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1 Introduction

Four-point correlation functions are probably the most interesting entities in a conformal

field theory. While two- and three- point functions are kinematically constrained by con-

formal symmetry, four point functions can depend on conformal cross-ratios and will be

strikingly different for different conformal theories with different physics.

In principle, the spectrum and operator product expansion (OPE) coefficients of a

conformal field theory entail a full non-perturbative solution of a conformal field theory

since they can be put together to construct any higher point function. In practice, it

is usually unpractical to compute all needed spectra and three point functions and then

perform the sum over all possible exchanged operators appearing in the OPE to finally

obtain the four point correlator.

In planar N = 4 Super Yang-Mills theory integrability comes to the rescue and renders

this task feasible. In this paper, we will construct planar four point functions of large BPS

operators at any value of the ’t Hooft coupling from the knowledge of two- and three-

point functions which in turn can be computed by means of integrability. We shall be

dealing with large enough external operators so that so-called wrapping corrections can be

discarded; we denote such four point functions as Asymptotic Four Point Functions.

To compute these four point functions we need to compute the three point functions

between two BPS operators and any non-BPS operator appearing in its OPE. These non-

BPS operators are described using integrability by a set of (at most) seven different type

of Nested Bethe roots [1]. Here we will show that this intimidating Nested Bethe ansatz

can actually be described very simply within the hexagon formalism [2] leading to very

compact expressions for the relevant three-point functions and hence for the asymptotic

four point functions alluded to above.

It would be fascinating to take our final expressions for the four-point correlation

functions and initiate a systematic exploration of their various interesting mathematical

limits thus extracting various relevant physical regimes, many of which with a relevant

holographic interpretation. We look forward to performing these analysis in the near future.

In section 2 we discuss four point functions, their operator product decomposition and

the precise limits which allow one to discard finite size corrections. In section 3 we use the

Hexagon approach to conjecture all loop expressions for those asymptotic correlators. In

section 4 we check the integrability predictions against perturbative data and we conclude

in section 5. Various appendices complement the main text.

Note. While this paper was being prepared, we learned of the forthcoming paper [3],

which discusses similar subjects (the OPE of four-point functions and its relation to integra-

bility) from a different perspective. We decided to coordinate the submissions to the arXiv.

2 Super OPE and finite Bethe roots

Defined as

G(p)(z, z̄, α, ᾱ) ≡ 〈O1O2O3O4〉
〈O1O2〉〈O3O4〉

where Oi ≡ tr ((yi · φ(xi))
p) , (2.1)
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the reduced correlator is a nice conformal invariant quantify. It is a function of the SO(2, 4)

and SO(6) cross-ratios

zz̄ ≡ x2
12x

2
34

x2
13x

2
24

, (1− z)(1− z̄) ≡ x2
14x

2
23

x2
13x

2
24

, αᾱ ≡ y12y34

y13y24
, (1−α)(1− ᾱ) ≡ y14y23

y13y24
,

(2.2)

where x2
ij = (xi − xj)2 and yij = yi · yj with yj being the standard six-dimensional null

vectors parametrizing the orientation of the external BPS operators which are inserted at

four-dimensional positions xj .

2.1 Reservoir picture and asymptotic four-point functions

Let us recall some well-understood facts about the correlator (2.1). We will describe it

through its infinite OPE series governing what flows from operators 1, 2 to operators 3, 4.

In principle, all the multi-trace operators can show up in this OPE representation. However,

at large N there is an important simplification: only single- and double-trace operators

contribute. Then the four-point function can be expanded as

G(p) = 1 +

SUSY protected, coupling independent part︷ ︸︸ ︷
N−2

∑

single-trace

BPS super-conformal

primaries of twist L = 2, 4, . . . , 2p− 2

L×FBPS
L (z, z̄, α, ᾱ)

+

more interesting coupling dependent part︷ ︸︸ ︷
N−2

∑

single-trace

non-BPS super-conformal

primaries

(
C◦◦•p

)2F∆,s,n,m(z, z̄, α, ᾱ)

+extremal and double trace contribution . (2.3)

where the conformal blocks F in the first line are fixed by super-conformal symmetry and

are summarized in appendix A. Our main focus here is on the last term in the first line

corresponding to the contribution of single-trace non-protected operators, whose three-

point functions can be computed by the hexagon approach [2]. A priori, it is non-trivial

to disentangle the double-trace contribution from the single-trace contributions since, at

finite coupling, they can have the same twist and mix with each other.1 However, in

perturbation theory the twist of each exchanged operator is close to its classical value and

this allows us to neatly separate the single- and double-trace contributions — especially if

we consider large external operators with p� 1 — since the exchanged double traces will

have classical twist τ ≥ 2p. Hence, in the OPE limit where z, z̄ are small and the ratio

1At large N the corresponding anomalous dimensions can cross, in this integrable theory. At finite N

this crossing is resolved as discussed in [4].

– 3 –



J
H
E
P
0
7
(
2
0
1
9
)
0
8
2

+ ++ · · ·+ + · · ·+

(Disconnected) Identity Contribution AdjacentOpposed Wrapping (Loop) Suppressed Wrapping (Loop) SuppressedandOpposed Adjacent

Wrapping (Loop) Suppressed

Largest Classical Twist Contributions
Including Double Trace and Extremal Processes

Asymptotic Four-Point Functions

Single Trace Contribution

Small Classical Twist Flowing.
Almost Full Reservoir.

Large Classical Twist Flowing.
Almost Empty Reservoir.

Figure 1. Various contributions to the 4pt function.

z/z̄ is fixed, for all twists τ ≤ 2p − 2 we can safely restrict our attention to single-trace

operators as schematically depicted in figure 1.

As illustrated in that figure, we can think of operators in the OPE, organized by twist,

as originating from a big “reservoir” of propagators at the bottom (and top). Operators

with a small twist τ flowing in the OPE arise from opening up a few links at the bottom.

As such, they will have small side bridges but very large bottom and top bridges. For these

operators wrapping in the so-called opposed channel is greatly suppressed in perturbation

theory [2, 5]. (The adjacent wrapping does matter eventually, at τ/2 + 2 loops to be

precise.) In the other extreme case we have the contribution of operators with twist close

to the double trace threshold, τ = 2p − O(1). Those have huge side bridges which soak

up the reservoirs almost completely. For these large twist operators it is thus the adjacent

wrapping which is greatly suppressed. (On the other hand, the bottom and top bridges

can now be small so that opposed wrapping eventually kicks in at p− τ/2 + 1 loops.)

Finally we have the intermediate regime which is the most relevant one for the present

paper. For operators whose twist is very large and yet far from emptying the reservoir,

1� τ � 2p — as depicted in the middle of figure 1 — wrapping is suppressed in both the

adjacent and the opposed channels. For such contributions we can thus ignore wrapping

contributions altogether and use only the so-called asymptotic prediction for the three

point coefficients in the OPE expansion.

By playing with the polarization vectors we can easily make sure the adjacent bridges

are very large, see e.g. [6]. The basic idea is that if operators O1 and O2 have a large non-

zero combined R-charge then by R-charge conservation the operators in their OPE must

have a large twist, at least as large as the R-charge. For example, we could choose O1 to be

OZX1 = tr(Zp−qXq)+permutations =

(
∂

∂β1

)q
tr(y1 ·φ)p

∣∣∣∣
β1=0

where y1 = (1, i,β1, iβ1,0,0) ,

(2.4)

and O2 to be made out of the same Z’s and the complex conjugate X̄’s. For the top we
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proceed similarly using the remaining complex scalars Y ’s and Ȳ .2 Combined, the total

X U(1) charge of operators 1 and 2 cancels out but the Z U(1) charge does not. Instead

there are 2p − 2q units of such R-charge. As such, in the OPE of such operators we have

operators whose twist is at least τ = 2(p − q). Those leading twist operators would have

side bridges of length l = p − q. Operators with subleading twists will have even larger

side bridges. In sum, for the correlator

〈OZX1 OZX̄2 OZ̄Y3 OZ̄Ȳ4 〉 =

(
∂

∂β1

∂

∂β2

∂

∂β3

∂

∂β4

)q
〈O1O2O3O4〉

∣∣∣∣
βi=0

(2.6)

with p and p − q both very large, the side wrapping effects in the OPE channel 12 can

be delayed tremendously as they will only kick in at p − q + 2 loops. Furthermore, if q is

also very large then the bottom wrapping is also very suppressed since there will be a huge

bottom bridge connecting the X’s and X̄’s which requires a lot of twist to eat up. More

precisely, for a flowing twist τ = 2p − 2q + 2n < 2p − 2 bottom wrapping corrections will

only show up at q+1−n loops. Only for very subleading twist with n very large will these

effect become relevant. To summarize: at weak coupling, for most practical purposes we

can ignore all wrapping corrections when computing (2.6). Such four point functions are

thus dubbed asymptotic four-point functions.

2.2 Super operator product expansion

In the OPE (2.3) we sum over super-conformal primaries only. The descendants are auto-

matically taken into account by the super-conformal blocks F which we summarized out

in appendix A.

In the integrability context each single trace operator is described by a set of seven

kind of Bethe roots satisfying so called Beisert-Staudacher Bethe equations [1, 7]. This

description breaks down at some point due to so called wrapping or finite size corrections at

which point one must switch to more sophisticated machinery such as the Y-system [8, 9],

the Thermodynamic Bethe ansatz [10–12], finite integral equations [13] or, the current

spectrum problem Ferrari, the quantum spectral curve [14]. In this paper we can disregard

finite size corrections as explained in the previous section so that the Beisert-Staudacher

equations will suffice in what follows.

The notation for the Bethe roots is depicted in figure 2. We use uj to denote the

middle node Bethe roots which obey the middle node equations with a spin-chain length

L. Then we have a set of three type of Bethe roots v
(1)
j , v

(2)
j , v

(3)
j describing one of the

su(2|2) wings and another set of roots w
(1)
j , w

(2)
j , w

(3)
j describing the other su(2|2) wing.

2All in all,

OZX̄2 =

(
∂

∂β2

)q
tr(y2 · φ)p

∣∣∣∣
β2=0

where y2 = (1, i, β2,−iβ2, 0, 0) ,

OZ̄Y3 =

(
∂

∂β3

)q
tr(y3 · φ)p

∣∣∣∣
β3=0

where y3 = (1,−i, 0, 0, β3, iβ3) , (2.5)

OZ̄Ȳ4 =

(
∂

∂β4

)q
tr(y4 · φ)p

∣∣∣∣
β4=0

where y4 = (1,−i, 0, 0, β4,−iβ4) .

– 5 –
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SU(2|2)L SU(2|2)R

w(1) w(2) w(3)v(3) v(2) v(1) u

K(1)K(2)K(3) K̃(3)K̃(2)K̃(1)K

Figure 2. PSU(2, 2|4) Dynkin diagram and Bethe roots.

We use K to denote the number of middle node roots and K(a) and K̃(a) with a = 1, 2, 3

to indicate the number of Bethe roots in each of the wings.3

Now, not all solutions to Bethe equations suit our purpose. Super-conformal primaries

are solutions to Bethe equations where all Bethe roots are finite. Furthermore, we should

exclude solutions where x(v(1)) = x(w(1)) = 0 which also correspond to super descen-

dants4 [1] unless these solutions are part of exact strings in which case the corresponding

solutions are denoted as singular solutions and should a priori be considered.5 The sum

in (2.3) stand therefore for a sum over such finite Bethe roots configurations.

The number of Bethe roots of each kind can be read of from the quantum numbers of

the exchanged operator. Since our external operators are all BPS, the three-point functions

preserve a diagonal su(2|2) subgroup [2, 15] which immediately implies that the occupation

numbers of the wings must be identified to yield a non-zero result, K̃a = Ka. The relation

between the Bethe ansatz occupation numbers and length and the labels

Scaling dimension Lorentz su(2)× su(2) so(6) R-charge

∆ [s, s] [n−m, 2m,n−m]

which show up in (2.3) is then

∆− δ∆ = L−K(1) +K(3) +K − 2 (2.8)

s = K −K(1) −K(3) − 2 (2.9)

n = L/2 +K(3) −K(2) − 1 (2.10)

m = L/2 +K(2) −K(1) − 1 (2.11)

3The notation here differs from the one in [1] as

{K1,K2,K3,K4,K5,K6,K7}there = {K(3),K(2),K(1),K, K̃(1), K̃(2), K̃(3)}here ,

{u1,j , u2,j , u3,j , u4,j , u5,j , u6,j , u7,j}there = {v(3)
j , v

(2)
j , v

(1)
j , uj , w

(1)
j , w

(2)
j , w

(3)
j }here . (2.7)

Throughout the paper we will use the sl(2) grading which corresponds to η1 = η2 = −1 in [1].
4By means of a dynamic transformation introduced in [1] we can map a root x(v(1)) = 0 to a root

x(v(3)) =∞ which corresponds to a descendant of the state without the root at ∞.
5Coincidentally or not we found out that — on all examples we checked — these singular solutions yield

a vanishing three-point function.
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where the anomalous dimension δ∆ =
∑

j
2ig

x+(uj)
− 2ig

x−(uj)
up to higher loop finite size

corrections which, as mentioned above, we are discarding throughout this work. The

quantum numbers in (2.8)–(2.11) are all non-negative integers. This puts restrictions over

the length L and the occupation numbers K and K(a). Also, for the Bethe equations to

admit finite solutions the occupation numbers usually need to decrease as we go from the

middle node occupation K into the wing extremities K(3), see e.g., [1, 16, 17].

To summarize, we should a priori find all finite solutions to Bethe equations

with K(a) = K̃(a), read of their quantum numbers from (2.8)–(2.11), compute their three-

point functions using the hexagon approach [2] and add them up as in (2.3) using the

super-conformal blocks summarized in appendix A.

In the next section we will analyze the integrability computation in more detail. We

will then observe a remarkable implication of integrability which dramatically simplifies

even further the computation of the four-point correlator. It turns out that a version

of Yangian symmetry actually implies much more than the global symmetry constraint

K(a) = K̃(a). To get a non-vanishing OPE contribution we must in fact have absolutely

symmetrical wings root by root, that is v
(a)
j = w

(a)
j . This is a very sharp and novel space-

time implication of the world-sheet integrability.

3 Hexagon wings and Yangian

3.1 Nested Bethe wave function

The crux of the hexagon formalism lies in cutting a pair of pants, which represents the

structure constant, into two hexagonal patches. Upon cutting, magnons in each operator

are divided between two hexagons, and we sum over all such possibilities with appropriate

weights, namely a propagation phase eip` and S-matrices. When magnons belong to a rank

1 sector, things are rather simple since the S-matrix is just a scalar phase. In general

however, one has to deal with a complicated index structure: to understand this point,

let us consider two-particle states with indices A and B. After being cut, it produces a

complicated set of states as shown in figure 3. Each term in the figure can be computed

using the hexagon proposal in [2], but the result after summing up different terms (and also

the indices C and D) in general takes a complicated form. In addition to this difficulty,

there are two extra complications: first, when we have several magnons with different

indices, the contribution from each hexagon itself has a matrix part which can be quite

complicated. Second, if we want to compute a structure constant, we need to require that

the external operators are eigenstates of dilatation operators. To do so, we need to contract

the indices in figure 3 against a specific wave function6 for the indices ΨAB so that the

6Note that the “wave functions” that we discuss in this paper are all about the wave functions for the

indices; in the nested Bethe ansatz language they are the wave functions at the nested level. This is in

contrast to the perturbative computation at weak coupling in which one also needs to talk about the wave

function of magnons themselves (in other words, the wave function for the middle node). The structure of

the wave function of magnons themselves is already taken into account by the hexagon form factors, and

we simply need to figure out how to efficiently deal with the index structure. This is the main theme of

this paper.

