , n ∈ N

where λ, µ > 0 are fixed parameters. In the above expression, there is no need to define
f(−1) since it is multiplied by 0. We use the following notation for the discrete derivative:

Df(n) := f(n+ 1) − f(n), n ∈ N,

and for the discrete second order derivative (Laplacian):

(3.2) ∆f(n) := f(n+ 1) + f(n− 1) − 2f(n) = D(Df)(n− 1), n ∈ N \ {0}.
Then Lf(n) = λ∆f(n) + (nµ− λ)Df(n− 1).

Denote by (Xt)t≥0 the Markov (jump) process associated to L, so that for all (say)
bounded function f it holds Ptf(n) = E(f(Xt)|X0 = n), n ∈ N. A remarkable feature of
the M/M/∞ queuing process is that

L(Xt|X0 = n) = B(n, p(t)) ⋆ P(ρq(t))

where ⋆ stands for the convolution,

p(t) := e−µt, q(t) = 1 − p(t), ρ =
λ

µ
.

In other words

Ptf(n) = E(f(Yt + Zt))
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with Yt ∼ B(n, p(t)) independent of Zt ∼ P(ρq(t)) which can be seen as an analogue of
the Mehler Formula (1.2) for the Ornstein-Uhlenbeck semigroup.

Finally, we recall that the M/M/∞ queuing process is reversible with respect to the
Poisson measure P(ρ).

In the next section we deal with estimates on the Laplacian of log Ptf .

3.2. Semi-log-convexity of the queuing process. In this section we investigate the
behavior of ∆ logPtf . The main result of the section (Proposotion 3.1) is that for any
starting function f on the integers, as for the Ornstein-Uhlenbeck semigroup, ∆ logPtf is
bounded below by some universal constant depending only on t and on the parameters of
the process (namely λ and µ), but not on f .

Proposition 3.1. Let f : N → R+ not identically vanishing. Then for all t > 0 ,

(3.3) ∆ log Ptf(n) ≥ log

(
1

12

(
1 − p2

(p+ ρ(1 − p)2)2

))
n = 1, 2 . . .

with p = p(t) = e−µt and ρ = λ/µ.

Remark 3.2. Notice the right hand side of (3.3) tends to −∞ when t → 0+, as it should
be, since f can be any function. On the other hand, the right hand side of (3.3) tends
to − log(12) as t tends to ∞. This comes from the technicality of the proof, we believe
however that there should exist a lower bound on ∆ logPtf(n) that tends to 0 as t tends
to infinity.

The proof of Proposition 3.1 relies on the following lemma which asserts that a positive
combination of log-convex (or more generally semi-log-convex) functions is log-convex
(semi-log-convex).

Lemma 3.3. Let fi : N → (0,∞), i = 1, . . . , N , be a family of positive functions, with
N possibly infinite. Assume that for all i and all n = 1, . . . , ∆ log fi(n) ≥ −βi for some
βi ∈ R. Then, for all α1, . . . , αN > 0,

∆ log

(
N∑

i=1

αifi

)
≥ − max

1≤i≤N
βi.

The continuous counterpart of this result is classical and could be used to prove this
discrete statement. For the sake of completeness we give below a direct proof.

Proof of Lemma 3.3. By induction, and possibly taking the limit, it suffices to prove the
result for N = 2. Moreover, by homogeneity we can assume without loss of generality that
α1 = α2 = 1. So let f, g : N → (0,∞) be two positive functions with ∆ log f ≥ −βf and
∆ log g ≥ −βg with βf , βg ∈ R. Then, by definition

exp{∆ log(f + g)(n)} =
(f(n+ 1) + g(n + 1))(f(n − 1) + g(n − 1))

(f(n) + g(n))2

=
f(n+ 1)f(n− 1)

f(n)2

f(n)2

(f(n) + g(n))2
+
g(n + 1)g(n − 1)

g(n)2

g(n)2

(f(n) + g(n))2

+
f(n+ 1)g(n − 1)

f(n)g(n)

f(n)g(n)

(f(n) + g(n))2
+
f(n− 1)g(n + 1)

f(n)g(n)

f(n)g(n)

(f(n) + g(n))2

≥ e−βf
f(n)2

(f(n) + g(n))2
+ e−βg

g(n)2

(f(n) + g(n))2

+

(
e−βf −βg

f(n)g(n)

f(n− 1)g(n + 1)
+
f(n− 1)g(n + 1)

f(n)g(n)

)
f(n)g(n)

(f(n) + g(n))2
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where we used the hypotheses ∆ log f ≥ −βf and ∆ log g ≥ −βg on the one hand to

bound the first two terms, and on the other hand to write f(n+1)
f(n) ≥ e−βf

f(n)
f(n−1) and

g(n−1)
g(n) ≥ e−βg g(n)

g(n+1) . Next we observe that

e−βf −βg
f(n)g(n)

f(n− 1)g(n + 1)
+
f(n− 1)g(n + 1)

f(n)g(n)
≥ min

x>0

(
xe−βf −βg +

1

x

)
= 2e−(βf +βg)/2.

It follows that

exp{∆ log(f + g)(n)} ≥ (e−βf /2f(n))2

(f(n) + g(n))2
+

(e−βg/2g(n))2

(f(n) + g(n))2
+

2f(n)e−βf /2g(n)e−βg/2

(f(n) + g(n))2

=
(f(n)e−βf /2 + g(n)e−βg/2)2

(f(n) + g(n))2
≥ min

(
e−βf , e−βg

)
.

This leads to the expected result. �

Proof of Proposition 3.1. Fix t > 0; we have

Ptf(n) = E(f(Xt)|X0 = n) =
∞∑

k=0

f(k)P(Xt = k|X0 = n), ∀n ∈ N.

For all k ∈ N, denote by Fk(n) = P(Xt = k|X0 = n), n ∈ N. According to Lemma 3.3, it
is enough to show that for all k ∈ N, it holds

(3.4) ∆ logFk(n) ≥ log

(
1

12

(
1 − p2

(p+ ρ(1 − p)2)2

))
, ∀n ≥ 1.

Since Pt is reversible with respect to P(ρ), it holds

P(Xt = k|X0 = n) = πρ(k)
P(Xt = n|X0 = k)

πρ(n)
, n ∈ N.

