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Abstract

The graph coloring game is a two-player game in which, given a graph G and a set of k colors,
the two players, Alice and Bob, take turns coloring properly an uncolored vertex of G, Alice having
the first move. Alice wins the game if and only if all the vertices of G are eventually colored. The
game chromatic number of a graph G is then defined as the smallest integer k for which Alice has a
winning strategy when playing the graph coloring game on G with k colors.

In this paper, we introduce and study a new version of the graph coloring game by requiring
that, after each player’s turn, the subgraph induced by the set of colored vertices is connected. The
connected game chromatic number of a graph G is then the smallest integer k for which Alice has a
winning strategy when playing the connected graph coloring game on G with k colors. We prove that
the connected game chromatic number of every outerplanar graph is at most 5 and that there exist
outerplanar graphs with connected game chromatic number 4.

Moreover, we prove that for every integer k ≥ 3, there exist bipartite graphs on which Bob wins
the connected coloring game with k colors, while Alice wins the connected coloring game with two
colors on every bipartite graph.

Keywords: Coloring game; Marking game; Game coloring number; Game chromatic number.
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1 Introduction

All the graphs we consider in this paper are undirected, simple, and have no loops. For every such
graph G, we denote by V (G) and E(G) its vertex set and edge set, respectively, by ∆(G) its maximum
degree, and by NG(v) the set of neighbors of the vertex v in G.

The graph coloring game is a two-player game introduced by Steven J. Brams (reported by Martin
Gardner in his column Mathematical Games in Scientific American in 1981 [11]) and rediscovered ten
years later by Bodlaender [5]. Given a graph G and a set C of k colors, the two players, Alice and
Bob, take turns coloring properly an uncolored vertex of G, Alice having the first move. Alice wins
the game if and only if all the vertices of G are eventually colored. In other words, Bob wins the game
if and only if, at some step of the game, all the colors appear in the neighborhood of some uncolored
vertex.

The game chromatic number χg(G) of G is then defined as the smallest integer k for which Alice
has a winning strategy when playing the graph coloring game on G with k colors. The problem of
determining the game chromatic number of several graph classes has attracted much interest in recent
years (see [3] for a comprehensive survey of this problem), with a particular focus on planar graphs
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(see e.g. [8, 16,17,24–26]) for which the best known upper bound up to now is 17 [26]. Very recently,
Costa, Pessoa, Sampaio and Soares [7] proved that given a graph G and an integer k, deciding whether
χg(G) ≤ k is a PSPACE-Complete problem, thus answering a longstanding open question.

Most of the known upper bounds on the game chromatic number of classes of graphs are derived
from upper bounds on the game coloring number of these classes, a parameter defined through the
so-called graph marking game, formally introduced by Zhu in [25]. This game is somehow similar to
the graph coloring game, except that the players mark the vertices instead of coloring them, with
no restriction. The game coloring number colg(G) of G is then defined as the smallest integer k for
which Alice has a strategy such that, when playing the graph marking game on G, every unmarked
vertex has at most k− 1 marked neighbors. It is worth noting here that the game coloring number is
monotonic, which means that colg(H) ≤ colg(G) for every subgraph H of G, while this property does
not hold for the game chromatic number [23].

Let G be a graph with colg(G) = k and consider the winning strategy of Alice for the marking
game on G. Applying the same strategy for the coloring game on G, Alice ensures that each uncolored
vertex has at most k−1 colored neighbors, so that we get χg(G) ≤ k. Hence, the following inequalities
clearly hold for every graph G.

Observation 1 For every graph G, χ(G) ≤ χg(G) ≤ colg(G) ≤ ∆(G) + 1.

In this paper, we introduce and study a new version of the graph coloring game (resp. of the
graph marking game), by requiring that, after each player’s turn, the subgraph induced by the set of
colored (resp. marked) vertices is connected. In other words, on their turn, each player must color
an uncolored vertex (resp. mark an unmarked vertex) having at least one colored (resp. marked)
neighbor, except for Alice on her first move.

We call this new game the connected graph coloring game (resp. the connected graph marking
game). We will denote by χcg(G) the connected game chromatic number of a graph G, that is,
the smallest integer k for which Alice has a winning strategy when playing the connected graph
coloring game on G with k colors, and by colcg(G) the connected game coloring number of G, that
is, the smallest integer k for which Alice has a strategy such that, when playing the connected graph
marking game on G, every unmarked vertex has at most k − 1 marked neighbors. It is not difficult
to observe that, similarly to the ordinary case, the following inequalities hold for every graph G.