– 7 –
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⇥ +

+

+

⇥ ⇥

⇥u1u2

u1u2u2 u1

u1 u2

A B A B

A B

S(u1, u2)
CD
AB

CD

Figure 3. Splitting a two-particle state with indices. When the first particle passes through the

second particle, it gets multiplied by a S-matrix S(u1, u2). The resulting state is a complicated

object which includes a summation over indices (C and D in the figure).

resulting state is an eigenstate. The contraction with the wave function “couples” the

contribution from two hexagons and makes the computation even more complicated.

The way to circumvent such complication of indices is, as is well-known, the Nested

Bethe Ansatz. In the Nested Bethe Ansatz, we first make an ansatz for the wave function

of the flavour indices, which depends on the order of momentum-carrying roots ui, and a

set of roots at higher levels w. It has an important property that it “diagonalizes” the

action of the S-matrix,

Si,i+1|Ψw
u1,...,uK

〉 = S(ui, ui+1)|Ψw
u1,··· ,ui+1,ui,...,uK

〉 , (3.1)

with S(u, v) being an abelian phase. When w satisfy the Bethe equation for higher levels,

the wave function has an additional “nested periodicity” property,

|Ψw
uk+1,...,uK ,u1,...,uk

〉 =

(
k∏

i=1

f(ui,w)

)
|Ψw

u1,...,uK
〉 , (3.2)

where f is a theory-dependent phase factor. With these two properties, one can rewrite

the right hand side of the periodicity condition of the full wave function,

|Ψw
u1,...,uK

〉 = eip1L

(
K∏

i=2

S1,i

)
|Ψw

u1,...,uK
〉 , (3.3)

in the following way:

eip1L

(
K∏

i=2

S1,i

)
|Ψw

u1,...,uK
〉 = eip1L

(
K∏

i=2

S(u1, ui)

)
|Ψw

u2,...,uK ,u1
〉

= eip1Lf(u1,w)

(
K∏

i=2

S(u1, ui)

)
|Ψw

u1,...,uK
〉 .

(3.4)

This leads to the Bethe equation for momentum-carrying roots

eip1Lf(u1,w)

(
K∏

i=2

S(u1, ui)

)
= 1 . (3.5)

– 8 –
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 L  R

↵

 L  R

↵

=

u1, . . . , uK u1, . . . , uK u1, . . . , uK uK , . . . , u1

Figure 4. Matrix part for ᾱ = ∅: one can simply act the S-matrix to the right wave function ψR
and simplify the structure. Note we are using the normalization of the matrix part, in which the

abelian part (sl(2) S-matrix) is unity.

Alternatively, we can use this relation to read off the phase factor f from the Bethe equa-

tion.

3.2 Nested hexagon

We now use the aforementioned properties to compute general asymptotic three-point

functions for two BPS and one non-BPS operators. Bethe states in N = 4 SYM spin

chain are characterized by seven sets of roots, which are split into two “wings” by the

momentum-carrying roots u (see figure 2). Owing to this structure, the wave function at

the nested level is given by a product of two wave functions Ψ (left) and Ψ̇ (right), which

are identical if we relabeled the undotted by dotted indexes and trade v by w.

To apply the hexagon formalism, we first reorder the magnons (or equivalently the

momentum-carrying roots) and split them into two subsets α and ᾱ. Thanks to the prop-

erty of the nested Bethe wave function, the state we get after reordering is as simple as the

original one:

|Ψu〉 =




∏

i<j
ui∈ᾱ ,uj∈α

S(ui, uj)


 |Ψαᾱ〉 . (3.6)

Here S(u, v) is the S-matrix in the sl(2) sector.

The next step is to contract the nested wave function with the hexagon form factor.

When ᾱ is empty, this can be done easily since the hexagon is essentially given by a product

of S-matrices which are already diagonalized by the wave function. As a result, we obtain

Hα=u,ᾱ=∅ =


∏

i<j

h(ui, uj)


 〈
←−̇
Ψ←−u |Ψu〉 (3.7)

where 〈
←−̇
Ψ←−u |Ψu〉 represents a contraction of right Ψ̇ and left Ψ wings defined pictorially in

figure 4. More precisely, for the following two states in the psu(2|2) spin chain with the
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Figure 5. Matrix part for ᾱ 6= ∅: the magnons for the right wing are in a different order from

those in the wave function. To contract the wave function with the hexagon, we have to rewrite it

using the “nested periodicity” (3.2).

opposite orderings of the inhomogeneities,

|Ψu〉 =
∑

χn=φ1,2,ψ1,2

ψχ1···χK |χ1(u1)χ2(u2) · · ·χK(uK)〉 ,

|Ψ̇←−u 〉 =
∑

χ̇n=φ̇1̇,2̇,ψ̇1̇,2̇

ψχ̇1···χ̇K |χ̇1(uK)χ̇2(uK−1) · · · χ̇K(u1)〉 ,
(3.8)

the overlap is defined by

〈
←−̇
Ψ←−u |Ψu〉 ≡

∑

χn=φ1,2,ψ1,2

χ̇n=φ̇1̇,2̇,ψ̇1̇,2̇

ψχ1···χKψχ̇1···χ̇K

K∏

n=1

hχn χ̇K+1−n , (3.9)

with hχχ̇ being the one-particle hexagon form factor defined in [2].

By contrast, when ᾱ is not an empty set, things are a little bit more involved. In

the diagram that computes the matrix part, the magnons for the right wing are in the

order ᾱα (see how the lines enter into the leftmost blue dotted box in figure 5) while the

wave function Ψ̇ (in the same figure) is originally defined in the order αᾱ. To simplify

the computation, we rewrite the wave function Ψ̇ in the order ᾱα (rightmost dotted box

in figure 5). This can be done by using the nested periodicity (3.2), and it produces a

product of phase factors f , which can be read off from the asymptotic Bethe equation for

the momentum-carrying root:

f(u) =
∏

v
(1)
i ∈v(1),v

(3)
k ∈v(3)

x−(u)− x(v
(1)
i )

x+(u)− x(v
(1)
i )

1− 1/x−(u)x(v
(3)
k )

1− 1/x+(u)x(v
(3)
k )

. (3.10)

Here x(u) is the Zhukowski variable u = g(x + 1/x) with g =
√
λ/4π, and f±(u) ≡

f(u± i/2). Note that we should only take factors which depend on v’s since f is the phase
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factor coming just from the right wing. After doing so, we can straightforwardly contract

the wave functions with the hexagons and act the S-matrices on the wave functions. This

leads to an expression

Hα,ᾱ =

(∏

ui∈ᾱ
f(ui)

)



∏

i<j
ui,uj∈α

h(ui, uj)







∏

i<j
ui,uj∈ᾱ

h(ui, uj)


 〈
←−̇
Ψ←−αᾱ|Ψαᾱ〉 (3.11)

In order to compute the contraction 〈
←−̇
Ψ←−αᾱ|Ψαᾱ〉 we need the explicit form of the nested

su(2|2) wave-functions which can be found in [65, 66]. By performing this computation

in the psu(1, 1|2) subsector with corresponding wings in su(1|1), see appendix F, we learn

that on the support of the Bethe equations (on-shell condition):

〈
←−̇
Ψ←−αᾱ|Ψαᾱ〉 = 〈Ψ̇u|Ψu〉 (3.12)

where the right hand side is the usual scalar product of the spin chain and is independent

of the ordering of the momentum-carrying roots. Hence it can be taken out of the sum

over partitions as a partition-independent prefactor.

We did not perform the same computation in the full sector but conjecture that equal-

ity (3.12) still holds when the full su(2|2) wings are excited.7

Furthermore, because of the orthogonality of two different on-shell states, the scalar

product (3.12) vanishes unless all the roots of left and right wings are identical, namely

v(i) = w(i). This suggests the existence of a hidden symmetry, which forces infinitely

many structure constants to vanish. In the next subsection, we explicitly construct such a

symmetry using the transfer matrix of psu(2|2).

Putting together all the elements, we obtain our main formula for the structure con-

stant in higher rank sectors,

(
C◦◦•123

C123

)2

=
〈v|v〉2∏K

k=1 µ(uk)

〈u|u〉∏i<j S(ui, uj)
A2 . (3.13)

Here µ(u) is the measure [2] andA is a higher-rank generalization of the sum over partitions,

which reads

A =
∏

i<j

h(ui, uj)
∑

α∪ᾱ=u

(−1)|ᾱ|
∏

j∈ᾱ
f(uj)e

ip(uj)`31
∏

i∈α,j∈ᾱ

1

h(ui, uj)
. (3.14)

The factor 〈u|u〉 denotes the Gaudin norm of the full psu(2, 2|4) spin chain whereas 〈v|v〉,
equivalent to (3.12), is the norm for the (left) wing. Their precise definitions are given in

7This assumption leads to the main formula (3.13) which we have extensively tested as shown in section 4.

See also appendix C where we analyze a state with all seven types of Bethe roots. Furthermore, for the

so(6) sector at tree level, we derived (3.13) from scratch, namely without ever resorting to the hexagon

formalism, by developing the algebraic Bethe ansatz for that sector. This provides another independent

support for the formula (3.13). See appendix E for details.
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⇣ ⌘⇣ ⌘

0
BBBBBBBBBBBBBBBBB@

@
@v2

k
φv3

j

@
@uk

φv3
j

@
@v3

k
φv2

j

@
@v2

k
φv2

j

@
@v1

k
φv2

j

@
@v2

k
φv1

j

@
@uk

φv1
j

@
@v3

k
φuj

@
@v1

k
φuj

@
@uk

φuj

@
@w1

k
φuj

@
@w3

k
φuj

@
@uk

φw1
j

@
@w2

k
φw1

j

@
@w1

k
φw2

j

@
@w2

k
φw2

j

@
@w3

k
φw2

j

@
@uk

φw3
j

@
@w2

k
φw3

j

1
CCCCCCCCCCCCCCCCCA

@
@v1

k
φv1

j

@
@v3

k
φv3

j

@
@w3

k
φw3

j

@
@w1

k
φw1

j

Figure 6. Definitions of the Gaudin norms 〈u|u〉 and 〈v|v〉: φu,v,w is a logarithm of the nested

Bethe equation, eiφu,v,w = 1. 〈u|u〉 is a determinant of the full matrix shown above whereas 〈v|v〉
is a determinant of the upper (or equivalently lower) diagonal matrix shown in red (green). The

missing matrix elements are vanishing, as a result of the structure of the psu(2, 2|4) BAEs (e.g.,

there is no interaction between auxiliary roots w and v lying on different wings).

figure 6. In the sl(2) sector there are not wings so we have 〈v|v〉 = 1 and f(u) = 1 such

that (3.13) reduces to equation (31) in [2].8

As shown in appendix B, the ratio 〈v|v〉2/〈u|u〉 can be rewritten as a single deter-

minant by eliminating the dependence on the roots at higher levels. It is also possible to

express the sum over partition A as a Pfaffian of a 2K × 2K matrix. Combining these two

expressions, we can express the square of the structure constant simply as a ratio of two

determinants. See appendix D for details.

In section 4, we will use this formula to reproduce the data obtained by the OPE

decomposition of the four-point functions.

3.3 “Yangian” symmetry

As we saw above, the structure constant vanishes unless the roots in the two wings are

identical. Below we uncover the underlying symmetry responsible for such a super-selection

rule.

Let us take a look again at the matrix part of C◦◦•
123 . Using the Yang-Baxter relation, we

can show that the difference of transfer matrices acting on two wings must always vanish

8We can perform a change of grading of formula (3.13) from sl(2) to su(2) (see appendix B) such that in

this latter description the su(2) sector has only middle node roots and the corresponding structure constant

is given by (31) of [2] with the su(2) hexagon hY Y defined therein.
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Figure 7. “Yangian” symmetry for three-point functions. The thin black lines denote the magnons

in the first hexagon (α) whereas the thick bold lines denote the magnons in the second hexagon ᾱ.

Using the Yang-Baxter equation, one can move the transfer matrix from the left to the right.

if the state is contracted with the hexagon (see figure 7):

(〈h| ⊗ 〈h|) (Tr(u)−
←−̇
T r(u)) = 0 . (3.15)

Here r can be any representation of psu(2|2) and T and
←−̇
T denote the forward and the

backward transfer matrices acting on the left and the right psu(2|2) respectively. This

property turns out to be true even more generally: it is in fact easy to see that this

also holds for correlators with more than one non-BPS operators, and it even holds in

the presence of wrapping corrections if we ignore the subtleties coming from double-pole

singularities [18].

As is well-known, the expansion of transfer matrices yields mutually commuting

charges. Thus, the relation (3.15) is manifestation of infinitely many conservation laws

hidden in the three-point function. With a slight abuse of the word, we call it “Yangian

symmetry” in this paper.

When the state we contract is the on-shell nested Bethe state, we can replace the

symmetry generator Tr(u) −
←−̇
T r(u) by its eigenvalue. Then it follows from (3.15) that,

unless

Tr(u)−
←−̇
T r(u) = 0 (3.16)

is satisfied as an eigenvalue equation, the structure constant must vanish. The eigenvalues

of these transfer matrices are expressed in terms of nested roots [19] and the only possible

way to satisfy (3.16) is to set the rapidities of two wings to be identical. This is the

symmetry origin9 of our super-selection rule.

In integrable systems, an infinite number of commuting charges are often accompanied

by a real Yangian symmetry, namely a set of non-commutative non-local charges. An

explicit construction of such a symmetry for our case is an interesting open problem for

the future.

4 Comparison with data

In this section we combine the previous two sections. Namely, we put the integrability

predictions of section 3 to test by comparing them with the OPE expansion described in

section 2 of perturbative four point functions.

9The symmetry we constructed here is reminiscent of the “monodromy relations” studied at weak cou-

pling in [20, 21]. It would be interesting to understand the relation between the two.
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Integrability yields predictions for individual structure constants given a set of Bethe

roots corresponding to the non-BPS operator at hand. These operators have different

quantum dimensions ∆ as read off from their Bethe roots but classically there is a large

number of operators with the same classical dimension ∆classical = ∆ − δ∆ — the right

hand side of (2.8). In perturbation theory, what shows up in the OPE of a four-point

function are sum rules over these degenerate operator spaces. The summand is the square

of the structure constants weighted by powers of the quantum anomalous dimension δ∆.

This was illustrated in detail for the simplest sl(2) sector in [6], see for example formulae

(56–65) therein summarizing some of those sum rules. Here we are dealing with the full

nested space so the sum rules are a bit more involved; they are sums over all finite solutions

to Bethe equations whose occupation numbers K,Kj and length L yield the same psu(2, 2|4)

classical charges appearing in the right hand side of (2.8)–(2.11).

Up to one loop, for instance, we can easily use the perturbative results of [22] to extract

predictions for the sum rules P(0,0), P(0,1) and P(1,1) defined as10

∑

Bethe solutions with fixed r.h.s. of (2.8)–(2.11)

(C◦◦• )2 ey δ∆ ≡ P(0,0) +g2 P(1,0) +g2 yP(1,1) +O(g4)

(4.1)

These predictions are summarized in table 1 for one loop OPE data extracted from the

four point function of 1/2 BPS operators of length p = 4. We provide the sum rules

corresponding to non-BPS operators with so(6) charges 0 ≤ m ≤ n ≤ 2 and twist τ ≤
2 p−2. At twist τ = 2p the OPE would be contaminated by double trace contributions and

we could no longer cleanly test the single trace integrability predictions against it.11 To

generate this table we used a four point function with external operators of length p = 4

so that at one loop we can test integrability predictions in the OPE involving operators of

twist 2, 4 and 6. Had we used a larger p and we could have tested those twists (the result

would be the same at this loop order) and more.

Having predictions for the right hand side of (4.1) we turn to the left hand which we

will now generate using integrability.

10In other words, P(0,0) ≡
∑
{u}(C

(0)
u )2, P(1,0) ≡

∑
{u} 2C

(0)
u C

(1)
u and P(1,1) ≡

∑
{u} γ

(1)
u (C

(0)
u )2 where

δ∆ = g2 γ
(1)
u + g4 γ

(2)
u + · · · and C◦◦•u = C

(0)
u + g2 C

(1)
u + g4 C

(2)
u + · · · .