Therefore,

logFk(n) = log πρ(k) − log πρ(n) + logGk(n),

where Gk(n) = P(Yt + Zt = n), with as above, Yt ∼ B(k, p) and Zt ∼ P(ρ(1 − p)). A
simple calculation shows that, for any parameter θ > 0, it holds for all n ≥ 1

∆ log πθ(n) = log

(
πθ(n+ 1)πθ(n− 1)

πθ(n)2

)
= log

(n!)2

(n + 1)!(n − 1)!
= log

n

n+ 1
.

From this follows that ∆ logF0(n) = 0, n ≥ 1, and that for k ≥ 1, ∆ logFk(n) ≥
∆ logGk(n), n ≥ 1. So it is enough to show that the bound (3.4) is satisfied by Gk.

Let us first treat the case k = 1 and show the following slightly better lower bound:

∆ logG1 ≥ log

(
1

2

(
1 − p2

(p+ ρ(1 − p)2)2

))
:= −α

or equivalently

(3.5) G1(n)2 ≤ eαG1(n+ 1)G1(n− 1), ∀n ≥ 1.

For all n ≥ 0, it holds

G1(n) =

(
(1 − p) + p

n

ρ(1 − p)

)
(ρ(1 − p))n

n!
e−ρ(1−p), n ≥ 1.
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So, for n ≥ 1,

G1(n+ 1)G1(n− 1)

G1(n)2
=

n

n+ 1

(
(1 − p) + p n+1

ρ(1−p)

) (
(1 − p) + p n−1

ρ(1−p)

)

(
(1 − p) + p n

ρ(1−p)

)2

=
n

n+ 1

(
(1 − p) + p n

ρ(1−p)

)2
−
(

p
ρ(1−p)

)2

(
(1 − p) + p n

ρ(1−p)

)2

≥ 1

2

(
1 − p2

(ρ(1 − p)2 + p)2

)

and so taking the log gives the announced lower bound for ∆ logG1.

Remark 3.4. Note that one could be more accurate by keeping the n
n+1 factor which

eventually yields to the bound

∆ logF1(n) ≥ log

(
1 − p2

(ρ(1 − p)2 + p)2

)
, n ≥ 1.

Now let us treat the case k ≥ 2. It will be convenient to write Yt = Y ′
t + εt with

Y ′
t ∼ B(k− 1, p) and εt ∼ B(p) two independent random variables also independent of Zt.

Conditioning with respect to Zt + εt and using (3.5), we get

Gk(n) =
n∑

j=0

P(Y ′
t = j)G1(n− j)

(3.6)

≤ P(Y ′
t = n)G1(0) + eα/2

n−1∑

j=0

P(Y ′
t = j)G1(n+ 1 − j)1/2G1(n− 1 − j)1/2

≤ P(Y ′
t = n)G1(0) + eα/2




n−1∑

j=0

P(Y ′
t = j)G1(n+ 1 − j)




1/2


n−1∑

j=0

P(Y ′
t = j)G1(n − 1 − j)




1/2

= P(Y ′
t = n)G1(0) + eα/2




n−1∑

j=0

P(Y ′
t = j)G1(n+ 1 − j)




1/2

Gk(n− 1)1/2

Now let us treat separately the cases :

(a) n ≥ k ≥ 2, (b) 1 ≤ n ≤ k − 2, k ≥ 3 (c) n = k − 1, k ≥ 2.

(a) Suppose n ≥ k ≥ 2, then P(Y ′
t = n) = 0 and so (3.6) yields to

Gk(n) ≤ eα/2Gk(n+ 1)1/2Gk(n− 1)1/2.

(b) Fix k ≥ 3. Let us admit for a moment that there exists β > 0 (independent of k)
such that for all 1 ≤ n ≤ k − 2,

(3.7) P(Y ′
t = n) ≤ eβ/2P(Y ′

t = n− 1)1/2P(Y ′
t = n+ 1)1/2, ∀1 ≤ n ≤ k − 2.
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As we will see below, the optimal β is log 3. If 1 ≤ n ≤ k − 2, then inserting (3.7) into
(3.6) gives

Gk(n) ≤ eβ/2 (P(Y ′
t = n+ 1)G1(0)

)1/2 (
P(Y ′

t = n− 1)G1(0)
)1/2

+ eα/2




n−1∑

j=0

P(Y ′
t = j)G1(n+ 1 − j)




1/2

Gk(n− 1)1/2

≤ emax(α;β)/2



(
P(Y ′

t = n+ 1)G1(0)
)1/2

+




n−1∑

j=0

P(Y ′
t = j)G1(n+ 1 − j)




1/2

Gk(n− 1)1/2

≤
√

2emax(α;β)/2Gk(n+ 1)1/2Gk(n− 1)1/2,

where the second inequality comes from P(Y ′
t = n − 1)G1(0) ≤ Gk(n − 1) and the third

inequality follows from
√
a+

√
b ≤

√
2
√
a+ b, a, b ≥ 0. To determine β in (3.7) note that

(
k − 1

n

)
pn(1−p)k−1−n ≤ eβ/2

((
k − 1

n− 1

)
pn−1(1 − p)k−n

)1/2 ((
k − 1

n+ 1

)
pn+1(1 − p)k−n−2

)1/2

is equivalent to

1

(n!(k − n− 1)!)2
≤ eβ 1

(n− 1)!(k − n)!

1

(n + 1)!(k − n− 2)!

which is equivalent to

n+ 1

n
≤ eβ k − n− 1

k − n
, ∀1 ≤ n ≤ k − 2.

Observe that
(n+ 1)(k − n)

n(k − n− 1)
= 1 +

k

n(k − 1) − n2
.

The minimal value of the function n 7→ n(k − 1) − n2 on {1, . . . , k − 2} is k − 2 (reached

at 1 and k − 2). So max1≤n≤k−2
(n+1)(k−n)
n(k−n−1) = 1 + k

k−2 = 2 + 1
k−2 ≤ 3. Therefore, one can

take β = log 3.
(c) Finally, let us assume that k ≥ 2 and n = k − 1. Let us admit for a moment that

(3.8) P(Y ′
t = k − 1)G1(0) ≤

(
P(Y ′

t = k − 1)G1(1)
)1/2 (

P(Y ′
t = k − 2)G1(0)

)1/2
.

Then, inserting (3.8) into (3.6), and reasoning exactly as in the case (b) gives

Gk(k − 1) ≤
√

2eα/2Gk(k)1/2Gk(k − 2)1/2.