Observation 2 For every graph G, χ(G) ≤ χcg(G) ≤ colcg(G) ≤ ∆(G) + 1.

It is proved in [23] that for every positive integer n, χg(Kn,n−M) = n, where Kn,n−M denotes the
complete bipartite graph with n vertices in each part, minus a perfect matching. We prove in Section 2
that χcg(G) = 2 for every nonempty bipartite graph G, which shows, since the graph Kn,n −M is
bipartite, that the difference χg(G)− χcg(G) can be arbitrarily large.

One of the main open, and rather intriguing, question concerning the graph coloring game is the
following: assuming that Alice has a winning strategy for the graph coloring game on a graph G with
k colors, is it true that she has also a winning strategy with k + 1 colors? We will prove in Section 2
that the answer is “no” for the connected version of the coloring game. More precisely, we will prove
that for every integer k ≥ 3, there exist bipartite graphs on which Bob wins the connected coloring
game with k colors, while Alice wins the connected coloring game with two colors on every bipartite
graph.

The “connected variant” of other types of games on graphs have been considered in the literature.
This is the case for instance for the domination game [6, 15], the surveillance game [9, 12], the graph
searching game [2, 4, 10], or Hajnal’s triangle-free game [20, 22]. However, to our knowledge, the
connected variant of the graph coloring game has not been considered yet.

Our paper is organized as follows. We consider bipartite graphs in Section 2, and outerplanar
graphs in Section 3. We finally propose some directions for future research in Section 4.
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2 Bipartite graphs

We consider the case of bipartite graphs in this section. We will prove that for every integer k ≥ 3,
there exist bipartite graphs on which Bob wins the connected coloring game with k colors, while Alice
wins the connected coloring game with two colors on every bipartite graph.

It is easy to see that Alice always wins when playing the connected coloring game on a bipartite
graph G with two colors: thanks to the connectivity constraint, the first move of Alice forces all the
next moves to be consistent with a proper 2-coloring of G.

Theorem 3 For every bipartite graph G, χcg(G) ≤ 2.

Proof. Let G be any bipartite graph. The strategy of Alice is as follows. On her first move, she
picks any vertex v of G and gives it color 1. From now on, each play will color some vertex having
at least one of its neighbors already colored, so that, since G is bipartite, this eventually leads to a
proper 2-coloring of G. �

However, for every integer k ≥ 3, there are bipartite graphs on which Bob wins the connected
coloring game with k colors.

Theorem 4 For every integer k ≥ 3, there exists a bipartite graph Gk on which Bob wins the con-
nected coloring game with k colors.

Proof. Let Hk be any C4-free bipartite graph with minimum degree at least k2 and let A and B
denote the partite sets of Hk. (Consider for instance the incidence graph of a projective plane of
dimension d ≥ k2; such a graph is a (d+ 1)-regular bipartite graph with girth 6.) Let now Gk be the
bipartite graph obtained from Hk by adding, for each k-subset S of B, a new vertex vS adjacent to
all vertices of S.

We now define the strategy of Bob for playing the connected coloring game on Gk as follows. In
his first moves (at most three, depending on the moves of Alice), Bob colors two vertices of A, say u
and v, with two different colors. In his next two moves, Bob colors a neighbor u′ of u in B with the
same color as v, and a neighbor v′ of v in B with the same color as u. Since the minimum degree of
Hk is at least k2 and Hk is C4-free, Alice cannot prevent Bob from doing so.

Now, Bob colors a k-subset X ⊆ NHk
(u) ∪ NHk

(v) containing u′ and v′ with k distinct colors.
Again, Alice cannot prevent Bob from doing so since each move of Alice “forbids” at most k uncoloured
vertices in NHk

(u) ∪NHk
(v) (each vertex of Gk has at most k neighbors in this set).

After that, the vertex vX cannot be colored and Bob wins the game. �

3 Outerplanar graphs

We consider in this section the case of outerplanar graphs. An outerplanar graph is a graph that can
be embedded on the plane in such a way that there are no edge crossings and all its vertices lie on
the outer face. Recall that a graph is outerplanar if and only if it does not contain K4 or K2,3 as a
minor.