11Of course, we could simply consider larger external operators to delay the double trace contribution as

much as we want. It would also be interesting to play with the OPE analysis varying the external dimensions

in order to isolate the double trace contribution from the extremal one. This would provide valuable data

for guiding an integrability based approach towards studying extremal or double trace correlation functions.
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To reproduce this OPE data from integrability we first find all (wing-symmetric) so-

lutions12 of Beisert-Staudacher Bethe equations with finite Bethe roots. First we set g = 0

and solve these equations to leading order at weak coupling. This part is hard. Then to

get the quantum corrections to the Bethe roots we simply correct the Bethe roots per-

turbatively by linearizing the O(g2) Bethe equations around each tree level seed solution.

This part is straightforward. Once we get the Bethe roots we plug them into the Hexagon

prediction (3.13) with l = L/2, sum over all solutions as indicated in the left hand side

of (4.1). The result is then compared with the OPE predictions for the right hand side

of (4.1) which we extracted from perturbative data and summarized in table 1.

To find all the Bethe ansatz solutions at tree level we resorted to various pieces of

technology. The simplest Bethe equations correspond to the sl(2) sector where we only

excite the middle node and Bethe solutions for operators of spin s are given by sets of

real roots {u1, · · · , us}. Solving Bethe equations in the sl(2) sector in Mathematica is

absolutely straightforward, see for example [23]. Checks of OPE data against integrability

conjectures were already performed in [2] and earlier in [6]. The sums P(a,b) for this sector

are highlight in red in table 1.

For other sectors such as higher rank sectors with excited wing nodes, Bethe equations

become more complicated and also admit complex solutions including at times so called

exceptional solutions [24, 25]. It is the existence of complex solutions which renders the

problem of finding all solutions to the Bethe equations much more challenging in this

case. One way to proceed which we found quite useful is to use a Baxter formulation

of Bethe equations and solve directly for the Baxter polynomials and the transfer matrix

eigenvalues rather than individual Bethe roots. Another useful numerical method is the so-

called Homotopy continuation method [26] where one starts from some simpler equations

and adiabatically deform them until they become the Beisert-Staudacher equations. For

su(2) solutions this was proposed in [26] and its generalization to the nested case also

works very well. The third method — and the one we found to be the most convenient

— is however to use the very powerful recently proposed analytic solver of [27, 28] based

on the Q-system.13 This provided us with the complete set of Bethe solutions needed to

reproduce all the number in blue in tables 1 using the hexagon conjecture (3.13).

To illustrate what goes into these computations consider the following example. For

global charges ∆ − δ∆ = 8, s = 2 , n = 2 and m = 0 there are 20 wing-symmetric Bethe

solutions, each of them with 6 middle node roots {u} and 2 roots in the first left and right

fermionic nodes {w(1)} and {v(1)}. Performing the sum over Bethe solutions with a high

numerical precision we obtain:

∑

20 solutions

(C◦◦•)2 = 0.194805194805194805194805194805194805 (4.2)

− g2 1.81175390266299357208448117539026629935720844

12Bethe solutions with asymmetric wings give a vanishing structure constant C◦◦•. We exclude as well

symmetric solutions with w1 = v(1) = 0, as they do not render highest weights.
13We are very grateful to C. Marboe and D. Volin for sharing a working code of the fast analytic solver

for psu(2, 2|4).
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we then recognize this renders the rational numbers:

∑

20 solutions

(C◦◦•)2 =
15

77
− g2 1973

1089
(4.3)

In an attached Mathematica notebook the reader can find our conjecture (3.13) coded up

to one loop order and how the twenty solutions beautifully add to this nice rational number

which perfectly reproduces the perturbative OPE data. All other blue numbers in table 1

were checked in the same way.

Note in particular that there is no data in table 1 when s + n − m is odd although

there exist Bethe solutions with these global charges. Their absence is imposed by the

symmetry of the OPE under the exchange of the pair of identical external operators. It

is nice to see how this selection rule comes about from our integrability construction.

The sum over partitions (3.14) is written in terms of the bridge length `31. However,

nothing in the original problem singles out this particular adjacent channel. We can find

an equivalent formula expressed in terms of the complementary bridge length `23 when the

Bethe state is on shell and cyclic. Namely, using the ABA equations, eipᾱL3f(uᾱ)2Sᾱα = 1

and f(uα)f(uᾱ) = 1, the permutation property of the hexagon form factor hαᾱSᾱα = hᾱα,

and the zero momentum condition e−ipᾱ = eipα , one easily derives that

∑

α

(−1)|ᾱ|f(uᾱ)eipᾱ`31
1

hαᾱ
= (−1)K

∑

α

(−1)|ᾱ|f(uᾱ)eipᾱ`23
1

hαᾱ
, (4.4)

where K = |α|+ |ᾱ| is the total number of magnons. For two identical operators, the spin

chain is split into two equal parts of length `13 = `23 = L3/2 and the previous relation

turns into a selection rule: A = 0 for K odd. In terms of the quantum numbers of the

superconformal primary, see equation (2.8), it happens whenever (−1)K = (−1)s+n−m =

−1, in agreement with the symmetry property of the 4-point function.

Finally, it is worth stressing that while all the checks we performed worked like a

charm, they do not exhaust the available perturbative data by any stretch. Even at tree

level and one loop we only confirmed the predictions in blue in table 1. From a Bethe

ansatz point of view, most of these solutions are not general enough as they do not excite

roots associated with all psu(2, 2|4) Dynkin nodes. The only solutions which contain roots

of type v(3) and w(3) are the ones which contribute to Pn=0,m=0
τ=6,s=0 in table 1. These solutions

have some peculiarities, such as the appearance of odd powers of g in the rapidities, which

are explained in appendix C. It would be very interesting — even at this low loop order —

to perform a few higher twist checks and probe various Bethe solutions in full generality. It

would also be very interesting to expand Bethe ansatz further and compare the integrability

predictions with the available data at two [29–32], three [33] or even four loops [34–38].

When going to higher loops we should either start including finite size corrections to the

three-point functions [5, 18, 39] (hard) or increase the length p of the external operators

as explained in section 2 (easy).
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5 Conclusions and outlook

We initiated the study of four-point functions of large BPS operators by combining the

operator product expansion and integrability. We found a compact formula for structure

constants in higher rank sectors and checked it against OPE data at tree level and 1 loop.

There are numerous physically interesting questions which can be addressed with the

methods and the results in this paper. The most important among them14 is, perhaps, to

study the strong coupling limit and understand the emergence of the bulk locality. Since we

are discarding the double-trace contributions, we need to take a careful double-scaling limit

in which both the coupling g and the lengths of the external operators pi tend to infinity.

In such a limit, the solutions to the Bethe equation become dense and the summation over

the solutions would be effectively replaced by integrals. It would be extremely interesting

to see if such integrals, combined with the Pfaffian/determinant representations presented

in this paper, give us analytic control over the local physics in AdS.

Right now, we are solving the Bethe equation and computing individual structure

constants. However, what we really want to know is the full four-point function, not the

individual structure constants. Furthermore, solving the Bethe equation would become

horrendously complicated when the length of the operators and the number of magnons

are large. It is thus important to develop a method which allows us to compute the sum

over the states without explicitly solving the Bethe equations.15

Quite recently, there appeared an alternative approach to study higher-point functions

called hexagonalization16 [43]. In that approach, the hexagons are glued always along the

mirror edges and the cross ratios appear as the weight factors for mirror particles. By

contrast, in our approach, we glue physical edges and the cross-ratio dependence comes

entirely from the conformal blocks.

Both approaches have its own advantages and drawbacks. For example, for large

operators and for the leading OPE contributions, the approach proposed here extends to

higher loops in a trivial way since after solving Bethe equations at tree level it is trivial

to correct them perturbatively to any loop order. The hexagonalization approach, on the

other hand leads directly to beautiful resummed expressions for the full four point function

without ever solving any Bethe equations but the number of mirror particle integrals grows

with the loop order. The approach here struggles when we reach maximal twist and

start becoming contaminated by double trace operators while the hexagonalization method

automatically incorporates these effects. Super-conformal symmetry is manifest here since

14Other interesting regimes to study would be the Regge limit and the double light-cone limit.
15In the context of the scattering amplitudes, there are representations of amplitudes given by summation

over algebraic equations known as scattering equations [40] which are formally not so dissimilar from the

Bethe equations encountered here. There, beautiful methods have been developed to perform to sum over

the solutions to the scattering equation without even explicitly solving those equations, see e.g. [41, 42].

Can we do something similar here?
16For tree-level four-point functions involving non-BPS operators, an extensive study in the SU(2) sector

was performed in [44], and expressions in terms of sums over partitions, akin to the ones that arise from

the hexagon formalism, were derived. A similar correlator in special kinematics was revisited recently [45]

and it was observed that the result can be expressed in terms of hexagon form factors, based on the idea

akin to hexagonalization.

– 18 –



J
H
E
P
0
7
(
2
0
1
9
)
0
8
2

we sum over super-conformal primaries with the help of super-conformal blocks but crossing

symmetry is far from obvious while the converse is true in the hexagonalization approach.

The list could go on and on. Clearly, understanding the relation between two approaches is

a very interesting future problem. If we could take the best out of each of them we would

call it a win!
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A Superconformal blocks

The super-OPE relies on the use of a superconformal block to resum the contributions

of all the superconformal descendants of a given superconformal primary with weights

∆, s,m, n. In this appendix we record its expression when the superconformal primary

that is flowing is either long or half-BPS and when the external operators are identical

half-BPS superconformal primaries.

The non-BPS block presented in (A.1) can be read off from various references, e.g. [46–

49]. In contrast, less is written explicitly about the BPS block. Following [46, 47] it has

become conventional to decompose the protected part of the four point function over an

OPE-like basis of (single variable hypergeometric) functions [46, 48], which solve a SUSY

version [49] of the Casimir eigenvalue equation [50]. These functions are however not

identical to the BPS blocks we are after, as one can easily see by checking their content

in usual conformal waves. We give in (A.5) the expression we have found for the BPS

block by adding enough of the former functions together until we got the appropriate OPE

content for an half-BPS multiplet.

Non-BPS blocks. These are given concisely by

F∆,s,n,m(z, z̄,α, ᾱ) = (z−α)(z− ᾱ)(z̄−α)(z̄− ᾱ)× (A.1)

×
(
F∆,s(z, z̄) = (−1)s

h∆+s
2

(z)h∆−s−2
2

(z̄)−h∆−s−2
2

(z)h∆+s
2

(z̄)

(z− z̄)/zz̄

)

×
(
Yn,m(α,ᾱ) =

(m!)2((n+1)!)2

(2m)!(2n+2)!
× Pm( 2

α−1)Pn+1( 2
ᾱ−1)−Pn+1( 2

α−1)Pm( 2
ᾱ−1)

(α− ᾱ)αᾱ

)
,

where Pn are Legendre polynomials and where hλ(z) = zλ 2F1(λ+2, λ+2; 2λ+4; z), with

the shifts in red being an N = 4 SUSY shift. In AdS/CFT jargon, we can say that

the first line is SUSY, the second is AdS and the third accounts for the sphere. The

slightly unconventional normalization factor in the last line ensures that the R-charge

blocks behave as Yn,m(α, ᾱ) = 1 × α−n−2ᾱ−m−2(1 + O(α, ᾱ)). The bosonic blocks are
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normalized so that F∆,s(z, z̄) ' (z̄z)∆/2(−1)s
((

z
z̄

) s
2

+ 1
2 −

(
z̄
z

) s
2

+ 1
2
)
/
(
( zz̄ )1/2 − ( z̄z )1/2

)
, in the

OPE limit where z, z̄ → 0 with z/z̄ fixed.

By sending z, z̄ → 0, one reads out the su(4) block of the superconformal primary,

with Dynkin labels [n−m, 2m,n−m],

Zn,m(α, ᾱ) = (αᾱ)2Yn,m(α, ᾱ) , (A.2)

while by sending α, ᾱ → 0 one recovers the conformal block of a SUSY descendent with

dimension ∆ + 4 and spin s,17

G∆+4,s(z, z̄) = (zz̄)2F∆,s(z, z̄) . (A.3)

Equivalently, the so(2, 4) block G∆,s for a conformal primary with dimension ∆ and spin

s is given [52] by F∆,s without the shifts in red in the arguments of the hypergeometric

function h below (A.1).

BPS blocks. In order to find the 1
2 -BPS block F∆ we can start with an Ansatz given by

a linear combination of the solutions of the super-Casimir equation. Schematically this is

F∆ = Gshort
∆ +

∑

k∈zero modes

c∆,k F long
k (A.4)

which includes the short solution Gshort
∆ defined in [49]18 and the long blocks of the

form (A.1) with a vanishing super-conformal Casimir eingenvalue. This is such that

F∆ satisfies the super-conformal Casimir equation with the same eigenvalue as Gshort.

We fix the coefficients c∆,k of the zero modes by demanding the correct OPE behaviour

F∆ = (zz̄)∆Z∆,∆(α, ᾱ)(1 + (z, z̄)).

Our final result can be written as linear combinations of six bosonic blocks,

F∆ = G∆,0Z∆
2
,∆

2
+

∆2G∆+1,1Z∆
2
,∆

2
−1

24(∆− 1)(∆ + 1)
+

(∆ + 2)2∆2G∆+2,2Z∆
2
−1,∆

2
−1

28(∆− 1)(∆ + 1)2(∆ + 3)

+
(∆− 2)2∆2G∆+2,0Z∆

2
,∆

2
−2

28(∆− 3)(∆− 1)2(∆ + 1)
+

(∆− 2)2(∆ + 2)2∆2G∆+3,1Z∆
2
−1,∆

2
−2

212(∆− 3)(∆− 1)2(∆ + 1)2(∆ + 3)

+
(∆− 2)2(∆ + 2)2∆4G∆+4,0Z∆

2
−2,∆

2
−2

216(∆− 3)(∆− 1)3(∆ + 1)3(∆ + 3)
. (A.5)

The formula (A.5) agrees with those given in [51] for ∆ = 2 (irrep 20 = [0, 2, 0]) and

∆ = 4 (irrep 105 = [0, 4, 0]), see equations (8.17) and (8.24) in [51]. Each of the 6 conformal

waves in (A.5) corresponds to one bosonic conformal primary, with zero hypercharge Y = 0

and in a left-right symmetric irrep of so(3, 1) and su(4), on the middle line of the half-BPS

supermultiplet given in table (B.1) of [51]. For the stress tensor multiplet ∆ = 2, only

the first three terms survive in (A.5), corresponding to the dimension 2 chiral primary, the

17This descendent has shifted labels n+ 2,m + 2 compared to those of the superconformal primary, see

e.g. table (8.1) in [51].
18See section 6.2 therein.
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dimension 3 R-symmetry current and the dimension 4 stress energy tensor, in agreement

with the bosonic (hypercharge zero) components in the ∆ = 2 supermultiplet reviewed in

table (2.15) of [51]. Notice that the dual and self-dual parts of the dilaton carry non zero

hypercharges and thus decouple, in accord with the non-renormalization property of the

BPS structure constant.

B Dualization, Gaudin norm and diagonal symmetry

The considerations in section 3 were based on the description of the Bethe states in the

sl(2) grading, corresponding to η1 = η2 = −1 in the notations of [1]. This choice was

motivated by the comparison with data. Conformal primaries in the sl(2) grading are

indeed closer to the superconformal primaries (they share the same length in the spin

chain description for instance). We would nonetheless get a fully equivalent description in

the su(2) grading, corresponding to the choice η1 = η2 = +1, as shown in appendix F in

a particular subsector. As well known, the two gradings are related by the (simultaneous)

dualizations of the fermionic nodes in the two wings of the psu(2, 2|4) Dynkin diagram [1].