To prove (3.8), first observe that P(Y ′
t = k−1) = pk−1, P(Y ′

t = k−2) = (k−1)pk−2(1−p)

and so P(Y ′
t = k − 1) ≤ p

1−pP(Y ′
t = k − 2). Since, G1(0) = (1 − p)e−ρ(1−p) and G1(1) =(

(1 − p) + p 1
ρ(1−p)

)
(ρ(1 − p))e−ρ(1−p), we see that G1(0) = 1

(1−p)ρ+ p

1−p

G1(1). Therefore,

P(Y ′
t = k − 1)G1(0) ≤ p

(1 − p)2ρ+ p
P(Y ′

t = k − 2)G1(1) ≤ P(Y ′
t = k − 2)G1(1)

which gives (3.8).
Putting everything together, one gets for all k ≥ 0 and n ≥ 1,

∆ logGk(n) ≥ − max(α;β) − log 2 ≥ −α− β − log 2 = log

(
1

12

(
1 − p2

(ρ(1 − p)2 + p)2

))

which completes the proof. �
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3.3. Remarks on the action of the M/M/∞ semigroup on structured functions.

In this section, we collect some more facts about the action of Pt on log-convex (resp. log-
concave) functions. The first statement, which is a simple application of Cauchy-Schwarz
inequality, asserts that if f is log-semi-convex, then so is Ptf . The second statement is
due to Johnson [22] and shows that Pt also leaves stable the class of log-concave functions.

Proposition 3.5. Let f be a positive function on N such that, for some β ≥ 0 and all
n = 1, 2 . . . , ∆ log f(n) ≥ −β. Then

∆ log Ptf(n) ≥ −β n = 1, 2, . . . , t ≥ 0.

Proof. Recall that Ptf(n) = E(f(ε1 + · · · + εn +Y )) with εi ∼ B(p) i.i.d. and independent
of Z ∼ P(ρq), q = 1 − p, and similarly for Ptf(n− 1) and Ptf(n+ 1). Hence, computing
the expectation with respect to the Bernoulli random variables εn and εn+1 respectively,
we have

Ptf(n+ 1) = p2E(f(ε1 + · · · + εn−1 + Z + 2)) + 2p(1 − p)E(f(ε1 + · · · + εn−1 + Z + 1))

+ (1 − p)2E(f(ε1 + · · · + εn−1 + Z))

and

Ptf(n) = pE(f(ε1 + · · · + εn−1 + Z + 1)) + (1 − p)E(f(ε1 + · · · + εn−1 + Z)).

Letting X := ε1 + · · · + εn−1 + Z, we get

∆ logPtf(n) = log

(
Ptf(n+ 1)Ptf(n− 1)

Ptf(n)2

)

= log

(
p2E(f(X + 2))E(f(X)) + 2pqE(f(X + 1))E(f(X)) + q2E(f(X))2

p2E(f(X + 1))2 + 2pqE(f(X + 1))E(f(X)) + q2E(f(X))2

)
.

Now, since ∆ log f ≥ −β, we infer that e−β/2f(n) ≤
√
f(n+ 1)f(n− 1). Therefore, using

the Cauchy-Schwarz Inequality,

e−βE(f(X + 1))2 ≤ E(
√
f(X + 2)f(X))2 ≤ E(f(X + 2))E(f(X)).

Hence

p2E(f(X + 2))E(f(X)) + 2pqE(f(X + 1))E(f(X)) + q2E(f(X))2

≥ p2e−βE(f(X + 1))2 + 2pqE(f(X + 1))E(f(X)) + q2E(f(X))2

≥ e−β
(
p2E(f(X + 1))2 + 2pqE(f(X + 1))E(f(X)) + q2E(f(X))2

)

which leads to the desired result. �

Recall that a function f : N → (0,+∞) is said log-concave if ∆ log f(n) ≤ 0, for all
n ≥ 1, or in other words if

f(n)2 ≥ f(n− 1)f(n+ 1), ∀n ≥ 1.

It is said ultra-log concave if n 7→ n!f(n) is log-concave, or equivalently

f(n)2 ≥ n+ 1

n
f(n− 1)f(n+ 1), ∀n ≥ 1.

It is easily checked that f is ultra-log-concave if f/πθ is log-concave for some (and thus
all) θ > 0.

The following result is due to Johnson [22].

Theorem 3.6. Let (Xt)t≥0 be the M/M/∞ process with generator (3.1), associated semi-
group (Pt)t≥0 and reversible distribution πρ. For all t ≥ 0, denote by ht the distribution
function of the law of Xt. If h0 is ultra-log-concave, then for all t > 0, ht is also ultra-log-
concave. Equivalently, if f0 : N → (0,+∞) is log-concave and integrable with respect to πρ

then, for all t > 0, ft = Ptf is also log-concave.
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We note that the preservation of ultra-log-concavity by the M/M/∞ process was proved
in [22] en route to proving the maximum entropy property of the Poisson distribution;
related properties connected to Poisson and compound Poisson approximation may also
be found in [23, 5]. For the sake of completeness, we briefly sketch Johnson’s proof (see
[22] for details).

Sketch of proof. Fix some t > 0. The proof relies on the following explicit representation
of Xt:

Xt =
X0∑

k=1

εk + Z,

where, as in Section 3.1, the random variables X0, Z, εk, k ≥ 1, are independent, Z
has law P(ρ(1 − p)) and εk has law B(p), k ≥ 1, with p = p(t) = e−µt. According to

[22, Proposition 3.7], the random variable
∑X0

k=1 εk (which corresponds to a thinning of
X0) has an ultra-log-concave distribution. On the other hand, it is easily checked that Z
has also an ultra-log-concave distribution. Since the class of ultra-log-concave functions
is closed under convolution [38, 32], we conclude that the distribution function of Xt is
ultra-log-concave. Finally, observe that if f0 ∈ L1(πρ) is a log-concave function such that
(without loss of generality)

∫
f0 dπρ = 1 and X0 has distribution function h0 = f0πρ,

then h0 is obviously ultra-log-concave and so, according to what precedes, the distribution
function ht of Xt is also ultra-log-concave. Since Pt is reversible with respect to πρ, it
holds ht = (Ptf0)πρ. And so ft = Ptf0 is log-concave. �

3.4. Deviation bounds for semi-log-convex functions. In this section, we investigate
deviation bounds of the type πθ({n : f(n) ≥ t

∫
f dπθ}) for log-convex, and more generally

log-semi-convex, functions f . In other words, we address the analogue of Item (2) from
the introduction for the Poisson distributions. As our results will reveal, in this discrete
setting, an analogue of Item (2) does not hold in general, but it does hold if f is assumed
to be log-convex. One reason for this spurious effect is that the tail of the measure∑

k≥n πθ(k), in discrete, is of the same order as πθ(n), i.e., with no extra factor, while in

the continuous,
∫∞

s e−t2
dt ∼s→∞

e−s2

2s .
In all what follows, will make a frequent use of a non asymptotic version of Stirling

formula. More precisely, the following inequalities for the factorial are known (see [35]) to
hold √

2πnn+ 1
2 e−n+ 1

12n+1 < n! <
√

2πnn+ 1
2 e−n+ 1

12n , n ≥ 1.