Concerning the ordinary coloring game, Kierstead and Trotter proved in [17] that there exist
outerplanar graphs with game chromatic number at least 6, and Guan and Zhu proved in [13] that
the game chromatic number of every outerplanar graph is at most 7. This bound has then been proven
to be tight by Kierstead and Yang in [18]. We will prove that the connected game chromatic number
of every outerplanar graph is at most 5 and that there exist outerplanar graphs with connected game
chromatic number 4.

Recall that an outerplanar graph is maximal if adding any edge makes it non outerplanar. There-
fore, an outerplanar graph is maximal if and only if, in all its outerplanar embeddings, all faces are
triangles, except possibly the outer face (an outerplanar graph is thus a triangulation of a plane cycle).
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Figure 1: The structure of a maximal outerplanar graph.

Our goal in this section is to prove that the connected coloring number of every outerplanar graph is
at most 5.

When playing the connected coloring game on a graph G, we will say that an uncolored vertex in G
is saturated if each of the available colors appears in its neighborhood. Observe that Bob wins the
connected coloring game on G if and only if he has a strategy such that, at some point in the game, an
uncolored vertex in G becomes saturated. Similarly, when trying to prove that the connected game
coloring number of some graph G is at most k, we will say that an unmarked vertex in G is saturated
if it has at least k marked neighbors. Again, the connected game coloring number of G is at least
k + 1 if and only if Bob has a strategy such that, at some point in the game, an unmarked vertex in
G becomes saturated.

Finally, we will say that a vertex in G is playable if it is uncolored (resp. unmarked) and has at
least one colored (resp. marked) neighbor. Moreover, when considering the connected marking game,
we will say that a vertex is threatened if it is unmarked, has k − 1 differently marked neighbors and
at least one playable neighbor. In that case, note that if Bob plays on a playable neighbor of any
threatened vertex, then Alice loses the game. A winning strategy of Alice for the connected marking
game thus consists in ensuring that, after each of her moves, the considered graph has no threatened
vertex.

We first describe more precisely the structure of maximal outerplanar graphs, which will be used
for defining the strategy of Alice. The structure of maximal outerplanar graphs has been studied
by several authors (see e.g. [1, 14, 19, 21], just to cite a few). In particular, the neighborhood of
every vertex in a maximal outerplanar graph induces a path. Moreover, the triangle graph T (G) of a
maximal (embedded) outerplanar graph G, whose vertices are the triangle faces of G, incident faces
being linked by an edge, is necessarily a tree.

Let G be a maximal (embedded) outerplanar graph. An edge belonging to the outer face of G is
an outer edge of G. Let us choose and fix any outer edge e = uu′ of G. The distance from any vertex
v to the edge e is defined as dG(v, e) = min {dG(v, u), dG(v, u′)}. For every integer i ≥ 0, let Vi denote
the set of vertices at distance i from e. Observe that the subgraph G[Vi] of G induced by each set
Vi is a linear forest, that is, a disjoint union of paths, since otherwise G would contain a K2,3 as a
minor. In particular, G[V0] is the edge uu′ and G[V1] is a single path. Therefore, G can be viewed as
a “tree of trapezoids”, as illustrated in Figure 1(a).

Each of these trapezoids has the structure depicted in Figure 1(b). Both v and v′ belong to some
Vi, i ≥ 0, vv′ being an edge-cut of G, while v1, . . . , vk, k ≥ 2, belong to Vi+1. The vertices v and v′ are
the parents of the children vertices v1, . . . , vk, the edge vv′ is the root edge of the trapezoid, the unique
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vertex vp, 1 ≤ p ≤ k, which is joined by an edge to both v and v′ is the pivot of the trapezoid (its
uniqueness comes from the fact that G does not contain K4 as a minor). We will denote by Tvv′ the
trapezoid whose root edge is vv′, and by p(vv′) the pivot of Tvv′ . Note that each vertex vi, 1 ≤ i ≤ k,
is a neighbor of at least one of its parents, and that only the pivot vp is a neighbor of both its parents.
Moreover, we will say that vi−1, 2 ≤ i ≤ k, is the left neighbor of vi, while vi+1, 1 ≤ i ≤ k − 1, is the
right neighbor of vi (this ordering is well defined since the embedding of G is given).