In this appendix, we will show that our main formula (3.13) transforms properly under

this diagonal dualization. We shall also demonstrate that it is invariant under diagonal

su(2|2)D transformations, including the length changing effect accompanying them [1]. To

prove both properties, we shall find convenient to first show that the ratio of determinants

appearing in (3.13) can be written as a single Gaudin determinant for the effective BAEs

for the main roots u. The latter are obtained after implicitly integrating out the auxiliary

rapidities along the wings, at given wing mode numbers mv = mw.

Cosmetic rewriting. To simplify the discussion, we assume that we can unite the

fermionic roots of type 1 and type 3, on each wing of the diagram 2, by applying the

dynamical transformation of [1]. It amounts to inverting the Zhukowski roots of type 3

such that they appear as roots of type 1, while simultaneously redefining the length of the

operator, L → L − 2K(3), in order to absorb the momentum factor spit out during the

inversion. It is clear from the structure of the wing dependent factor (3.10) why we can do

that in the sum over partitions (3.14). It will become clear, at the end of the appendix,

why we can also do it at the level of the Gaudin determinants (once these ones are properly

projected down to the subspace of cyclic states).

The formula for the higher rank structure constant (3.13) factorizes into two main

blocks. The first one is the ratio of determinants r,

r2 =
〈v|w〉2
G

=
〈v|v〉〈w|w〉

G
, (B.1)

with v = Ψ and w = Ψ̇ the on-shell left and right wing wave functions and with G = 〈u|u〉
the Gaudin determinant of the full Bethe state, see figure 6. The next one is the partition

dependent factor

aαᾱ =
(−1)|ᾱ|

hαᾱ
eipᾱ`31 T (ᾱ) =

(−1)|ᾱ|

hαᾱ
e
i
2
pᾱ(L+L1−L2) T (ᾱ) , (B.2)
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with implicit products over the elements of the various sets and with T = 〈Ψ|T |Ψ̇〉/〈Ψ|Ψ̇〉
the eigenvalue of the SU(2|2) transfer matrix in the diagonal state Ψ = Ψ̇. The latter

transfer matrix is evaluated in (B.2) on the Bethe roots ᾱ ⊂ u,

T (ᾱ) =
∏

j∈ᾱ
T (uj) . (B.3)

We normalize it such that T (ui) = 1 for u = {ui} in the sl(2) sector. For a general Bethe

state, one finds that T (ui) = f(ui) with the f factor (3.10), see e.g. [19]. There is no need

to carry out the sum over the partitions, since our discussion will apply to each partition

independently. We also ignore the remaining overall factors in (3.13) and (3.14), like the

product over the measures, etc., which also play no role at all.

The transfer matrix (B.3) responds promptly to all the manipulations we want to per-

form. Changing “its” grading, for instance, is straightforward, using the general expression

given in [19]: it boils down to replacing the auxiliary roots y and their S-matrices S by

their dual versions ỹ and S̃. (This is so up to an overall factor Aᾱα that is used to con-

vert hαᾱ in (B.2) from its sl(2) to its su(2) value [2].) What is less obvious is that the

ratio (B.1) responds in the exact same way. The problem being that in (B.1) one needs to

take derivatives of the BAEs, before dualizing. As we shall see, for the ratio (B.1) one can

equivalently proceeds in the reverse order, that is dualize before taking the derivatives.

Induced Gaudin determinant. The separation between main roots u and auxiliary

roots v is suggestive of a factorization into two determinants for the two subsystems of

equations φu = 2πmu and φv = 2πmv. Were these two subsystems independent, we would

of course immediately conclude that

G
∣∣
no interaction

= Gu ×Gv . (B.4)

(Note that we will not need to distinguish between the two types of auxiliary roots that

we have at our disposal. This is why we unite them into a single set, v ∪ w → v. The

cut off between real and auxiliary roots is actually immaterial and our discussion applies

to a general decomposition into two or more non-overlapping subsystems.) The factoriza-

tion (B.4) would also apply to triangular systems, that are such that the dynamics of one

subsystem does not depend on the complementary subset of roots. If, for instance, the

u system of equations φu = 2πmu is such that ∂vφu = 0, then we would still have (B.4)

except that Gv → Gv|u, with Gv|u = det ∂φvi/∂vj the determinant of the v system of

equations φv = 2πmv (with the roots u entering as external parameters). The point is

that we can always bring the full system to a triangular form if we treat the v’s as being

the slaves of the u’s. What we get in the more general case is that the factor Gu is replaced

by the determinant Gu|φv
= det dφui/uj , with the derivative d/duj being taken at fixed

mode numbers φv = 2πmv instead of fixed rapidities v.

The proof of this factorization is elementary. We simply need to recall the interpreta-

tion of the determinant G as the Jacobian for the mapping between rapidities and mode

numbers,

Gdu ∧ dv = dφu ∧ dφv , (B.5)
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and evaluate it in two steps,

Gdu ∧ dv =
G

Gv|u
du ∧ dφv =

G

Gu|φv
Gv|u

dφu ∧ dφv , (B.6)

that is

G = Gu|φv
Gv|u . (B.7)

We would arrive at the same conclusion starting with

1

G
=

∫
dudv δ(φu − 2πmu)δ(φv − 2πmv) , (B.8)

integrating over v, at fixed u, and then integrating over u,

1

G
=

∫
du

1

Gv|u
δ(φu

∣∣
v=φ−1

v (mv,u)
− 2πmu) =

1

Gu|φv
Gv|u

. (B.9)

As alluded to before, Gv|u is the minor of G, obtained by deleting the φu-rows and u-

columns, while Gu|φv
is the induced Gaudin determinant for the set of effective equations

for the u’s. The latter are obtained by 1) solving the equations for v at given mode

numbers mv and for a given set of rapidities u (assuming that solutions exist) and 2)

plugging the solution v = φ−1
v (mv,u) into the equations for u (assuming that it is unique).

The nice thing about Gu|φv
is that it eliminates the dependence on the variables used to

parameterize the directions transverse to the subspace φv = 2πmv. It indeed measures the

density of states (per volume du) on a given “physical subspace” φv = 2πmv.

In the case of interest we have a tripartite decomposition u∪v∪w where v and w do

not interact with each other, see figure 6. Hence we can write

G = Gu|φv,w
Gv,w|u = Gu|φv,w

Gv|uGw|u , (B.10)

and since v = w, as a result of the on-shell super selection rules, we also have Gv|u = Gw|u.

Therefore
1

r2
= G/G2

v|u = Gu|φv,w

∣∣
v=w

. (B.11)

It shows that 1/r2 is the induced Gaudin determinant for the roots u on the subspace

φv = φw = 2πmv. As such, it should be clear that it does not depend on how we

parameterize the higher levels of the wave function and, in particular, on which grading

we choose; it is invariant under dualization of the auxiliary roots v→ ṽ,

d

duj
φuj (u,v) =

d

duj
φ̃uj (u, ṽ) , (B.12)

since, on both sides of this equation, the total derivatives are taken along the same physical

subspace. Put differently, when computing Gu|φv,w
we are allowed to dualize (or equiva-

lently use the on-shell conditions for the v∪w’s) prior to take the derivatives w.r.t. the u’s.

– 23 –



J
H
E
P
0
7
(
2
0
1
9
)
0
8
2

Diagonal symmetry. Let us comment finally on the diagonal su(2|2)D symmetry. This

is a symmetry of the structure constant [2]. It should thus be reflected in our final expres-

sion (3.13). As well known, see e.g. [19], this symmetry can be phrased as the invariance

under addition of auxiliary roots at the special points y = 0,∞.19 For y = 0 the sym-

metry is dynamical and related to the joining/splitting of free multiplets at the unitarity

bound [1]. (This is literally true for states in the su(1, 1|2) sector.) It holds for cyclic states

only and comes along with a redefinition of the length of the spin chain [1].20 Roughly

speaking, adding or removing a root at y = ẏ = 0 soaks up or spits out two units of spin

chain length. For example, a length L two derivative BMN operator and a length L+2 two

scalar BMN operator, sharing the same roots u1 = −u2, fall in the same supermultiplet

and differ by the adjunction of a root at y = ẏ = 0 (+ some at infinity).

The diagonal symmetry is manifest in (B.2) since the transfer matrix is invariant under

sending roots to infinity. It also transforms multiplicatively, in the spin chain frame, under

addition of a root at y = 0,

T (u; y = 0, rest) = e−ip(u) × T (u; rest) , (B.13)

hence implementing the length changing effect L→ L− 2 for the removal of the fermionic

roots y = 0 and ẏ = 0 from the state. (We work here in the non compact grading.) It is

also not difficult to prove that the ratio (B.1) remains unchanged when sending auxiliary

roots to infinity. It does not transform correctly when setting roots at y = ẏ = 0 however.

The problem is that the Gaudin determinant requires to take derivatives of the BAEs prior

to impose cyclicity, while we would need the reverse to make our point. The latter two

operations do not quite commute, which is why the ratio (B.1) is not per se a diagonal

invariant. The mismatch is not that big however and, as shown below, drops out of the

full structure constant.

Given our earlier discussion, it should be clear that the quantity that is invariant is the

induced norm on the subspace of cyclic states. This is not quite the same as (B.1). The

Gaudin determinant Gu|φv,w
|v=w measures the density of unconstrained spin chain states

on the subspace φv = φw = 2πmv. The latter counts L too many states, as compared to the

gauge theory, because of the L−1 subspaces of unrealized solutions to the equation eipuL =

1 (which itself is a consequence of the BAEs). Hence, imposing the cyclic condition eipu = 1

at the level of the determinant amounts to rescaling it by L, and the invariant quantity is

Lr2 , (B.14)

and not r alone. This small extra factor makes a difference since the length L trans-

forms in the multiplet splitting/joining. The product Lr2 should not. In the hexagon

construction, the factor
√
L multiplying r is provided by the vacuum structure constant

19One must also include w =∞, with w = v(2) an su(2) root, as well as w̃ =∞ in the dual frame for the

second su(2) ⊂ su(2|2). Combinations of the type (y, w) = (0,∞) and (y, w) = (∞,∞), with w−g(y+1/y)

held fixed, should also be considered to get all the supercharges.
20Spin chain states form proper psu(2, 2|4) supermultiplets only if they are cyclic. Non cyclic states have

no counterparts in the gauge theory.
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C◦◦◦ =
√
L1L2L/N where N is the rank of the gauge group. The (properly normalized)

structure constant is thus an su(2|2)D invariant, as expected.

Technically, to prove the invariance of Lr2, we write

Gu|φv,w

∣∣
w=v

= det

[
L
dpj
duk

+
d

iduk
log

x−j − y
x+
j − y

+
d

iduk
log

x−j − ẏ
x+
j − ẏ

+ . . .

]

y=ẏ=0

=
L

L− 2
× det

[
(L− 2)

dpj
duk

+ . . .

]
,

(B.15)

where L/(L−2) emerges as the ratio of two Jacobians: dLP/dP = L, obtained by replacing

the equation LP = 2πm by the cyclic constraint P = 2πm in the determinant for the initial

spin chain of length L,21 and dP/d(L−2)P = 1/(L−2), obtained by reversing the procedure

for the determinant of the final spin chain of length L− 2. Inbetween we have applied

{
d

iduk
log

[
x−j − y
x+
j − y

]}

y=0

=
d

iduk
log

[
x−j − y
x+
j − y

]

y=0

= − dpj
duk

, (B.16)

and similarly for ẏ, which are valid as soon as the derivative d/duk is taken along the cyclic

subspace y = ẏ = 0.

By the same token, one can demonstrate that the dynamic transformation mentioned

at the very beginning is correctly implemented in our expressions.

C Comparison with data: a special case

In this appendix we analyze in detail how to obtain the OPE data sum Pn=0,m=0
τ=6,s=0 in table 1

using the conjecture (3.13). Unlike the rest of the data that we have checked, this sum

receives contributions from operators of different lengths. For these quantum numbers we

have a total of 7 wing-symmetric Bethe solutions:

LenghtL Field content at O(g0) # Roots in sl(2)-grading # Wing-symmetric sols

4 Tr(DD̄ZZ̄ZZ̄) + · · · {1, 2, 3, 6, 3, 2, 1} 2

6 Tr(ZZ̄ZZ̄ZZ̄) + · · · {0, 2, 4, 6, 4, 2, 0} 5

(C.1)

The five solutions with L = 6 correspond to operators in the so(6) sector at O(g0).

At loop level, their roots receive corrections in even powers of the coupling g and can be

used straightforwardly in (3.13) to obtain the corresponding structure constants. Theses

solutions behave in a standard way so we do not review them in this appendix.

The two solutions with L = 4 have roots in all the 7 nodes of the psu(2, 2|4) Dynkin

diagram. Hence it constitutes an interesting case that proves all the components of the

conjecture (3.13). In the following we analyze in more detail these solutions.

21We can always substitute LP = 2πm to one of the equations defining the determinant, since this

equation is just the sum of the rows of the Gaudin matrix.
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At g = 0 these solutions contain two vanishing fermionic roots v
(3)
1 = v

(1)
1 = 0 (similary

w
(3)
1 = w

(1)
1 = 0). These however are not associated to the action of supercharges. As we

show in table 2 these zeros receive corrections at loop order and are lifted to take opposite

non-zero values. Their corrections start at O(g1), unlike the rest of roots that start at

O(g2), and have an unusual expansion in odd powers22 of g. In terms of the Zhukovski

variables the relation between the fermionic roots translates into:

v
(1)
1 = −v(3)

1 → x(u
(3)
1 ) = − 1

x(u
(1)
1 )

with:
v

g
= x(v) +

1

x(v)
(C.2)

At loop level we can perform a dynamical transformation of the fermionic roots, as ex-

plained in appendix B. We can treat the roots of type (3) as of type (1), in both wings,

by going through the cut (x → 1
x) and increasing the length of the operator. In this way,

at loop order, the operator with length L = 4 and excitations {1, 2, 3, 6, 3, 2, 1} has an

alternative description with length L = 6 and excitations {0, 2, 4, 6, 4, 2, 0}. In this latter

description the new fourth wing root v
(1)
4 of type (1) is simply identified with the root of

type (3) in the former description and the correspondent Zhukovski variable changes as:

Zhukovsky: x(v
(3)
1 ) → x(v

(1)
4 ) =

1

x(v
(3)
1 )

Wing root: v
(3)
1 → v

(1)
4 = v

(3)
1

Excitations: {1, 2, 3, 6, 3, 2, 1} → {0, 2, 4, 6, 4, 2, 0}
Length: L = 4 → L = 6 (C.3)

When computing the correspondent normalized structure constants using the conjec-

ture (3.13) we can use any of the two equivalent descriptions in (C.3). Using the roots in

table 2, the components of the conjecture behave according to the discussion in appendix B:

A
∣∣
L=4, {1,2,3,6,3,2,1} = A

∣∣
L=6, {0,2,4,6,4,2,0} (C.4)

and:

L× 〈v|v〉
2

〈u|u〉

∣∣∣∣
L=4, {1,2,3,6,3,2,1}

= L× 〈v|v〉
2

〈u|u〉

∣∣∣∣
L=6, {0,2,4,6,4,2,0}

(C.5)

Although a couple of fermionic roots in table 2 have an expansion in odd powers of g, the

resulting components (C.4) and (C.5) of the hexagon conjecture have the usual expansion

in even powers of g. By a simple inspection of (3.10) we can check the Zhukovski variables

in (C.2) fuse to give an expansion in even powers of g for the sum over partitions A.

Finally to reproduce the correspondent OPE data in table 1 we plug the O(g4) roots

of the Bethe solutions (C.1) in formula (3.13) and sum over all 7 contributions obtaining:

Pn=0,m=0
τ=6,s=0

∣∣
y=0

=
∑

2 solutions with
L=4,{1,2,3,6,3,2,1}

(C◦◦•)2 +
∑

5 solutions with
L=6,{0,2,4,6,4,2,0}

(C◦◦•)2 =
13

210
− 31

63
g2 +O

(
g4
)
.