Hence,

(3.9) nn+ 1
2 e−n ≤ n! ≤ 3nn+ 1

2 e−n

for n ≥ 1 (since
√

2πe1/12n ≤ 3).
Let us begin with a precise tail bound for the Poisson distributions.

Lemma 3.7. Let θ > 0 and define Φθ(x) := x log x − x log θ − x + θ, x ≥ 1. Set
Fθ(u) := πθ([u,∞)) for the tail of the distribution function of πθ. For u ≥ 2θ, we have

Fθ(u) ≤ 2√
u

exp {−Φθ(u)} .

Proof. If u ≥ 2θ,

Fθ(u) =
∑

k≥u

θke−θ

k!
=
θue−θ

u!

∑

k≥u

θk−u

k(k − 1) . . . (u+ 1)

≤ θue−θ

u!

∑

k≥u

2u−k = 2
θue−θ

u!
≤ 2√

u
exp {−Φ(u)}

where we used (3.9). �
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Proposition 3.8. For any θ > 0, there exists a constant c that depends only on θ such
that for all t ≥ 4 and all positive functions f on the integers satisfying ∆ log f ≥ 0, we
have

πθ({f ≥ t

∫
fdπθ}) ≤ c

√
log log t

t
√

log t
.

Proof. We assume without loss of generality that
∫
fdπθ = 1 and we follow [17]. Define

f̃ : [0,∞) → (0,∞) as the piecewise linear interpolation of f . Since ∆ log f ≥ 0, log f̃

is convex so that log f̃(x) = supy≥0{xy − g̃(y)}, x ≥ 0, where g̃(y) = (log f̃)∗(y) =

supx≥0{yx − log f̃(x)}, y ≥ 0, is the Legendre transform of log f̃ . Then, since, for any

n ∈ N and any y ≥ 0, log f(n) = log f̃(n) ≥ ny − g̃(y), we have

1 =

∫
fdπθ ≥ e−g̃(y)

∫
enydπθ(n) = exp{−g̃(y) + θ(ey − 1)}.

Therefore

g̃(y) ≥ θ(ey − 1), y ≥ 0,

and in turn

log f(n) = log f̃(n) ≤ sup
y≥0

{ny − θ(ey − 1)} =

{
n(log n− log θ) − n+ θ if n ≥ θ

0 if n < θ.

= max[n(log n− log θ) − n+ θ, 0].

Hence, for t ≥ eθ−1/θ,

πθ({f ≥ t}) ≤ πθ({max(n(log n− log θ) − n+ θ, 0) ≥ log t})

= πθ({n(log n− log θ) − n+ θ ≥ log t}) = πθ({Φθ(n) ≥ log t})

= πθ({n ∈ N : n ≥ Φ−1
θ (log t)})

where we set Φθ(x) := x log x − x log θ − x + θ, x ≥ 1 and denoted by Φ−1
θ its inverse

function which is increasing on [θ− 1 − log θ,∞). Using Lemma 3.7, we get for t ≥ cθ, for
some constant depending only on θ,

πθ({n ∈ N : f(n) ≥ t}) ≤ 2
e−Φθ(Φ−1

θ
(log t))

√
Φ−1

θ (log t)
=

2

t
√

Φ−1
θ (log t)

.

To end the proof it suffices to observe that Φθ(x/ log x) = x−x[log log x+log θ+1]/ log x+
θ ≤ x for x large enough so that Φ−1

θ (x) ≥ x/ log x (for x large). �

Remark 3.9. Let us note that the bound in Proposition 3.8 is of optimal order. Indeed,
consider the function fλ(n) = eλnc(λ), where c(λ) = exp{1 − eλ}, λ ≥ 0, is taken to be
the normalizing constant that makes

∫
fλdπ1 = 1. Observe that ∆ log fλ = 0 since log fλ

is linear. Now

π1({fλ ≥ t}) = π1

([
1

λ
log

(
t

c(λ)

)
,∞
))

.

We are interested in lower bounds on this Poisson tail. Let us take λ = log k and t =

ekke−k, for some integer k, so that 1
λ log

(
t

c(λ)

)
= k. Observe that, using (3.9),

π1([k,+∞)) ≥ 1

ek!
≥ 1

3e
k−k− 1

2 ek.

Therefore, after some calculations, we get

t
√

log t√
log log t

π1({fλ ≥ t}) ≥ 1

3

(
1 + k log k − k

k log(1 + k log k − k)

)1/2

and the right hand side goes to 1/3 as k → ∞, which proves optimality.
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The next proposition goes in the opposite direction to Proposition 3.8. It states that
the log-semi-convex property is not enough to ensure a deviation bound better than just
Markov’s inequality. In what follows, θ > 0 is fixed and we define for all β ≥ 0

Fβ := {f : N → R such that ∆ log f ≥ −β and

∫
fdπθ = 1}.

Proposition 3.10. For all β > 0, the following holds

lim sup
t→∞

t sup
f∈Fβ

πθ({n : f(n) ≥ t}) > 0.

Proof. For a ≥ 0, define fa as

fa(n) = exp{−β

2
(n−a)2 +Z(a)}, n ∈ N, with Z(a) := − log

∫
exp{−β

2
(n−a)2}dπθ(n)

so that
∫
fadπθ = 1. Moreover

∆ log f(n) = −β

2

(
(n + 1 − a)2 + (n− 1 − a)2 − 2(n− a)2

)
= −β.

Hence, for all a ≥ 0, fa ∈ Fβ. The expected result will follow if we are able to prove that
there exists T : [0,∞) → R+ with T (a) → ∞ as a → ∞ such that

(3.10) lim sup
a→∞

T (a)πθ({fa ≥ T (a)}) > 0

since clearly lim supa→∞ T (a)πθ({fa ≥ T (a)}) ≤ lim supt→∞ t supf∈Fβ
πθ({f ≥ t}).