Observe that if there is no trapezoid of the form Tvv′ or Tv′v in G for some vertex v, then the degree
of v is at most 4 (it is 4 only if v is the pivot of some trapezoid), so that v cannot be a threatened
vertex. Note also that every vertex belongs to at most two root edges.

Based on the drawing of the outerplanar graph depicted in Figure 1(a), we can define a total
ordering ≤G of the vertices of G, obtained by listing the vertices of V0 from left to right, then the
vertices of V1 from left to right, and so on. Finally, we will say that a vertex w1, belonging to a
trapezoid Tv1v′1 , lies above a vertex w2, belonging to a trapezoid Tv2v′2 , if every shortest path from
{v2, v′2} to {u, u′} goes through v1 or v′1.

We now describe the strategy of Alice when playing the connected marking game on an outerplanar
graph G. Let uu′ be any outer edge of G, and Gm be any maximal outerplanar graph containing G
as a subgraph, and such that uu′ is also an outer edge of Gm. In the following, we assume that we are
given a trapezoidal representation of Gm, starting from the edge uu′, as described above. Moreover,
we can also assume that for every trapezoid Tvv′ of Gm, the pivot p(vv′) has been chosen in such a
way that it is linked by an edge in G to at least one vertex from {v, v′}. This will allow us to speak
about children or parent vertices (with respect to Gm) even if the corresponding edges do not belong
to G, and to use the ordering ≤Gm of the vertices of G.

Let us denote by ai, i ≥ 0, the vertex marked by Alice on her (i+1)-th move, and by bi, i ≥ 1, the
vertex marked by Bob on his i-th move, so that the sequence of moves (that is, marked vertices) is
a0, b1, a1, . . . , bi, ai, . . . Hence, a0 is the vertex marked by Alice on her first move and, for every i ≥ 1,
ai is the “response” of Alice to the move bi of Bob.

The strategy of Alice will then consist in applying the first of the following rules that can be
applied (see Figure 2 for an illustration of Rules R1, R2 and R3) for each of her moves.

R0: a0 := u.

R1: If v is a playable unmarked parent of bi, then ai := v.

R2: If bi belongs to a root edge vbi or biv, v is marked and p(vbi) is playable, then ai := p(vbi).

R3: If bi belongs to a root edge vbi or biv, v is unmarked, v is a pivot and v is playable, then ai := v.

R4: If none of the above rules can be applied, and there are still unmarked vertices in G, then we
let ai := w, where w is the smallest (with respect to the ordering ≤Gm) playable vertex.

Note that on his first move, Bob must mark either the vertex u′, in which case Alice will apply
Rule R2 on her second move, or some neighbor v 6= u′ of u, in which case Alice will apply rule R1
and mark u′ on her second move (recall that the edge uu′ belongs to G). Moreover, if Bob marks a
child vertex w of some trapezoid Tvv′ , then at least one of v, v′ must be marked (by the connectivity
constraint), and Alice will immediately apply Rule R1 if one of them is unmarked and vv′ is an edge
in G. These remarks are summarized in the two following observations.

Observation 5 After the second move of Alice, both vertices u and u′ are marked.

Observation 6 After each move of Alice, if w is a marked child vertex of a trapezoid Tvv′ and vv′

is an edge in G, then both v and v′ are marked.

We are now able to prove the main result of this section.

Theorem 7 If G is an outerplanar graph, then colcg(G) ≤ 5.
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Figure 2: The strategy of Alice on outerplanar graphs (Rules R1, R2 and R3).
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Figure 3: An outerplanar graph with connected game chromatic number 4.

Proof. We assume that we are given an outerplanar embedding of Gm and its trapezoidal represen-
tation, as previously discussed. Clearly, it suffices to prove that if Alice applies the above described
strategy, then, after each move of Alice, G contains no threatened vertex. This is clearly the case after
the first and second move of Alice since, at that point, only one or three vertices have been marked,
respectively.

Suppose to the contrary that, after Bob has marked the vertex bi and Alice has marked the vertex
ai, i ≥ 2, t is a threatened vertex in G, and that i is the smallest index with this property, which
implies that ai or bi is a marked neighbor of t. Thanks to Observation 5, we know that both u and
u′ have been marked. Therefore, t is necessarily a child vertex of some trapezoid Tvv′ (we may have
vv′ = uu′). Let t` and tr denote the left and right neighbors of t (in Gm), if they exist. Note that
at least one of them must exist, since otherwise t would have at most two marked neighbors, and
thus could not be a threatened vertex. Since t has four marked neighbors, at least one of t`, tr must
be marked, since otherwise no vertex lying below t could have been marked, due to the connectivity
constraint, so that, again, t would have at most two marked neighbors. Thanks to Observation 6, we
thus get that both v and v′ are marked if vv′ is an edge in G.