22The existence of these types of Bethe roots was first observed in [1], see section 5.2 therein.
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First solution up to O(g4) Second solution up to O(g4)

v
(3)
1 −2.1110824g+5.3821312g3 +O(g)4 −0.3000041 ig−5.082979ig3

v
(2)
1 −0.37453099−3.8678404g2 −0.5540218 i−1.802503 ig2

v
(2)
2 +0.37453099+3.8678404g2 +0.5540218 i+1.802503 ig2

v
(1)
1 +2.1110824g−5.3821312g3 +0.3000041 ig+5.082979 ig3

v
(1)
2 −0.41330424−2.7636175g2 1.0820445 i+1.8719637 ig2

v
(1)
3 +0.41330424+2.7636175g2 −1.0820445 i−1.8719637 ig2

u1 −0.074924705g2−0.43054180 −5.3834596g2−1.2029572

u2 −0.4259447−0.5088469i−(2.949711+0.111629i)g2 −3.9652234g2−0.53383287

u3 −0.4259447+0.5088469i−(2.949711−0.111629i)g2 −1.7006510g2−0.15250255

u4 +0.4259447−0.5088469i+(2.949711−0.111629i)g2 0.15250255+1.7006510g2

u5 +0.4259447+0.5088469i+(2.949711+0.111629i)g2 0.53383287+3.9652234g2

u6 +0.43054180+0.074924705g2 1.2029572+5.3834596g2

Table 2. The two wing-symmetric Bethe solutions for L = 4 , ∆0 = 6, s = 0, n = 0 and m = 0 in

the sl(2)-grading. The roots in red vanish at O(g0) and have an unusual expansion in odd powers

g, with v
(3)
1 = −v(1)1 . The next correction is of O(g4) order for all the roots displayed.

D Pfaffian representations

In this appendix, we show that the sum over partition (3.14) at finite coupling can be recast

as a Pfaffian of a finite-dimensional matrix. This rewriting has two virtues: it reduces the

cost of numerical computation, which is extremely heavy when the number of roots is large.

In addition, the argument is potentially applicable to the mirror corrections as well.

The first step is to rewrite (3.14) as

A =
∏

i<j

h(ui, uj)
∑

ᾱ⊂u

(−1)|ᾱ|
∏

k<l
k,l∈ᾱ

H(uk, ul)
∏

j∈ᾱ
ej (D.1)
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with23

H(u, v) ≡ h(u, v)h(v, u) =
(x− − y−)(x+ − y+)(1− 1/x−y+)(1− 1/x+y−)

(x+ − y−)(x− − y+)(1− 1/x+y+)(1− 1/x−y−)
,

ej ≡
f(uj)e

ip(uj)`31

∏

i∈u,i 6=j
h(ui, uj)

.
(D.3)

The next step is to use the identity,24 which holds for even N ,

pf (k(xn, xm))1≤n,m≤N =
∏

i<j

k(xi, xj) , (D.4)

where pf denotes a Pfaffian of a matrix and k(x, y) is given by

k(x, y) =
x− y
1− xy . (D.5)

Using this identity, we can rewrite a product of H(u, v) over a set of rapidities s =

{u1, u2, . . .} as
∏

i<j
i,j∈s

H(ui, uj) =

[
n∏

i=1

k(x+
i , x

−
i )

]
pfKs , (D.6)

with

(Ks)ij = k(ti, tj) , ti =




x+
i 1 ≤ i ≤ |s|

1/x−i−|s| |s| < i ≤ 2|s|
(xi ≡ x(ui)) . (D.7)

We thus have

A =
∏

i<j

h(ui, uj)
∑

ᾱ⊂u

(−1)|ᾱ|


∏

uj∈ᾱ
gj


 pfKᾱ

︸ ︷︷ ︸
(∗)

, (D.8)

with gj ≡ k(x+
j , x

−
j )ej . The series representation (D.8) is akin to the expansion of the

so-called Fredholm Pfaffian [54]. In fact, using the expansion formula for the Pfaffian, we

can recast it into a Pfaffian of a 2K × 2K matrix as follows:

(∗) = pf (J − EKuE) , (D.9)

Here J and E are given by

J =

(
0 I

−I 0

)
, E =

(
diag(g1, . . . , gM ) 0

0 I

)
, (D.10)

23Note that h(u, v) is given by [2]

h(u, v) =
x− − y−

x− − y+

1− 1/x−y+

1− 1/x+y+

1

σ(u, v)
. (D.2)

24We found this formula empirically using Mathematica. We then learned that it is a special case of the

elliptic generalization of Schur’s Pfaffian formula (see eq. (16) of [53]).
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with IM being the identity matrix of rank K.

Using (D.9) and the well-known fact that a square of a Pfaffian is a determinant, we

can express A2 in (3.13) as a determinant. After rewriting a bit, the result reads

A2 =


∏

i<j

h(ui, uj)




2

det (I −K)2K×2K (D.11)

where K has a block structure

K ≡
(
K11 K12

K21 K22

)
, (D.12)

with
(K11)ij = gik(x+

i , 1/x
−
j ) , (K12)ij = gik(x+

i , x
+
j ) ,

(K21)ij = −gik(1/x−i , x
+
j ) , (K22)ij = −gik(1/x−i , 1/x

−
j ) .

(D.13)

Combining this result with the result in appendix B, we can express the square of the

structure constant simply as a ratio of two determinants as

(
C◦◦•123

C123

)2

=


∏

k

µ(uk)
∏

i 6=j
h(ui, uj)


 det (I −K)

Gu|φv,w

∣∣
v=w

, (D.14)

where Gu|φv,w
is the induced Gaudin determinant defined in (B.11).

Let us finally mention the potential application to the mirror corrections. The structure

of the interaction term in the mirror-particle integrand given in [5] takes the same form

as (D.3). Therefore, one can use the generalized Schur’s Pfaffian identity also for the mirror

particles and recast each term as a Pfaffian. Furthermore, in the case of mirror particles,

the full expansion coincides exactly with the expansion of the Fredholm Pfaffian. It is

still to be seen if the sum over bound-state indices leads to a further simplification, but

in any case, such an expression would certainly be useful for resumming the finite size

correction [55] at finite coupling.

E The so(6) structure constant at tree level

In this appendix we compute the tree-level three point function of operators in the so(6)

sector of planar N = 4 SYM. We focus on the case of two 1
2 -BPS operators and one

non-BPS single-trace operators:

O1 = Tr(Z̃L1) , O2 = Tr(Z̄L2) , O3 = Tr(ZZ̄XX̄ · · ·︸ ︷︷ ︸
L

) + · · · (E.1)

The protected operators are given by the BMN vacua spanned by the elementary field

Z̄ and by the rotated field Z̃ ≡ Z + Z̄ + X − X̄ . The non-protected operator is given

by an eigenstate of the one-loop dilatation operator. Such operator can be obtained by

diagonalizing the Hamiltonian of the dual integrable spin chain [56], using the Algebraic

Bethe Ansatz (ABA). We develop on such construction in section E.3.
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C123 =

O1 ≡ Tr(Z̃ · · · Z̃ Z̃ · · · Z̃) O2 ≡ Tr(Z̄ · · · Z̄ Z̄ · · · Z̄)

O3 ≡ Tr(
magnons

Φ · · ·Φ Z · · ·Z)

“l” bridge “L-l” bridge

trivial bridge

Figure 8. Wick contraction for planar tree level structure constant CO1O2O3
.

This three point function can be computed by Wick contractions as shown in figure 8.

Following the tailoring procedure, introduced for the su(2) sector in [57], we can express the

wick contractions as scalar products of spin chain states dual to the single trace operators.

In our configuration — dubbed the reservoir picture in [2] — we have two trivial bridges

which only feature propagators of the type Z-Z̄ (blue lines). The only non-trivial wick

contraction comes therefore from the bridge l = (L+L1−L2)/2 between operators O1 and

O3 and is given by the spin chain scalar product25

C123 = 〈Z̃ l |Ψl〉 (E.2)

where Ψl is a sub-chain of length l in the cyclic spin chain state Ψ, dual to the single

trace operator i.e. O3 ≡ |Ψ〉. In this way the computation of the tree level three-point

function is reduced to finding an inner product of states in the dual so(6) spin chain.

In the su(2) sector the relevant scalar product was computed with ABA techniques [57],

obtaining sum formulas or more compact determinant expressions for some special cases,

see [58] for a review. In [59] su(3) scalar products were computed and used in [60] for

the computation of structure constants in this sector. While for the so(6) spin chain there

are no available formulas for the scalar products26 in the literature. One of the obstacles

being the complexity of the ABA for so(2n) models [62]. To overcome this problem we

25This renders an unnormalized structure constant. The normalized version includes the norms of the

three operators involved.
26An attempt to conjecture the so(6) scalar product, based on the results for su(2), was given in [61].
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construct an alternative version27 of the so(6) ABA which allows for a simpler approach

to the computation of scalar products.28 In particular we use this machinery to find

the scalar product (E.2) as a sum formula. This result makes direct contact with the

conjecture (3.13), restricted to so(6) at tree level, showing the structure of a sum over

partitions and a matrix part depending on the nested levels of the Bethe Ansatz. It

would be interesting to generalize this Bethe Ansatz to address operators in the full sector

psu(2, 2|4) and reproduce the conjecture (3.13) at tree level.

The rest of this appendix is organized as follows: in section E.1 we introduce the so(6)

integrable spin chain, the correspondent transfer matrix, as well as some notation. In

section E.2 we present a novel so(6) vertex model, specifying the Boltzmann weights and

the way to extract the Bethe states from the lattice. In section E.3 we develop a so(6) ABA

for the diagonalization of the spin chain Hamiltonian and transfer matrix. In section E.4

we present the Yang-Baxter algebra, showing how to use it to derive the so called wanted

and unwanted terms of the ABA. In section E.5 we present the coordinate Bethe Ansatz

(CBA) which can be derived from our ABA and vertex model. Finally, in section E.6 we

put in used the Yang-Baxter algebra to compute the tree level structure constant given by

the scalar product (E.2). We show how to simplify the result to obtain the so(6) tree-level

analog of the conjecture (3.13).

E.1 The so(6) spin chain

To obtain a basis of non-BPS operators we need to diagonalize the so(6) integrable spin

chain Hamiltonian:

Hso(6) =

L∑

l=1

(
Il,l+1 − Pl,l+1 −

1

2
Kl,l+1

)
(E.3)

where I,P and K are identity, permutation and trace operators respectively.

This spin chain Hamiltonian is proportional to the one loop dilatation operator in the

so(6) sector of N = 4 SYM. The basis of eigenstates of this Hamiltonian constitutes a basis

for non-BPS operator of the one loop so(6) sector, which (partially) lifts the original tree

level degeneracy. The single trace operators of this sector are mapped to cyclic states of

the spin chain as:

Tr(ZZ̄X Y X̄) −→ |ZZ̄X Y X̄〉+ cyclic permutations (E.4)

where the elementary fields are given by the complex scalars fields:

Z ≡ Φ12 , X ≡ Φ23 , Y ≡ Φ13 , Ȳ ≡ Φ42 , X̄ ≡ Φ14 , Z̄ ≡ Φ34 . (E.5)

These scalar fields form a multiplet of the antisymmetric 6 representation of su(4), isomor-

phic to the vector representation of so(6). This isomorphism is realized by the transforma-

27so(6) is special due to is isomorphism with su(4).
28A very similar approach was developed independently by Carlo Meneghelli [63].
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TΛ(u) = ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑

(a) Monodromy matrix.

T (u) = trΛTΛ(u) = ⇑
⇑

⇑⇑
⇑
⇑

⇑ ⇑
⇑

(b) Transfer matrix.

Figure 9. so(6) Monodromy and Transfer matrices with Λ auxiliary space. The spin chain sites

represent any of the elementary fields ⇑≡ Φab in (E.5).

tion.

Φa b =




0 φ1 + iφ4 φ2 + iφ5 φ3 − iφ6

−φ1 − iφ4 0 φ3 + iφ6 −φ2 + iφ5

−φ2 − i φ5 −φ3 − i φ6 0 φ1 − iφ4

−φ3 + i φ6 φ2 − iφ5 −φ1 + iφ4 0




(E.6)

In this appendix we stick to the basis of complex scalars (E.5).

The ABA finds the spectrum of the so(6) Hamiltonian by solving the eigenvalue prob-

lem of the transfer matrix, the trace of a monodromy operator. This operator is con-

structed by “scattering” a probe particle, in an auxiliary space Λ and spectral parameter

(momentum)u, with all the spin chain sites. We can build various monodromies by choosing

the auxiliary space to lie in any of the representations of the spin chain symmetry group:

From all these possibilities one is distinguished and corresponds to the choice of auxiliary

space in the same representation as the spin chain sites. The trace of this special choice, the

transfer matrix, is a generating function of a family of local conserved charges including the

nearest-neighbour Hamiltonian of the spin chain. For our so(6) spin chain the distinguished

monodromy is T6, its trace generates local conserved charges such as the Hamiltonian (E.3).

Other choices of auxiliary space do not generate the spin chain Hamiltonian, nevertheless

their correspondent transfer matrices are in convolution with the distinguished one. This

means that we can address the eigenvalue problem for the spin chain Hamiltonian and all

the transfer matrices in convolution at once. So we can choose to solve the eigenvalue

problem of the simplest transfer matrix. For our so(6) spin chain the simplest choice

corresponds to T4 with auxiliary space in the 4 fundamental representation of su(4) as:

(T4 (u))
b ; Φc1d1 ···ΦcLdL
a ; Φa1b1

···ΦaLbL
=

· · ·
a
u b

θ1
Φa1b1

Φc1d1

θ2
Φa2b2

Φc2d2

θ3
Φa3b3

Φc3d3

θ4
Φa4b4

Φc4d4

ΦaLbL

ΦcLdL

(E.7)

where Φakbk and Φckdk are the incoming and outgoing so(6) flavours of the kth spin chain

site in the “scattering” with the auxiliary particle. The indexes a and b indicate the
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3
u6

1

3
u5

1

3
u4

1

3
u3

1

3
u2

1

3
u1

1

4
v1

3

4
v2

3

4
v3

3 Φ12

θ1

Φ12

θ2

Φ12

θ3

Φ12

θ4

Φ12

θ5

Φ12

θ6

Φ12

θ7

Φ12

θ8
1
w3

2

1
w2

2

1
w1

2

Ψso(6) Bethe state

K L sites of so(6) spin chain K̃

M

Figure 10. so(6) vertex model with L = 8 ,K = 3 ,M = 6 and K̃ = 3. The arrows indicate the

direction of flavour injection.

incoming and outgoing flavours in the auxiliary space, they take on values {1, 2, 3, 4}
of the 4 representation. The trace of this monodromy, the transfer matrix, is obtained

by identifying the indexes a and b and summing over the four fundamental flavours.

The set of inhomogeneities {θk} must be taken to zero to describe the spin chain with

Hamiltonian (E.3). However, we keep them finite as their presence do not affect our

construction of the spectrum.

In section E.3 we build a Bethe basis that diagonalizes the transfer matrix of (E.7)

and the Hamiltonian (E.3). This construction yields a wing-vertex model that renders a

representation of the Bethe states as we present in the following section.

E.2 The so(6) vertex model

In this section we introduce a vertex model obtained from the ABA in section E.3. The

Bethe states can be obtained as partition functions of this vertex model when imposing

appropriate boundary conditions.