Set Ψa : R+ → R, u 7→ −β
2 (u−a)2−log Γ(u+1)+u log θ−θ where Γ(z) :=

∫∞
0 tz−1e−tdt,

z > 0, is the Gamma functional. It is well known that log Γ is convex on (0,∞) so that
Ψa is strictly concave on R+. Since limu→∞ Ψa(u) = −∞, this guarantees that Ψa has a
unique maximum on R+ achieved at a (unique) point we denote by ua ∈ [0,∞).

We claim that A := {a ≥ 1 such that ua ∈ N} is infinite and unbounded and ua → +∞,
as a ∈ A tends to +∞. We postpone the proof of the claim and continue with the proof
of (3.10).

Set, for a ∈ A,

T (a) := exp

(
−β

2
(ua − a)2 + Z(a)

)
.

Now we observe that

πθ({fa ≥ T (a)}) = πθ

({
n : −β

2
(n− a)2 ≥ −β

2
(ua − a)2

})
≥ πθ(ua) =

θuae−θ

ua!
.

Therefore, since ua! = Γ(ua + 1) for a ∈ A,

T (a)πθ({fa ≥ T (a)}) ≥ exp{log(T (a)) − log(ua!) + ua log θ − θ} = exp{Ψa(ua) + Z(a)}.
Our aim is to bound from below the right hand side of the latter. We notice that, by
definition of Ψa and since n! = Γ(n+ 1),

∫
exp{−β

2
(n− a)2}dπθ(n) =

∞∑

n=0

exp{−β

2
(n− a)2 − log(n!) + n log θ − θ}

=
∞∑

n=0

exp{Ψa(n)}.

Since Ψ′′
a ≤ −β and Ψ′

a(ua) = 0 we have

Ψa(n) ≤ Ψa(ua) + Ψ′
a(ua)(n − ua) − β

2
(n− ua)2 = Ψa(ua) − β

2
(n− ua)2.

Hence
∫

exp{−β

2
(n− a)2}dπθ(n) ≤ eΨa(ua)

∞∑

n=0

exp{−β

2
(n− ua)2} ≤ 2eΨa(ua)

∞∑

n=0

e−βn2/2.
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Setting cβ = − log
(
2
∑∞

n=0 e
−βn2/2

)
, one gets

(3.11) Z(a) = − log

∫
exp{−β

2
(n− a)2})dπθ(n) ≥ cβ − Ψa(ua).

The latter implies two useful conclusions. First, for all a ∈ A,

T (a)πθ({fa ≥ T (a)}) ≥ exp{Ψa(ua) + Z(a)} ≥ ecβ .

Second, T (a) = −β
2 (ua − a)2 +Z(a) ≥ cβ + log(ua!) − ua log θ+ θ → ∞ as a ∈ A tends to

infinity.
The desired conclusion follows as soon as we prove the claim above. The equation

Ψ′
a(ua) = 0 shows that the map a 7→ ua is continuous. Hence the claim will follow if we

can prove that ua → ∞ as a goes to infinity. We observe that Ψ′
a(u) = −β(u − a) −

ψ(u + 1) + log θ where ψ(u) := Γ′(u)/Γ(u) is the digamma function, which is increasing
on [1,∞). The following asymptotic is known, ψ(u) = log u+ o(1), as u tends to infinity.
Therefore Ψ′

a(
√
a) ≥ β(a− √

a) − log(
√
a) + c > 0 for a large enough. In particular, for a

large enough, ua ≥ √
a which proves the claim. �

3.5. The Talagrand Conjecture. In this section we will prove the Talagrand’s conjec-
ture for the M/M/∞ queuing process. This is one of the main result of this paper. We
will use the strategy of the supremum presented in the Introduction. Recall that ρ = λ/µ
and that the M/M/∞ semigroup (Pt)t≥0 is reversible with respect to the Poisson measure
πρ of parameter ρ. For simplicity we will assume from now on that ρ = 1. All the results
below remain valid for any ρ > 0, but at the price of more technicalities in the proofs, non
essential for the purpose of the whole paper. As a motivation, it should be noticed that the
M/M/∞ semigroup enjoys some sort of hypercontractivity property, see [8, Section 7] (cf.
[10, 24, 34]). Hence the question raised by Talagrand about the regularization property of
the semigroup for functions in L1 makes perfect sense. Here is a positive answer.

Theorem 3.11 (Talagrand’s conjecture for the M/M/∞ queuing process). Let (Pt)t≥0

be the M/M/∞ semigroup (with ρ = 1). Then, for every s > 0, there exists a constant c
(that depends only on s) such that, for all t ≥ 4,

sup
f≥0:

∫
fdπ1=1

π1 ({n : Psf(n) ≥ t}) ≤ c
√

log log t

t
√

log t
.

Remark 3.12. For any fixed s > 0, this bound is optimal for large values of t. Indeed,
using the notation of Remark 3.9, it easily seen that Psfλ = fλ(s), with λ(s) = log(1 +

e−s(eλ − 1)). According to Remark 3.9, the deviation bound of Proposition 3.8 is optimal
for the family (fλ)λ>0. Therefore the deviation bound of Theorem 3.11 is also optimal.

The proof of the theorem is based on an estimate on the following quantity

Ψs(n) :=
1

n!
sup
k≥0

P(Yn,s + Zs = k)

π1(k)
, s ≥ 0

where Yn,s is a binomial variable of parameter n and ps = e−t and Zs is a Poisson variable
of parameter qs = 1 − ps.

Lemma 3.13. For all s > 0, there exists a constant c (that depends only on s and ρ)
such that for any n ≥ 1, Ψs(n) ≤ c√

n
.
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Remark 3.14. We observe that 1/
√
n is the correct order. Indeed, assume that nes ∈ N.

Considering the special case k = n/ps ∈ N and then the sole term j = n in the sum we get

Ψs(n) ≥ 1

n!

P(Yn,s + Zs = n/ps)

π1(n/ps)
= e1−qs

(n/ps)!

n!

n∑

j=0

(
n

j

)
pj

sq
n+(n/pt)−2j
s

((n/ps) − j)!

≥ eps
(n/ps)!

n!(nqs/ps)!
pn

s q
nqs/ps
s .

Therefore, using (3.9), we have

log Ψs(n) ≥ ps +

(
n

ps
+

1

2

)
log

(
n

ps

)
− n

ps
− log 3 −

(
n+

1

2

)
log n+ n

− log 3 −
(
nqs

ps
+

1

2

)
log

(
nqs

ps

)
+
nqs

ps
+ n log ps +

nqs

ps
log qs

= ps − 2 log 3 − 1

2
log qs − 1

2
log n ≥ −2 log 3 − 1

2
log n

from which we get Ψs(n) ≥ 1
9
√

n
.

