LOG-HESSIAN FORMULA AND THE TALAGRAND CONJECTURE - Archive ouverte HAL
Article Dans Une Revue Potential Analysis Année : 2022

LOG-HESSIAN FORMULA AND THE TALAGRAND CONJECTURE

Résumé

In 1989, Talagrand proposed a conjecture regarding the regularization effect on integrable functions of a natural Markov semigroup on the Boolean hypercube. While this conjecture remains unresolved, the analogous conjecture for the Ornstein-Uhlenbeck semigroup was recently resolved by Eldan-Lee and Lehec, by combining an inequality for the log-Hessian of this semigroup with a new deviation inequality for log-semiconvex functions under Gaussian measure. Our first goal is to explore the validity of both these ingredients for some diffusion semigroups in R n as well as for the M/M/∞ queue on the non-negative integers. Our second goal is to prove an analogue of Talagrand's conjecture for these settings, even in those cases where these ingredients are not valid.
Fichier principal
Vignette du fichier
GLMRS18-07-19.pdf (403.67 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02192650 , version 1 (24-07-2019)

Identifiants

Citer

Nathael Gozlan, Xue-Mei Li, Mokshay Madiman, Cyril Roberto, Paul-Marie Samson. LOG-HESSIAN FORMULA AND THE TALAGRAND CONJECTURE. Potential Analysis, In press, ⟨10.1007/s11118-021-09934-z⟩. ⟨hal-02192650⟩
260 Consultations
554 Téléchargements

Altmetric

Partager

More