E.2.1 R-matrices in the lattice

The vertex model is given by the winged lattice in figure 10. This lattice is composed by

simple lines in the 4 fundamental representation spanned by flavours {1, 2, 3, 4} and double

lines in the 6-antisymmetric representation of su(4) spanned by (E.5). The simple lines

represent three types of auxiliary spaces with spectral parameters given by three sets of

roots or rapidities {v}K , {u}M , {w}K̃ . These auxiliary sets are in one to one correspondence
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with the nodes of the so(6) or su(4) Dynkin diagram:

{v}K {u}M {w}K̃

(E.8)

To each of the simple lines we associate a probe particle with rapidities: v for the vertical

lines on the left wing , u for the horizontal lines and w for the vertical lines on the right

wing of figure 10. These probe particles “scatter” among each other forming wing auxiliary

lattices. This scattering or crossing of lines is controlled by the R-matrix:

R44(u, v) =
u− v

u− v − i I44 −
i

u− v − i P44 (E.9)

which also provides the Boltzmann weights of the vertex model in the wing lattices as:

a
u

b
v

=
u− v

u− v − i




a a

b

b



− i

u− v − i




a

a

b

b




(E.10)

This R-matrix is composed of two terms: the identity I that keeps the flavours in their

original direction and the permutation P that swaps the directions the flavours follow. On

the right hand side of equation (E.10) the arrows indicate the flow of the flavour, while the

auxiliary root u(v) is always attached to the horizontal(vertical) direction.

The novel part of our vertex model is given by the core of the lattice, where simple (4)

and double (6) lines crossed. The Boltzmann weights associated to these crossed lines are

given by the R46-matrix:

R46(u, θ) =
u− θ + i/2

u− θ − i/2 I46 −
i

u− θ − i/2 P46

a
u

Φbc
θ

=
u− θ + i/2

u− θ − i/2




a a

Φbc

Φbc




− i

u− θ − i/2




a

Φab

Φbc

c − a

Φac

Φcb

b




(E.11)

Now the permutation term P46 has two pieces corresponding to the two possibilities of

swapping the flavour index a with the indexes of Φbc.
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E.2.2 The boundary conditions and Bethe state

In order to obtain the so(6) Bethe state from this vertex model we fix the boundaries

of the wings as shown in figure 10. With these restrictions the auxiliary spaces on the

wings become effectively two-dimensional and the wing lattices render two 6-vertex models:

wing3,4 and wing1,2, associated to su(2) representations spanned by flavours {3, 4} and

{1, 2} respectively.

To complete the boundary conditions we restrict the bottom of the double lines to

have incoming flavour Z ≡ Φ12. This choice makes the vertex models wing3,4 and wing1,2

play the role of reservoirs. In this way the first wing injects M −K units of flavour 3 and

K units of flavour 4 to the double-lined lattice. The second wing absorbs M − K̃ units of

flavour 1 and K̃ of flavour 2.

Considering these boundary conditions we follow the flavour rules and Boltzmann

weights in (E.10) and (E.11) to construct the so(6) Bethe state, which can finally be read

off from the top of the lattice in figure 10. The Bethe state obtained from this vertex model

has L sites and global charges:

so(6) charges : [M − 2K, L+K − 2M + K̃, M − 2K̃] (E.12)

The Bethe state can be expressed as a linear combination of states in the so(6) coordinate

basis with charges (E.12) and length L. The states of this basis are composed of all allowed

combinations of letters (E.5), considering their individual charges are:

Z : [0, 1, 0] , X : [1,−1, 1] , Y : [−1, 0, 1] , Ȳ : [1, 0,−1] , X̄ : [−1, 1,−1] , Z̄ : [0,−1, 0] .

(E.13)

As an example, for L = 2 , K = 1, M = 2 , K̃ = 1 the total charge is [0, 0, 0] and the

correspondent coordinate basis is given by: {|ZZ̄〉 , |Z̄Z〉 , |XX̄〉 , |X̄X〉 , |Y Ȳ 〉 , |Ȳ Y 〉}. The

coefficient of one of these coordinate states, in the linear combination that renders the

Bethe state, is determined by imposing the corresponding letters as boundary conditions

at the top of the double lines of figure (10). Then we should consider all the possible paths

the flavour can follow, consistent with the boundary conditions. Finally the coefficient is

given by the sum of the Boltzmann weights associated to each possible path.

Following the rules of this vertex model it is possible to determine the general form

of the Bethe state as a linear combination of the coordinate basis. We present this in

section E.5 as a Coordinate Bethe Ansatz(CBA). In the following section we present the

origin of this vertex model from the ABA.

E.3 The algebraic Bethe ansatz (ABA)

E.3.1 The monodromy T4 and its elements

The “scattering” of a probe particle in the 4 representation with the spin chain sites in

the 6 representation is given by a product of R46 matrices and renders the T4 monodromy
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matrix:

T4(λ) =R46(λ,θL) · · ·R46(λ,θ1) =
λ
4

θ1
6

θ2
6

θ3
6

θ4
6

θ5
6

θ6
6

(E.14)

From the point of view of the auxiliary space the monodromy is a 4× 4 matrix, whose

elements are operators that act exclusively over the spin chain:

T4(λ) =




A11 A12 B13 B14

A21 A22 B23 B24

C31 C32 D33 D34

C41 C42 D43 D44




(E.15)

In order to obtain the elements of this matrix in the graphical representation in (E.14), we

simply fix the boundaries of the horizontal line to take specific flavour values {1, 2, 3, 4}.
The correspondent transfer matrix, given by the trace of the monodromy (E.15), is:

T = A11 +A22 +D33 +D44 (E.16)

Now our aim is to construct the ABA to find the eigenvalues and eigenstates of this transfer

matrix. For this we start by identifying one of its trivial eigenstates, the pseudo-vacuum:

|ΩL〉 ≡ |ZL〉 ≡ |ΦL
12〉 (E.17)

We consider this pseudo-vacuum as a reference state to start the construction of the ABA.

With this choice the action of the monodromy matrix organizes into 2 × 2 blocks. The

pseudo-vacuum diagonalizes the A and D blocks:

A(λ)|ΩL〉 =

(
A11 A12

A21 A22

)
|ΩL〉 =

(
a(λ) 0

0 a(λ)

)
|ΩL〉

D(λ)|ΩL〉 =

(
D33 D34

D43 D44

)
|ΩL〉 =

(
d(λ) 0

0 d(λ)

)
|ΩL〉 (E.18)

with (considering θk = 0):

a(λ) = 1 and d(λ) =

(
λ+ i/2

λ− i/2

)L
(E.19)

and it is annihilated by the C-block elements:

C(λ)|Ω〉 =

(
C31 C32

C41 C42

)
|Ω〉 = 0 (E.20)
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The action of the B-operators over (E.17) is much less trivial. They create magnon-states

or plane waves when acting over the pseudo-vacuum. The operator Bjk injects flavour

k ∈ {3, 4} and absorbs flavour j ∈ {1, 2} from the state it acts over. When acting over the

pseudovacuum (E.17) it creates a magnon of type Φ1k when j = 2 or type Φ2k when j = 1.

For instance the operator B13 creates a X ≡ Φ23 magnon as:

|ΨX〉 =

L∑

n=1

ψn(u) |Z · · ·
n
↓
X · · · Z〉 =

L∑

n=1

u
3

n
↓

Φ23

Φ12 Φ12 Φ12 Φ12 Φ12Φ12

1

(E.21)

with wave-function ψn(u) =
(∏n−1

k=1
u−θk+i/2
u−θk−i/2

)(
−i

u−θn−i/2

)
as can be read off from the lattice

with Boltzmann weights (E.11).

Similarly we can create other magnon-states with different flavours or so(6) charges

by using operators B23 , B24 and B14. The relationship between these creation operators

and the so(6) charges is summarized in the following figure:

B =

(
B13 B14

B23 B24

)
, Z X

Y

Ȳ

X̄ Z̄B13

B24

B24

B23

B14

B13

B23

B14

(E.22)

E.3.2 The Bethe ansatz

The B creation operators play a key role in the construction of the spectrum of the transfer

matrix. The states created by repeated action of B-operators over the reference state (E.17)

serve as a basis to propose a general Ansatz for the eigenstates of the transfer matrix as:

|Ψ〉 = ψa1···aM ψã1···ãM Bã1a1(u1) · · ·BãMaM (uM ) |ΩL〉 (E.23)

where the indexes ak and ãk take on flavour values {3, 4} and {1, 2} respectively, and the

unconstrained tensors ψa1···aM and ψ̃ã1···ȧM weight the contributions of states constructed

by different choices of Bãmam-operators.

We can rewrite the ansatz (E.23) by using 2× 2 B-blocks instead of individual Bãkak -

operators. With this purpose we introduce the wing-auxiliary states |ψ〉 and 〈ψ̃| as:

ψa1a2···aM = 〈a1a2 · · · aM |ψ〉 (E.24)

ψ̃ã1ã2···ãM = 〈ψ̃ | ã1 ã2 · · · ãM 〉 (E.25)
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with states 〈a1a2 · · · aM | and |ã1ã2 · · · ãM 〉 forming coordinate basis in the tensor product

of two-dimensional subspaces: 21⊗22 · · ·⊗2M and 2̃1⊗ 2̃2 · · ·⊗ 2̃M respectively. We define

the Bm-blocks as:

Bm(u) = |ãm〉Bãmam(u) 〈am| (E.26)

In this way the operator Bm-block acts over the spin chain space and intertwines between

the auxiliary spaces 2 (flavours {3, 4}) and 2̃ (flavours {1, 2}) as:

Bm : 2m ⊗ 61 ⊗ · · · ⊗ 6L −→ 2̃m ⊗ 61 ⊗ · · · ⊗ 6L (E.27)

while its action over other auxiliary spaces 2k and 2̃k is trivial for k 6= m.

Using B-blocks and wing-auxiliary states we reformulate the Bethe Ansatz (E.23) as:

|Ψ〉 = 〈ψ̃|B1(u1) · · ·BM (uM ) |ψ〉 ⊗ |ΩL〉 (E.28)

Using the Ansatz (E.28) we now need to solve the eigenvalue problem:

T (λ)|Ψ〉 = Λ(λ)|Ψ〉 (E.29)

This means we need to find the restrictions over the auxiliary roots {u} and the wings

states such equation (E.29) holds. In what follows we sketch the steps to achieve this diag-

onalization. These will heavily rely on the Yang-Baxter algebra presented in section E.4.

We first reexpress the transfer matrix (E.16) by defining block operators A and D as:

Am(u) = |ãm〉Aãmb̃m(u) 〈b̃m| and Dm(u) = |am〉Dambm〈bm| (E.30)

with non-trivial action over the spaces:

Aa : 2̃a ⊗ 61 ⊗ · · · ⊗ 6L −→ 2̃a ⊗ 61 ⊗ · · · ⊗ 6L (E.31)

Da : 2a ⊗ 61 ⊗ · · · ⊗ 6L −→ 2a ⊗ 61 ⊗ · · · ⊗ 6L (E.32)

In this language the transfer matrix is now a sum of traces of A and D blocks and the

eigenvalue problem has two pieces associated to these blocks:

T (λ)|Ψ〉 = TraAa(λ)|Ψ〉+ TraDa(λ)|Ψ〉 (E.33)

where “a” labels an auxiliary space 2̃ for the A-block and 2 for the D-block.

Now starting with equation (E.33) the strategy is to commute the A and D blocks

through the product of B-blocks until we reach the pseudo-vacuum that satisfies (E.18).

This is possible using the commutation relations provided by the Yang-Baxter algebra (see

section E.4). Once we follow this procedure the result has two type of terms: wanted

and unwanted. From the wanted terms we can reproduce the eigenvalue equation (E.29)

and read off the correspondent transfer matrix eigenvalue Λ. On the other hand the

unwanted terms spoil the eigenvalue equation and their vanishing is a necessary condition

to satisfy (E.29). Here we only show the wanted terms:

T (λ)|Ψ〉 = Φ0(λ)Tra 〈ψ̃|Ta(u1···M |λ)B1(u1) · · ·BM (uM )Aa(λ) |ψ〉 ⊗ |ΩL〉
+ Θ0(λ)Tra 〈ψ̃|B1(u1) · · ·BM (uM )Da(λ)Ta(λ|uM ···1)|ψ〉 ⊗ |ΩL〉
+ unwanted terms from commuting A and B-blocks

+ unwanted terms from commuting D and B-blocks (E.34)
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with:

Φ0(λ|{u}) =

M∏

j=1

λ− uj + i

λ− uj
and Θ0(λ|{u}) =

M∏

j=1

λ− uj − i
λ− uj

(E.35)

As a by-product of the commutations of A-B and D-B blocks in (E.34) we obtain two

auxiliary nested su(2) monodromies29 acting in the spaces of 〈ψ̃| and |ψ〉 respectively:

Ta(u1···M |λ) ≡ R1a(u1, λ) · · · RMa(uM , λ) with a ≡ 2̃a (E.36)

Ta(λ|uM ···1) ≡ RaM (λ, uM ) · · · Ra1(λ, u1) with a ≡ 2a (E.37)

with R-matrices given by (E.9) but now restricted to act over su(2) subspaces. Namely

they read

R22(u, v) =
u− v

u− v − i I22 −
i

u− v − i P22 . (E.38)

Furthermore we can directly act with A over the pseudovacuum in the first line

of (E.34), since it does not act non-trivially over the wing states. Similarly in the second

line we can commute Da and the nested monodromy Ta in the presence of the trace and

act over the pseudovacuum. Using the diagonalization properties (E.18) of pseudovacuum

we can simplify (E.34) and obtain wing transfer matrices as traces of (E.36) and (E.37):

T (λ)|Ψ〉 = Φ0(λ) a(λ) 〈ψ̃|Tra Ta(u1···M |λ) B1(u1) · · ·BM (uM )|ψ〉 ⊗ |ΩL〉+ · · ·
+ Θ0(λ) d(λ) 〈ψ̃|B1(u1) · · ·BM (uM ) Tra Ta(λ|uM ···1)|ψ〉 ⊗ |ΩL〉+ · · · (E.39)

We now see that to reproduce the eigenvalue equation (E.29) from the “wanted” terms, the

wing states must be eigenstates of the corresponding nested su(2) transfer matrices of the

monodromies (E.36) and (E.37). This auxiliary problem is simply solved by the standard

su(2) ABA [64]:

〈ψ̃| = 〈Ω2̃| C(w1) · · · C(wK̃) and |ψ〉 = B(v1) · · · B(vK)|Ω2〉 (E.40)

where B and C are creation and annihilation operators extracted from the mon-

odromies (E.37) and (E.36) respectively. They act over su(2) vacuum states of the wings

given by:

〈Ω2̃| ≡ 〈1M | and |Ω2〉 ≡ |3M 〉 (E.41)

In addition the sets of auxiliary roots {v} and {w} must be on-shell, that is they must fulfil

su(2) Bethe equations with the set {u} as inhomogeneities. Assuming these conditions the

su(2) Bethe states (E.40) diagonalize the wing transfer matrices as:

〈ψ̃|Tra Ta(u1···M |λ) = Λ̃su(2)(λ) 〈ψ̃| and Tra Ta(λ|uM ···1)|ψ〉 = Λsu(2)(λ) |ψ〉
(E.42)

29This is analogous to the appearance of a nested su(2) monodromy in the su(3) Bethe Ansatz. But now

we have two copies of nested monodromies, one for each wing 〈ψ̃| and |ψ〉.
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|Ψ〉 = ψ
∏M
m=1 Bm(um) ψ̃

Ω ≡ ZL

Figure 11. The so(6) Bethe state.