Proof of Lemma 3.13. Denoting by X = (Xt)t≥0 the M/M/∞ process, we know that
P(Yn,s + Zs = k) = P(Xs = k|X0 = n). Since π1 is reversible for X, we have

(3.12) π1(n)
P(Xs = k|X0 = n)

π1(k)
= P(Xs = n|X0 = k)

and so Ψs(n) = e supk≥0 P(Xs = n|X0 = k) = e supk≥0 P(Yk,s +Zs = n). Using (3.12), one
first sees that if 0 ≤ k ≤ n− 1, then

P(Xs = n|X0 = k) ≤ k!

n!
≤ 1

n
.

Now, if k ≥ n, then using Lemma 3.15 below, we see that

P(Yk,s + Zs = n) =
k∑

i=0

P(Yk,s = i)P(Zs = n− i) ≤ sup
0≤i≤k

P(Yk,s = i) ≤ cp√
k

≤ cp√
n
,

which completes the proof. �

Lemma 3.15. For any p ∈ (0, 1), there exists cp > 0 such that

(3.13) sup
0≤i≤k

(
k

i

)
pi(1 − p)k−i ≤ cp√

k
, ∀k ≥ 1.

Proof. When p ∈ (0, 1), it is well known that the mode of the binomial distribution B(k, p)
is ik := ⌊(k + 1)p⌋. In other words,

sup
0≤i≤k

(
k

i

)
pi(1 − p)k−i =

(
k

ik

)
pik(1 − p)k−ik

Using (3.9), one gets that, when 1 ≤ i ≤ k − 1
(
k

i

)
pi(1 − p)k−i ≤ 3

√
k

i(k − i)

pi(1 − p)k−i

(
i
k

)i (
1 − i

k

)k−i
≤ 3

√
k

i(k − i)
,

where the last inequality follows from the fact that the function f(s) = si(1 − s)k−i,
s ∈ [0, 1], reaches its maximum at s = i

k . Therefore, if 1 ≤ ik ≤ k − 1, it holds
(
k

ik

)
pik(1 − p)k−ik ≤ 3

√
k

ik(k − ik)
≤ c′

p

1√
k
,
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for some c′
p depending only on p. Now ik = 0 or ik = k can only occur if k ≤ max(1−p

p ; p
1−p) :=

k0. So letting c′′
p = sup0≤i≤k,k≤k0

√
k
(k

i

)
pi(1 − p)k−i, we see that (3.13) holds with cp =

max(c′
p; c′′

p). �

With Lemma 3.13 in hand, we are in position to prove Theorem 3.11.

Proof of Theorem 3.11. We first observe that (strategy of the supremum)

sup
f≥0:

∫
fdπ1=1

π1 ({n : Psf(n) ≥ t}) ≤ π







n : sup

f≥0:
∫

fdπ1=1

Psf(n) ≥ t







 .

We claim that

sup
f≥0:

∫
fdπ1=1

Psf(n) = sup
k≥0

P(Yn,s + Zs = k)

π1(k)

where we recall that Yn,s is a binomial variable of parameter n and ps = e−s and Zs is
Poisson variable with parameter qs = 1 − ps. Indeed if one considers fo = 1ko

/π1(ko), for
some integer ko, one immediately sees that

sup
f≥0:

∫
fdπ1=1

Psf(n) ≥ Psfo(n) =
∞∑

k=0

fo(k)P(Xn,s + Ys = k) =
P(Xn,s + Ys = ko)

π1(ko)
.

Therefore supf≥0:
∫

fdπ1=1 Psf(n) ≥ supk≥0
P(Xn,s+Ys=k)

π1(k) . On the other hand, for any f

non-negative with
∫
fdπ1 = 1,

Psf(n) =
∞∑

k=0

f(k)P(Xn,s + Ys = k) =
∞∑

k=0

f(k)π1(k)
P(Xn,s + Ys = k)

π1(k)
≤ sup

k≥0

P(Xn,s + Ys = k)

π1(k)

which proves the claim.
Recall the definition of Ψs right before Lemma 3.13. From the claim and Lemma 3.13,

we have

sup
f≥0:

∫
fdπ1=1

π1 ({n : Psf(n) ≥ t}) ≤ π1 ({n : n!Ψs(n) ≥ t}) ≤ π1
(
{n : n!/

√
n ≥ t/c}

)

for some constant c depending only on s. Using (3.9), we have n!/
√
n ≤ 3 exp{n log n−n}.

Hence, setting H(x) := x log x−x, which is an increasing function (hence one to one whose
inverse we denote by H−1),

sup
f≥0:

∫
fdπ1=1

π1 ({n : Psf(n) ≥ t}) ≤ π1

(
{n : eH(n) ≥ t/(3c)}

)

= π1

(
{n : n ≥ H−1(log(t/(3c)))}

)

= π1

(
{n : n ≥ ⌈H−1(log(t/(3c)))⌉}

)
.

(Here, as usual, ⌈·⌉ denotes the ceiling function, that maps x to the least integer greater
than or equal x). Next we observe that, according to Lemma 3.7, for any integer u ≥ 2,

π1({n : n ≥ u}) ≤ 2
e−Φ1(u)

√
u

≤ e−H(u)

√
u

.

Since x 7→ e−H(x)/
√
x is decreasing, for t large enough, we end up with

sup
f≥0:

∫
fdπ1=1

π1 ({n : Psf(n) ≥ t}) ≤ e−H(⌈H−1(log(t/(3c)))⌉)

√
⌈H−1(log(t/(3c)))⌉

≤ e−H(H−1(log(t/(3c))))

√
H−1(log(t/(3c)))

=
3c

t
√
H−1(log(t/(3c)))

.
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Finally, we observe that H−1(x) ≥ x
log x for x large enough, from which the expected result

follows. �

4. Laguerre’s semigroups

In this section we deal with the Laguerre semigroups on (0,∞). We may prove that
both properties of Item (1), and item (2) in the introduction, do not hold. On the other
hand, the strategy of the supremum applies and will allow us to prove the Talagrand
Conjecture for the Gamma probability measures.