We now claim that neither Tt`t nor Tttr contains a marked child vertex which is a neighbor of t.
Indeed, such a vertex, say w, cannot have been marked by Bob since, by Rule R1, Alice would have
marked t just after Bob had marked the first such child vertex of the corresponding trapezoid. The
vertex w has thus been marked by Alice which implies, since t is unmarked, that none of the edges
tv, tv′, tt` or ttr belong to G (otherwise t would have been marked in priority by Alice), and that w
is the only marked neighbor of t, so that t cannot be a threatened vertex.

Therefore, the four marked neighbors of w are necessarily v, v′, t` and tr. Hence, t is the pivot
of Tvv′ , which implies, since t is unmarked, that t` has been marked after v, and that tr has been
marked after v′, so that bi ∈ {t`, tr}. (Note here that we cannot have bi ∈ {v, v′}, since this would
imply ai ∈ {t`, tr}, contradicting the priority of rule R2.) But in each case, that is, bi = t` or bi = tr,
t would have been marked by Alice, thanks to Rule R3.

We thus get a contradiction in each case, which concludes the proof of Theorem 7. �

Concerning the connected game chromatic number of outerplanar graphs, we can now prove the
following.

Theorem 8 If G is an outerplanar graph, then χcg(G) ≤ 5. Moreover, there exist outerplanar graphs
with χcg(G) = 4.

Proof. From Observation 2 and Theorem 7, we get χcg(G) ≤ colcg(G) ≤ 5. For the second part of
the statement, consider the outerplanar graph G depicted in Figure 3. We will prove that Bob has
a winning strategy when playing the connected coloring game on G with three colors. Thanks to
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the symmetries in G, and up to permutation of colors, Alice has three possible first moves, that we
consider separately.

1. If Alice colors v0 with color 1, then Bob colors v1 with color 2. Now, if Alice colors v5 with
color 3 then Bob colors v2 with color 1 so that v4 is saturated, while if Alice colors v2 or v4 with
color 1 (resp. with color 3), then Bob colors v3 with color 3 (resp. with color 1), so that v4 or
v2 is saturated.

2. If Alice colors v1 with color 1, then Bob colors v0 with color 2, and the so-obtained configuration
is similar to that of the previous case.

3. If Alice colors v2 with color 1, then Bob colors v3 with color 2. Now, if Alice colors v4 with
color 3 then Bob colors v5 with color 2 so that v1 is saturated, while if Alice colors v1 with
color 2 (note that using color 3 would saturate v4), then Bob colors v5 with color 3, so that v4
is saturated.

This concludes the proof of Theorem 8. �

By Observation 2, the second part of the statement of Theorem 8 directly implies the following.

Corollary 9 There exist outerplanar graphs with colcg(G) ≥ 4.

4 Discussion

We have introduced in this paper a connected version of the graph coloring and graph marking games.
We have proved in particular that the connected game coloring number of every outerplanar graph
is at most 5, and that there exist infinitely many bipartite graphs on which Alice wins the connected
coloring game with two colors but loses the game if the number of colors is at least three.

We conclude this paper by listing some open questions that should be considered for future work.

1. What is the optimal upper bound on the connected game coloring number and on the connected
game chromatic number of outerplanar graphs? We know that both these values are either 4
or 5.

2. What is the optimal upper bound on the connected game coloring number and on the connected
game chromatic number of planar graphs?

3. Does there exist, for every two integers k ≥ 3 and p ≥ 1, a graph Gk,p on which Alice wins the
connected coloring game with k colors, while Bob wins the game with k + p colors?

4. Is the connected game coloring number a monotonic parameter, that is, is it true that for every
subgraph H of G, the inequality colcg(H) ≤ colcg(G) holds?

5. Does there exist a graph G for which χg(G) < χcg(G)? or colg(G) < colcg(G)? (That is, is it
possible that the connectivity constraint is in favour of Bob?)
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