With the wing-states on-shell , (E.39) becomes the eigenvalue equation (E.29) up to un-

wanted terms:

T (λ)|Ψ〉 =
(

Φ0 a Λ̃su(2) + Θ0 dΛsu(2)
)
|Ψ〉+ unwanted terms (E.43)

More explicitly the transfer matrix eigenvalue is given in terms of the spectral parameter

λ and the sets of auxiliary roots {u}M , {v}K and {w}K̃ :

Λ(λ) =




M∏

j=1

λ− uj + i

λ− uj






K̃∏

k=1

λ− wk − i
λ− wk

+

M∏

j=1

λ− uj
λ− uj + i

K̃∏

k=1

λ− wk + i

λ− wk


 (E.44)

+

(
λ+ i/2

λ− i/2

)L



M∏

j=1

λ− uj − i
λ− uj






K∏

k=1

λ− vk + i

λ− vk
+

M∏

j=1

λ− uj
λ− uj − i

K∏

k=1

λ− vk − i
λ− vk




The vanishing of the unwanted terms puts constrains over the set of roots {u}. These

constrains constitute the Bethe equations of the so(6) middle node. Alternatively we can

arrive to the same conditions by imposing the vanishing of the spurious poles at λ = u1···M
of the transfer matrix eigenvalue (E.44). This latter method to obtain Bethe equations is

the so called analytic Bethe Ansatz:

Res
λ=um

Λ(λ) = 0 −→
(
um+ i/2

um− i/2

)L
=

M∏

j 6=m

um−uj + i

um−uj− i
K̃∏

k=1

um−wk− i
um−wk

K∏

k=1

um−vk
um−vk+ i

(E.45)

To obtain the standard form of so(6) Bethe equations we must perform the shifts:30

w → w − i/2 and v → v + i/2 (E.46)

In summary, the so(6) Bethe state is given by the Ansatz in (E.28) with wing states given

by the nested su(2) Bethe states (E.40) and with the sets of auxiliary roots {u} ,{v} and

{w} on-shell. The structure of the Bethe Ansatz presented in figure 11 is equivalent to the

vertex model in figure 10.

30This is equivalent to define the su(2) monodromies (E.36) and (E.37) with the Lax pair instead of the

R-matrix. These two objects differ by a shift of i/2 in the spectral parameter.
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u

v
=

v

u

Figure 12. RT T = T T R relation.

E.4 The Yang-Baxter algebra

In this section we present the Yang-Baxter algebra of our so(6) model. This algebra

provides the technical steps to find the wanted and unwanted terms of the Bethe Ansatz

in section E.3, as well as for our final result (E.83) for the scalar product (E.2).

The R matrices in (E.9) and (E.11) fulfil the Yang-Baxter equation:

R4a4b(u, v)R4a6(u, θ)R4b6(v, θ) = R4b6(v, θ)R4a6(u, θ)R4a4b(u, v) (E.47)

where a and b label two different spaces in the 4 fundamental representation.

This can be straightforwardly generalized to a Yang-Baxter relation for the monodromy

in (E.14), the so called RTT relation:31

Rab(u, v)Ta(u)Tb(v) = Tb(v)Ta(u)Rab(u, v) (E.48)

Furthermore, taking the trace over the 4-dimensional auxiliary spaces in (E.48) we

obtain the commutation relation for the transfer matrices:

[T (u), T (v)] = 0 with T (u) = Tra(Ta(u)) (E.49)

This latter relation gives a family of conserved local charges in convolution when expanding

the transfer matrix around u = −i/2 (without inhomogeneities).

The RTT relation also provides the algebra of the monodromy elements in (E.15),

known as the Yang-Baxter algebra. This is a set of commutation relations that can be

obtained by specifying the boundary conditions in the four-dimensional auxiliary spaces:

a : (i)→ (k) and b : (j)→ (l) as follows:

(Rab(u, v))
(k)(l)

(Ta(u))(i) (Tb(v))(j) = (Tb(v))(l) (Ta(u))(k) (Rab(u, v))(i)(j) (E.50)

where the lower indexes in parenthesis indicate the initial flavours and the upper indexes

correspond to the final flavours. We leave implicit the intermediate flavours indexes over

which we must sum over.

Expanding the R-matrices in (E.50) into identity and permutation as in (E.9) we obtain

the following algebra of operators:

[Tk i(u), Tl j(v)] =

( −i
u− v

)
(Tl i(v)Tk j(u) − Tl i(u)Tk j(v) ) (E.51)

31In our graphical representations the order of action of operators should be read from left to right. While

in our equations we respect the usual order of operator action, that is operators on the right act first. In

this way the left-hand side in figure 12 represents the right-hand side on equation (E.48).
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where T13 ≡ B13 and likewise for other operators in (E.15).

The Yang-Baxter algebra (E.51) plays a key role in the construction of the ABA in

section E.3 and also in the computation of the scalar product that gives the tree level

structure constant in section E.6. In what follows we provide some of the details involved

in these calculations.

E.4.1 The wanted and unwanted terms of the Bethe ansatz

In the ABA construction we use the Yang-Baxter algebra organized into blocks. For this we

restrict the four-dimensional auxiliary spaces in (E.48) to the subspaces 2 (flavours {3, 4})
or 2̃ (flavours {1, 2}), instead of strictly fixing the boundary conditions. For instance to

derive the D-block and B-block commutation relation we restrict the auxiliary spaces as:

a : 2(3,4) → 2(3,4) and b : 2(3,4) → 2̃(1,2):

(Rab(u, v))(3,4)(1,2) (Ta(u))(3,4) (Tb(v))(3,4) = (Tb(v))(1,2) (Ta(u))(3,4) (Rab(u, v))(3,4)(3,4)

(E.52)

expanding the R-matrix of the left hand side we obtain:

Da(u)Bb(v) =

(
u− v − i
u− v

)
Bb(v)Da(u)Rab(u, v) +

(
i

u− v

)
Bb(u)Da(v)Pab (E.53)

Under these restrictions now a and b label two-dimensional spaces.

Similarly, by making another appropriate choice of boundary conditions: a : 2̃(1,2) →
2̃(1,2) and b : 2(3,4) → 2̃(1,2), we obtain the A-B commutation relation:

Aa(u)Bb(v) =

(
u− v + i

u− v

)
Rba(v, u)Bb(v)Aa(u) +

(
− i

u− v

)
Pab Bb(u)Aa(v) (E.54)

Using these commutation relations, (E.53) and (E.54), we can compute the wanted and

unwanted terms as a result of commuting A and D through the product of B-blocks in the

ansatz (E.28). These results are given by:

Aa(λ)B(u1···M ) = Φ0(λ|{u})Ta(u1···M |λ)B(u1···M )Aa(λ) (E.55)

+

M∑

k=1

Φk(λ|{u})Ta(u1···M |uk)Tk(uk|uk−1···1) Bk(λ)B(u1···k̂···M )Tk(u1···k−1|uk)Aa(uk)

where we use the short-hand notation:

B(u1···M ) ≡
M∏

m=1

Bm(um) and B(u1···k̃···M ) ≡
M∏

m 6=k
m=1

Bm(um) (E.56)

as well as:

Tk(uk|uk−1···1) = Rk k−1(uk, uk−1) · · · Rk 2(uk, u2)Rk 1(uk, u1)

Tk(u1···k−1|uk) = R1 k(u1, uk)Rk 1(uk, u1) · · · Rk−1 k(uk−1, uk) (E.57)
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The Φk coefficients are:

Φ0(λ|{u}) =
M∏

j=1

uj − λ− i
uj − λ

and Φk(λ|{u}) =
i

uk − λ
M∏

j=1
j 6=k

uj − uk − i
uj − uk

(E.58)

Similarly we commute a D-block through a product of B-blocks as:

Da(λ)B(u1···M ) = Θ0(λ|{u})B(u1···M )Da(λ)Ta(λ|uM ···1) (E.59)

+

M∑

k=1

Θk(λ|{u})Tk(uk|uk−1···1)Bk(λ)B(u1···k̂···M )Tk(u1···k−1|uk)Da(uk)Ta(uk|uM ···1)

with coefficients:

Θ0(λ|{u}) =
M∏

j=1

λ− uj − i
λ− uj

and Θk(λ|{u}) =
i

λ− uk

M∏

j=1
j 6=k

uk − uj − i
uk − uj

(E.60)

E.4.2 The C-commutation relations for the scalar product

When computing the scalar product (E.2), using the ABA, we will need of the commutation

relations of the annihilation C-block and the other elements of the monodromy. These can

be obtained from the Yang-Baxter algebra (E.51) as:

[Ca(u),Bb(v)] =

( −i
u− v

)
(Ab(v)Da(u)Pab − PabAa(u)Db(v)) (E.61)

[Ca(u),Ab(v)] =

( −i
u− v

)
(Ab(v)Ca(u)Pab − PabAa(u)Cb(v)) (E.62)

[Ca(u),Db(v)] =

( −i
v − u

)
(PabDb(v)Ca(u)− Da(u)Cb(v)Pab) (E.63)

E.5 The coordinate Bethe Ansatz (CBA)

As explained in section E.2 we can expand the Bethe states in terms of a coordinate basis

as:

|Ψso(6)〉 =
∑

coordinate basis

ΨZX···({v}, {u}, {w}) |Z X · · · 〉 (E.64)

where |Z X · · · 〉 stands for an element of the coordinate basis and the coefficient ΨZX···
is its correspondent wave-function. This wavefunction is obtained as a partition function

in the lattice in figure 10, with top boundary conditions imposed by the correspondent

element of the coordinate basis.

E.5.1 The coordinate basis as strings of auxiliary roots

To introduce the wave-function of a given element in the coordinate basis we first define a

one to one map between the elementary fields (E.5) and a set of rapidities:

Z ≡ θ X ≡
u
θ Y ≡

w
u
θ Ȳ ≡

v
u
θ X̄ ≡

v w
u
θ Z̄ ≡

v w
u1 u2

θ , (E.65)
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where θ’s are the inhomogeneities defined for each spin chain site. To make manifest the

structure of the nested Bethe ansatz, here we represented the fields by stacking the roots:

u is the root at the middle node whereas w and v are the nested roots associated with the

left and the right nodes respectively.

Using this representation, we can re-express the coordinate basis as a collection of (sets

of) rapidities, for instance:

|Z(θ1)X(θ2) Z̄(θ3) Ȳ(θ4)〉 ≡ |θ1

u1

θ2

v1 w1
u2 u3

θ3

v2
u4

θ4〉 (E.66)

Here we assigned a numeration to the auxiliary roots in the order of appearance.32 In what

follows, we call such a collection of rapidities a string. The full wave function (E.64) can

then be written as

|Ψso(6)〉 =
∑

s∈ all possible
strings

Ψs({v}, {u}, {w}) |s〉 (E.67)

E.5.2 The wave-function

The wavefunction Ψs for the string s is given by a sum over weighted permutations over

all the auxiliary roots:

Ψs =
∑

π∈Per(K1)

S({v}π)
∑

σ∈Per(K2)

S({u}σ)
∑

π̃∈Per(K3)

S({w}π̃) × Ψbare
s ({v}π, {u}σ, {w}π̃) ,

(E.68)

where the notation {∗}σ denotes that the set ∗ is permuted according to the permutation

σ. The multiparticle S-matrix S({u}σ) brings the ordered momenta {u} to the ordering

{u}σ and is given by a factorized product of two-body S-matrices as in the examples:

S({u3, u2, u1}) = S(u1, u2)S(u1, u3)S(u2, u3) with S(ua, ub) =
ua − ub − i
ua − ub + i

S({u3, u1, u2}) = S(u1, u3)S(u2, u3) (E.69)

In a spin chain with L sites, the correspondent “bare” wavefunction Ψbare
s is given by

Ψbare
s ({v}, {u}, {w}) =

L∏

n=1

Φ(sn) , (E.70)

32Since we later sum over all permutations of auxiliary roots this enumeration becomes irrelevant.
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where the individual wave function Φ(sn), defined for the n-th element of the string s, is

given by

Φ( θ ) = 1

Φ(
u
θn ) = ϕn(u|{θ})

Φ(

w
um
θn ) = ϕn(um|{θ})× ϕ̃m(w|{u})

Φ(

v
um
θn ) = ϕn(um|{θ})× ϕ̃m(v|{u})

Φ(

v w
um
θn ) = (−1)× ϕn(um|{θ})× ϕ̃m(v|{u})× ϕ̃m(w|{u})

Φ(

v w
um um+1

θn ) =
1

2
× ϕn(um|{θ})× ϕn(um+1|{θ})

×
(
ϕ̃m(w|{u})− ϕ̃m+1(w|{u})

)
×
(
ϕ̃m(v|{u})− ϕ̃m+1(v|{u})

)

(E.71)

where we include the label of the rapidities (um) only when this is necessary to express the

correspondent wavefunction. The factors ϕ and ϕ̃ are one-particle wave functions and are

given by:

ϕn(u|{θ}) =

(
n−1∏

l=1

u− θl + i/2

u− θl − i/2

)
× 1

u− θn − i/2︸ ︷︷ ︸
occupation factor

ϕ̃m(w|{u}) =

(
m−1∏

l=1

w − ul + i/2

w − ul − i/2

)
× 1

w − um − i/2
(E.72)

Needless to say, when the rapidities are permuted in (E.70), we should also permute the

rapidities in the definitions of the wave functions, which are given by the right hand sides

of (E.71), accordingly.

E.6 The scalar product: tree level structure constant

As we saw in the introduction of this appendix, the tree level planar three-point function

in figure 8 is given by the scalar product between a rotated BMN vacuum and a Bethe

state:

C123 = 〈Z̃ l|Ψ({v}, {u}M , {w})〉l−Bethe
= 〈Z̃ l| ⊗ 〈ψ̃|B1(u1) · · ·BM (uM ) |ψ〉 ⊗ |Ωl〉 (E.73)

where Bethe state is given by the Ansatz in figure 11 but with the number of sites or

elementary fields equal to the bridge “l”.

E.6.1 A global rotation

In order to compute the scalar product (E.73) using the machinery of the ABA, we first

need to express the rotated vacuum in this language. This is achieved by means of a global

rotation of the original vacuum:

|Z̃L〉 = eb |ZL〉 (E.74)
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The generator “b” of this global rotation can be simply obtained from the B-block by

taking the trace and sending to ∞ the spectral parameter “u”;

lim
u→∞

TrB(u) =
i

u
b (E.75)

this lowering generator is composed by the elements:

b = b13 + b24 (E.76)

When b13 acts over the vacuum generates a X excitation, when b24 acts generates -X̄ and

when both act over the same site a Z̄ excitation is generated. In this way we generate the

rotated vacuum:

Z̃ ≡ Z + Z̄ +X − X̄ (E.77)

In the scalar product (E.73) we must use instead the bra state for which we use the C-block

as:

〈Z̃ l| = 〈Ω| ec with lim
u→∞

TrC(u) =
i

u
c (E.78)

E.6.2 The scalar product

Now we outline the steps we take to compute the scalar product (E.73). The first step

is to notice that the Bethe state has a defined so(6) charge determined by the number

of (finite) auxiliary roots {u}M ,{v} and {w}. While in the expansion of global rotation

ec = 1 + c+ · · · only the term cM matches this so(6) charge . So the scalar product (E.73)

can be simplify to:

C123 =
1

M !
× 〈Ω| ⊗ 〈ψ̃| cM B1(u1) · · ·BM (uM )|ψ〉 ⊗ |Ω〉 (E.79)

The next step is to commute all the c operators through the B-blocks, such as we can use

their annihilation properties:

c |Ω〉 = 0 and 〈Ω|B(u) = 0 (E.80)

The commutator of c and B can be found from the Yang-Baxter algebra. Taking the

limit (E.78) of (E.61) we obtain:

[c,Ba(u)] = Da(u)− Aa(u) (E.81)

Since A and D blocks are generated we also need of their commutators with c, which can

be extracted in a similar way from (E.62) and (E.63) as:

[c,Da(u)] = −Ca(u) , [c,Aa(u)] = Ca(u) and [c,Ca(u)] = 0 (E.82)

The final set of commutators we need are between C and A, B, D blocks. These are given

in section E.4.2.
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Rα,ᾱ

u1 u2 u3 · · · uM−1 uM

α ᾱ

(a) Scattering from {u} to {α, ᾱ}.

Rᾱ,α

u1 u2 u3 · · · uM−1 uM

ᾱ α

(b) Scattering from {ᾱ, α} to {u}.

Figure 13. Multi-scattering R-matrices in (E.83) and (E.86).

All in all the result of commuting cM through a product of M B-block operators is

given by a sum over bi-partitions:

1

M !
× cM B1(u1) · · ·BM (uM ) =

∑

α∪ᾱ={u}

(−1)|α| hα,ᾱRᾱ,αAαDᾱRα,ᾱ

+ C-terms + c-terms (E.83)

where we use the short-hand notation:

Aα =
∏

u∈α
A(u) , Dᾱ =

∏

u∈ᾱ
D(u) and hα,ᾱ =

∏

u∈α,v∈ᾱ

u− v − i
u− v (E.84)

and the C and c-terms are products of operators that annihilate the so(6) pseudo-vacuum.