In the next subsection, we introduce the Laguerre operator in its full generality. How-
ever, in the subsequent sub-section we may, for simplicity, reduce to the sole case α = 3/2
(see below) which is simpler to handle. Many computations could probably be done for
general α but at the price of heavy technicalities. We preferred a simpler presentation
rather than a complete one in order to present the phenomenon occurring in the setting
of Laguerre’s operators.

4.1. Introduction. On (0,∞) denote by να, with α > 0, the Gamma distribution with
density

ϕα(x) :=
1

Γ(α)
xα−1e−x, x > 0

with respect to the Lebesgue measure on (0,∞). It is the reversible measure of the
diffusion operator Lα (which is negative), called Laguerre operator, defined on smooth
enough functions f as

Lαf(x) = xf ′′(x) + (α− x)f ′(x), x > 0.

The Laguerre Operator is well-known and related to Laguerre’s polynomials

Qα
k (x) :=

1

k!
x−α+1ex dk

dxk

(
xk+α−1e−x

)
, k ∈ N, x > 0.

First Laguerre’s polynomials are (we omit the super scripts α for simplicity) Q0(x) = 1,

Q1(x) = α − x, Q2(x) = α(α+1)
2 − (α + 1)x + 1

2x
2. Moreover, the family (Qα

k )k≥0 is

an orthogonal decomposition of Lα in L2((0,∞), γα): namely it is an orthogonal basis
of L2((0,∞), γα) and each Qα

k is an eigenfunction of Lα with associated eigenvalue −k,
k = 0, 1, . . . . The associated semigroup, we denote by (Pα

t )t≥0, takes the form (see e.g.
[1])

Pα
t f(x) =

∫
Gα

t (x, y)f(y)dνα(y)

for any f ∈ Lp((0,∞), γα) for some p ≥ 1, with kernel

Gα
t (x, y) :=

Γ(α)et

et − 1

(
et

xy

)α−1
2

exp

{
− 1

et − 1
(x+ y)

}
Iα−1

(
2
√
xyet

et − 1

)
.

Here Iβ denotes the modified Bessel function of the first kind of order β > −1, defined as

Iβ(x) :=
∞∑

n=0

1

n!Γ(n+ β + 1)

(
x

2

)2n+β

, x > 0.

4.2. Semi-log-convexity for the Laguerre semigroups. We will prove in this section
that there does not exist any uniform lower bound (in x and f) on (logPα

t )′′(x). For
simplicity, and since I1/2(x) =

√
2/πx sinh(x), x > 0, is explicit, we may focus only on the

case α = 3/2 for which we have (we omit the superscript α = 3/2 all along this subsection)

Ptf(x) =

∫
Gt(x, y)f(y)dν(y), Gt(x, y) :=

Γ(3
2)et

et − 1

(
et

xy

) 1
4

exp

{
− x+ y

et − 1

}
I 1

2

(
2
√
xyet

et − 1

)
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with dν(x) = ϕ(x)dx =
√

x
Γ(3/2)e

−xdx. Now consider the special test function f(y) =

δy/ϕ(y) so that Ptf(x) = Gt(x, y) and therefore, setting ct := 2et/2/(et − 1),

logPtf(x) = cy,t−
1

4
log x− x

et − 1
+log I 1

2
(ct

√
xy) = c′

y,t−
1

2
log x− x

et − 1
+log sinh(ct

√
xy)

where cy,t, c
′
y,t are constants that depend only on y and t. It follows that

(log Ptf)′(x) = − 1

2x
− 1

et − 1
+
ct

√
y

2
√
x

coth(ct
√
xy)

and

(logPtf)′′(x) =
1

2x2
− ct

√
y

4x
√
x

coth(ct
√
xy) +

c2
t y

4x
(1 − coth(ct

√
xy)2)

=
1

4x2

(
2 + c2

txy − ct
√
xy coth(ct

√
xy) − [ct

√
xy coth(ct

√
xy)]2

)

=
1

4x2

(
2 + z2 − z coth(z) − z2 coth(z)2

)
=

1

4x2

(
2 − z2

(sinh z)2
− z coth(z)

)

where in the third line we set z = ct
√
xy. Since z coth z → ∞ as z tends to infinity, and

since z/ sinh z ≤ 1 (for z > 0), the latter shows that (logPtf)”(x) cannot be bounded
below by a constant independent on f and x. Hence, Item (1) of the introduction does
not hold.

4.3. Deviation bounds for semi-log-convex functions. In this section, we investigate
item (2) in the introduction. We prove that, due to the weak tail of the measures να, the
log-semi-convexity property does not help to get a better bound than Markov’s inequality.
More precisely, setting Fβ,α := {f ≥ 0 : (log f)” ≥ −β,

∫
fdνα = 1}, β ∈ R, we have the

following proposition.

Proposition 4.1. Let α > 0. Then, for all β > 0,

lim sup
t→∞

t sup
f∈Fβ,α

να({x : f(x) ≥ t}) > 0.

Proof. We proceed as in the proof of Proposition 3.10. Fix β > 0 and, for a > 0, define
fa(x) = exp{−β

2 (x−a)2 +Z(a)} where Z(a) := − log
∫

exp{−β
2 (x−a)2}dνα(x) is devised

so that
∫
fadνα = 1. It is easy to prove (we omit details) that Z(a) ≤ cϕα(a) for some

positive constant c that depends on β and α. Hence,

να(fa ≥ t) ≥ να

(
(x− a)2 ≤ 2

β
(log t+ logϕα(a) + log c)

)
.

Now choose a so that 2
β (log t+ logϕα(a) + log c) = 1. We infer that

να(fa ≥ t) ≥ να(x ∈ [a− 1, a+ 1]) =

∫ a+1

a−1
ϕα(x)dx ≥ c′ϕα(a)

where the last inequality holds for a large enough and follows after some approximation
and algebra left to the reader (here c′ is a constant that depends only α). But a has been

chosen so that ϕα(a) = c′′

t for some constant c′′ > 0 depending only on α and β. Hence,
tνα(fa ≥ t) ≥ c′′ which proves the proposition. �

Remark 4.2. In [17], deviation bounds for log-convex densities (β = 0) under the expo-
nential measure (α = 1) were deduced from the Gaussian case using a simple pushforward
argument. The same argument could be easily used to get deviation bounds for log-convex
functions for other Gamma distributions.

As already mentioned, the above result (β > 0) is due to weak tail of να. Indeed, for
such measures, we have

∫∞
x dνα ∼∞ ϕα(x), while for example for the standard Gaussian
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measure,
∫∞

x e−t2/2dt ∼∞ e−x2/2/x, i.e. there is a gain of a factor 1/x with respect to the
Gaussian density in this case.

4.4. The Talagrand Conjecture. In this final section, we prove Talagrand’s conjecture
for Laguerre’s semigroups, by means of the strategy of the supremum. Such a conjecture
makes sense also in this setting since the Laguerre semigroups enjoy an hypercontractive
property [25, 20].

Theorem 4.3. Let α > 0 and denote by (Pα
s )s≥0 the Laguerre semigroup reversible with

respect to να. Then, for any s > 0, there exists a constant c (that depends only on s and
α) such that for all non-negative real functions f in L1((0,∞), να) with

∫
fdνα = 1,

να({Pα
s f ≥ t}) ≤ c

t
√

log t
, t > 1.

Proof. Fix s > 0 and t > 1. We will use the strategy of the supremum. Namely, we first
observe that

sup
f≥0,

∫
fdνα=1

να({Pα
s f ≥ t}) ≤ να({ sup

f≥0,
∫

fdνα=1

Psf ≥ t}).

Then, it is easy to see that, thanks to the kernel representation,

sup
f≥0,

∫
fdνα=1

Pα
s f(x) = sup

y>0
Gα

s (x, y), x > 0.

Therefore we are left with an estimate on Gs(x, y) (we look for an upper bound). The

following asymptotics are know [1] to hold Iβ(x) ∼∞
ex√
2πx

and Iβ(x) ∼0
(x/2)β

Γ(β+1) . Up to a

constant c that depends on α, we can safely assert that Iα−1(u) ≤ ceu/
√
u, for u ≥ 1 and

Iα−1(u) ≤ cuα−1 for u ≤ 1. In particular,

sup
y>0

Gα
s (x, y) ≤ c′x

1−α
2 e− x

es
−1 max

(
x

α−1
2 sup

0<y≤yx

e− y

es
−1 ;x− 1

4 sup
y>yx

y
1−2α

4 e− y

es
−1

+
2
√

xyes

es
−1

)

= c′x
1−α

2 e− x
es

−1 max
(
x

α−1
2 ;

x− 1
4 exp

{
1

es − 1
sup
y>yx

(1 − 2α)(es − 1)

4
log y − y + 2

√
xyes

})

for some constant c′ that depends on s and α and where yx is such that 2
√

xyxes

es−1 = 1, i.e.

yx = (es−1)2

4xes . Hence, we need to bound from above

sup
y>yx

(1 − 2α)(es − 1)

4
log y − y + 2

√
xyes = sup

z>(es−1)/b
a log z + bz − z2

where we set a = (1−2α)(es−1)
2 and b = 2

√
xes (and used the change of variable z =

√
y,

together with the fact that
√
yx = (es − 1)/(2

√
xes) = (es − 1)/b). Denote by H(y) :=

a log z+bz−z2. It is a tedious but easy exercise to prove that there exists a constant c > 0
than depends only on s and α, and xo > 0 such that supz>

√
yx
H(z) ≤ c + a

2 log x + xes

for x ≥ xo and supz>
√

yx
H(z) ≤ − 1

cx for x ≤ xo. Hence, after some algebra

sup
y>0

Gα
s (x, y) ≤ c′

(
1 + x

1−2α
2 ex

)

for some constant c′ that depends only s and α. Denote by F (x) := x+ 1−2α
2 log x, x > 0

and observe that F increasing for x large enough with inverse function we denote by F−1
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is also increasing. It is easy to see that x ≥ F−1(x) ≥ x− 1−2α
2 log x (for x large enough).

Therefore, for t large enough

sup
f≥0,

∫
fdνα=1

να({Pα
s f ≥ t}) ≤ να

({
x : F (x) ≥ log

(
t

c′ − 1

)})

≤ να

({
x : x ≥ F−1

(
log

(
t

c′ − 1

))})

=
1

Γ(α)

∫ ∞

F −1(log( t

c′
−1))

xα−1e−xdx

≤ κF−1
(

log

(
t

c′ − 1

))α−1

e−F −1(log( t

c′
−1))

≤ κ′(log t)α−1e− log(t)+ 1−2α
2

log log(t) = κ′ 1

t
√

log t

where we used that
∫∞

u xα−1e−xdx ≤ κuα−1e−u for u large enough and κ, κ′ are constants
that depends only on α and s. For t close to 1, the result follows from Markov’s inequality
(at the price of a possible bigger constant κ′). �

Acknowledgement. We thank Zhen-Qing Chen for enlightening discussions on the topic
of this paper.

References

[1] M. Abramowitz and I. A. Stegun. Handbook of mathematical functions with formulas, graphs, and
mathematical tables, volume 55 of National Bureau of Standards Applied Mathematics Series. For sale
by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. 26,
28

[2] S. Aida. Logarithmic derivatives of heat kernels and logarithmic Sobolev inequalities with unbounded
diffusion coefficients on loop spaces. J. Funct. Anal., 174(2):430–477, 2000. 3

[3] M. Arnaudon, H. Plank, and A. Thalmaier. A Bismut type formula for the Hessian of heat semigroups.
C. R. Math. Acad. Sci. Paris, 336(8):661–666, 2003. 7

[4] K. Ball, F. Barthe, W. Bednorz, K. Oleszkiewicz, and P. Wolff. L1-smoothing for the Ornstein-
Uhlenbeck semigroup. Mathematika, 59(1):160–168, 2013. 3, 4

[5] A. D. Barbour, O. Johnson, I. Kontoyiannis, and M. Madiman. Compound Poisson approximation
via information functionals. Electron. J. Probab., 15(42):1344–1368, 2010. 20

[6] M. Barczy and P. Kern. Sample path deviations of the Wiener and the Ornstein-Uhlenbeck process
from its bridges. Braz. J. Probab. Stat., 27(4):437–466, 2013. 10

[7] W. Beckner. Inequalities in Fourier analysis. Ann. of Math. (2), 102(1):159–182, 1975. 2
[8] S.G. Bobkov and P. Tetali. Modified logarithmic sobolev inequalities in discrete settings. Jour. Theor.

Probab., 19(2):289–336, June 2006. 23

[9] A. Bonami. Étude des coefficients de Fourier des fonctions de Lp(G). Ann. Inst. Fourier (Grenoble),
20(fasc. 2):335–402 (1971), 1970. 2
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Université Paris Est Marne la Vallée - Laboratoire d’Analyse et de Mathématiques Ap-
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