The matrix operator Rα,ᾱ is a product of su(2) R-matrices (E.38) that changes the

order of the roots {u1 · · ·uM} to the order {α, ᾱ}, while the operator Rᾱ,α takes the roots

from the ordering {ᾱ, α} to the ordering {u1 · · ·uM}.
For instance, when α = {u2, u4} and ᾱ = {u1, u3, u5}, the multiparticle scattering

operators are:

{u1, u2, u3, u4, u5} R
α,ᾱ

−→ {
α︷ ︸︸ ︷

u2, u4,

ᾱ︷ ︸︸ ︷
u1, u3, u5} : Rα,ᾱ = R14R12R34

{u1, u3, u5︸ ︷︷ ︸
ᾱ

, u2, u4︸ ︷︷ ︸
α

} Rᾱ,α−→ {u1, u2, u3, u4, u5} : Rᾱ,α = R32R54R52 (E.85)

where we use the short-hand notation Rab = Rab(ua, ub)

Finally we can compute the scalar product (E.79) using (E.83) and the eigenstate

relations of the pseudovacuum (E.18):

C123 =
∑

α∪ᾱ={u}

(−1)|α| aα dᾱ hα,ᾱ × 〈ψ̃|Rᾱ,αRα,ᾱ |ψ〉︸ ︷︷ ︸
Matrixα,ᾱ

(E.86)

with aα =
∏
u∈α a(u) = 1 and dᾱ =

∏
u∈ᾱ d(u) =

∏
u∈ᾱ

(
u+i/2
u−i/2

)L
. Needless to say, this

expression is already strongly resembling the all loop expressions in the main text including

the involved matrix part as proposed in [2].
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E.6.3 Wings on-shell: simplifying the matrix part Matrixα,ᾱ

The matrix part can be further simplified considering that the wing-states are (on-shell)

su(2) Bethe states. In this case the action of the R-matrices has the simple effect of

reshuffling the inhomogeneities {u} of the wing-states so we obtain:

〈ψ̃|Rᾱ,α = 〈ψ̃ᾱ,α| and Rα,ᾱ |ψ〉 = |ψα,ᾱ〉 (E.87)

where |ψα,ᾱ〉 is the wing state |ψ〉 with the inhomogeneities order as in the top of figure 13a

and 〈ψᾱ,α| is the wing 〈ψ̃| with the ordering as in the bottom of figure 13b. In this way

the matrix part is simply given by the scalar product of the states (E.87). To simplify this

scalar product it is necessary to place the inhomogeneities of the two states in the same

ordering. This can be achieved by using again the multi-scattering R matrix:

|ψα,ᾱ〉 = Rα,ᾱᾱ,α |ψᾱ,α〉 (E.88)

The special feature of this reordering scattering matrix is that it can be expressed as a prod-

uct of nested su(2) transfer matrices with spectral parameters u ∈ ᾱ and inhomogeneities

{u}:
Rα,ᾱᾱ,α =

∏

u∈ᾱ
T su(2)(u) (E.89)

Since our wing states are on-shell we can replace the transfer matrices by the correspondent

eigenvalue and obtain the periodicity relation:

|ψα,ᾱ〉 =

(∏

u∈ᾱ
T su(2)(u)

)
|ψᾱ,α〉 =

(∏

u∈ᾱ
Λsu(2)(u)

)
|ψᾱ,α〉 (E.90)

So for on-shell Bethe states the cost of reordering is just a phase. Then the matrix part is

given by:

Matrixα,ᾱ =

(∏

u∈ᾱ
Λsu(2)(u)

)
〈ψ̃ᾱ,α|ψᾱ,α〉 (E.91)

We now have the scalar product of two on-shell Bethe states with inhomogeneities in

the same ordering. Considering their orthogonality property we know this scalar product

vanishes unless the set of wing roots are identical {v} = {w}.33 Under this condition the

scalar product is given by the Gaudin-determinant. This determinant is invariant under

permutations of the inhomogeneities so it can be taken out of the sum over partitions. The

final expression for the unnormalized tree level structure constant is:

Cso(6)
123 = Gaudinsu(2)-wing ×

∑

α∪ᾱ={u}

(−1)|α| hα,ᾱ ×
∏

u∈ᾱ

(
u+ i/2

u− i/2

)L
Λsu(2)(u) (E.92)

where Λsu(2)(u) =
∏K
k=1

u−vk+i/2
u−vk−i/2 , after performing the shift (E.46).

33Here we refer to the shifted wing roots v → v + i/2 and w → w − i/2 which appear in the standard

form of the so(6) Bethe equations.
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F Nested hexagons in the su(1, 1|2) sector

In this appendix, we study the hexagon amplitudes in the su(1, 1|2) sector and provide a

detailed derivation of the formulas given in section 3. This is a large sector of operators, the

largest closed subsector containing both the sl(2) and su(2) diagonal sectors, see e.g. [16].

Still, the analysis in this sector turns out to be remarkably simple. In the following, we

review the Bethe ansatz wave functions for these operators [65] and employ them to the

computation of the hexagon amplitudes.

Wave functions. The states of interest are usual BMN operators above the BPS vacuum

|0〉 = trZL,

|χA1Ȧ1
. . . χAKȦK 〉 , (F.1)

with each excitation χ lying in a (1|1) ⊗ (1̇|1̇) irrep of the residual symmetry subalgebra

su(1|1)⊕ ṡu(1|1). Equivalently, a magnon χ can take 4 possible values, out of the 16 ones,

Y = φ⊗ φ̇ , Ψ = ψ ⊗ φ̇ , Ψ̇ = φ⊗ ψ̇ , DZ = ψ ⊗ ψ̇ , (F.2)

with Y a complex scalar, Ψ and Ψ̇ two gauginos, and D a lightcone covariant derivative.

The dynamics factorizes along the two wings and a generic scattering eigenstate can be

written as a tensor product of a left and a right wave function, built out of φ|ψ and φ̇|ψ̇
respectively. We recall below the structure of these wave functions, focusing on the left part

of the state. The right part defines an isomorphic problem and all the formulae hereafter

apply to it after “dotting” whatever can be dotted. (One must use u̇ = u, for the main

roots, since these are inhomogeneities common to the two factorized auxiliary spin chains.)

Off-shell Bethe states for the inhomogeneous su(1|1) spin chain are constructed in the

usual manner, using the restriction of the full su(2|2) S-matrix [19] to the φ|ψ subspace

as a fundamental R-matrix. The analysis is quite similar to the standard algebraic Bethe

ansatz for the su(2) spin chain with the difference that the B operator here is fermionic.

As a starting point, one must choose a pseudovacuum state. We shall work in the su(2)

grading for which the reference state, the so-called level II vacuum, is chosen to be made

of scalars only

|0〉IIu = |φ1φ2 . . . φK〉 . (F.3)

The subscript u reminds us that this vacuum state depends on the ordering of the lattice.

Acting with a B operator produces a fermionic “spin wave” along the chain34

Bu(y)|0〉IIu =
K∑

n=1

Ψn(y)|φ1 . . . ψn . . . φK〉 , (F.4)

34The B(y) operator is obtained by scattering a probe particle with rapidity y = x−0 through the chain,

with the boundary condition that it starts as a fermion and ends as a boson. When defining B in this way,

using the S-matrix of [19], we also strip out an inessential overall factor. The latter factor is invariant under

permutation of the spin chain inhomogeneities and thus does not affect the fundamental property of the B

operator.

– 49 –



J
H
E
P
0
7
(
2
0
1
9
)
0
8
2

with the wave function [65]

Ψn(y) =
an

y − x+
n

n−1∏

j=1

SII,I(y, xj) . (F.5)

Here an =
√
i(x−n − x+

n ) is a free parameter of the representation (for the relative nor-

malization between boson and fermion), which we have fixed to its unitary value, for

convenience. The phase

SII,I(y, xj) =
y − x−j
y − x+

j

, (F.6)

can be seen as the S-matrix for bringing the fermion through the lattice site xj . The

scattering among the fermionic waves happens to be trivial SII,II(y1, y2) = 1, up to the

statistics. Hence the multiparticle wave function is the totally antisymmetric product of

the individual spin waves,

Bu(y1) . . . Bu(yF )|0〉IIu =
∑

n1<...<nF

det Ψni(yj) |φ1 . . . ψn1 . . . ψnF . . . φK〉 . (F.7)

Note that all these wave functions fulfill, as a consequence of the Yang-Baxter equation,

the so-called compatibility condition [65]

Sπ|Ψ〉 = Aπ|Ψπ〉 , (F.8)

where π is an arbitrary permutation of the labels u and |Ψπ〉 =

Bπ(u)(y1) . . . Bπ(u)(yF )|0〉IIπ(u) is the state obtained through this relabelling. The

overall factor in (F.8) is the eigenvalue of the scattering matrix Sπ on the spin chain

vacuum,

Aπ =
∏

ij∈π
Aij , (F.9)

with the product running over the pairwise scattering events in the permutation π and

with A12 the scattering phase for two identical bosons, see [19].35

Lastly, imposing periodic boundary conditions for the spin waves generates the Bethe

ansatz equations of the level II rapidities y = {yj}. Looking back at the wave function (F.5)

and recalling that fermions do not interact in this model, one easily infers that this choice

corresponds to36

1 =

K∏

k=1

SII,I(yj , xk) =

K∏

k=1

yj − x−k
yj − x+

k

. (F.10)

Below, we shall refer to the level II (or wing) wave function Ψ as being on shell when all

the y rapidities are subject to the BAEs (F.10). Note that this implies a condition on the

y’s, while the u’s shall remain arbitrary.

35Put differently, Sπ intertwines between Bu and Bπ(u), i.e., SπBu(y) = Bπ(u)(y)Sπ, and Sπ|0〉IIu =

Aπ|0〉IIπ(u).
36Just impose ΨK+1(y) = Ψ1(y) for xK+1 = x1.
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Hexagon amplitudes. Equipped with the wave functions, we can attack the problem

of evaluating the hexagon amplitudes in the su(1, 1|2) subsector. We shall focus on con-

figurations with an equal number of left and right fermions on each hexagon, since these

are the sole configurations for which the form factors are nonzero. Symmetrywise a left

fermion adds 1/2 to the left Lorentz spin of the operator and similarly for a right fermion.

Hence the overall condition that F = Ḟ is just saying that operators in the OPE of two

scalars are in symmetric (traceless) Lorentz representations.

We begin with the simplest set-up where all the magnons are sitting on the same

hexagon, i.e., α = u. In this case there is only one hexagon form factor to compute, the

one for the full state,

Au∅ = (−1)f 〈h‖Ψ〉|Ψ̇〉 , (F.11)

where (−1)f is a grading factor for bringing the original state (F.1) to the above factorized

form, with all the left magnons standing on the left of the right magnons. When F = Ḟ ,

we can just write f = F (F − 1)/2.

The rule for evaluating the hexagon form factor 〈h‖Ψ〉|Ψ̇〉 is to first scatter the left

part from its ingoing to its outgoing configuration and then contract the outcome with the

right part using the left-right inner product

(χK . . . χ1, χ̇1 . . . χ̇K) =

K∏

j=1

δχj χ̇j , (F.12)

where δχχ̇ = 1 if the two excitations are the same, and δχχ̇ = 0 otherwise. The latter or-

thogonality condition between bosons and fermions, together with the fact that the number

of fermions is preserved by the S-matrix (in the su(1, 1|2) subsector), imply that the ampli-

tude (F.11) is zero if the numbers of left and right fermions are different. As alluded before,

this is a consequence of the diagonal symmetry preserved by the hexagon, and the argument

applies to each partition separately in a generic split configurations with α, ᾱ 6= ∅.

To avoid possible confusion, we shall use round brackets (., .), as in (F.12), to denote

the left-right overlap. This one is a real bilinear form on the tensor product of the left and

right Hilbert spaces H ⊗ Ḣ. It is different from the usual Hermitian inner product 〈.|.〉,
defined separately on each Hilbert space, which is of course sesquilinear. Since the left

and right Hilbert spaces are isomorphic we can also overlap left and right states using the

Hermitian inner product. The relation to the round product is then given by

〈Ψ|Ψ̇〉 = (Ψ†, Ψ̇) , (F.13)

where Ψ† is the Hermitian conjugate of the state Ψ, described by the complex conjugate

wave function on the transposed lattice.

Introducing the permutation π that reverses the ordering of the spin chain, we can

write the hexagon amplitude as

〈h‖Ψ〉|Ψ̇〉 = (SπΨ, Ψ̇) . (F.14)
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Its evaluation is straightforward. Indeed, Sπ simply maps Ψ to an outgoing state
←−
Ψ, that

is, to a state to be read from the right to the left,

|←−Ψ〉 =
∑

n1<...<nF

←−
Ψn(y)|φK . . . ψnF . . . ψn1 . . . φ1〉 , (F.15)

with a multiparticle wave function given as before, though in terms of the outgoing wave

←−
Ψn(y) =

an

y − x−n

n−1∏

j=1

SI,II(xj , y) , (F.16)

where SI,II = 1/SII,I . More accurately, Sπ does act like that, up to an overall scalar

factor,

Sπ|Ψ〉 = (−1)f SΨ|
←−
Ψ〉 , (F.17)

with SΨ defined by

SΨ = Aπ
∏

j,k

SII,I(yj , xk) . (F.18)

It follows from it that we can write the hexagon form factor as the overlap

〈h‖Ψ〉|Ψ̇〉 = (−1)f SΨ × (
←−
Ψ |Ψ̇) = (−1)f SΨ × 〈Ψ|Ψ̇〉 , (F.19)

with the last equality holding for a real state, that is such that
←−
Ψn(y) = Ψn(y)∗. Notice

that the prefactor SΨ has a simple interpretation. If we think of our state as being made

of the union of the y- and u- “diagonalized excitations”, then SΨ is the S-matrix obtained

upon reversing the ordered set y∪u. It is not really significant for the computation of the

structure constant however. The reason is that the hexagon amplitude only determines the

structure constant up to an overall factor that implements the change of normalization be-

tween infinite- and finite-volume Bethe states.37 This one contains, in particular, the factor

1/
√
SΨSΨ̇ that removes the dependence on the ordering of the rapidities and cancels (F.18)

when Ψ = Ψ̇. The grading factor (−1)f also cancels out in (F.11). Hence, in the end, we are

left with the product (
←−
Ψ |Ψ̇) for the partition (α, ᾱ) = (u,∅), in line with our main formula.

The proof of (F.17) is immediate. Permuting the u labels in the wave function (F.5),

with π(i) = K + 1− i, yields

Ψπ
n(y) =

aπ(n)

y − x+
π(n)

n−1∏

j=1

SII,I(y, xπ(j)) =
K∏

j=1

SII,I(y, xj)×
←−
Ψπ(n)(y) , (F.20)

after using SII,ISI,II = 1. It translates into (F.17) for the multiparticle wave function (F.7),

with the factor (−1)f coming from the transformation of the determinant upon reversing

of the ordering of the y variables. Note that there is no need to impose the BAEs on the

y’s to derive (F.20) and (F.17).

In the general case, we have to partition the chain into two non-empty subsets, α∪ ᾱ =

u. For simplicity, but with no loss of generality, we consider a partition that preserves the

37See [67, 68] for a discussion about this prescription in the context of diagonal S-matrix theory.
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ordering of the full set u, that is, α = {x1, . . . , xl} and ᾱ = {xl+1, . . . , xK}, with l = |α|.
The action of the S-matrix Sπ = SπαSπᾱ now depends on whether the fermion is on the

α or on the ᾱ partition, since πα reverses the order of α only, and similarly for πᾱ. If

1 6 n 6 l we find the same result as in (F.20),

Ψπ
n(y) =

l∏

j=1

SII,I(y, xj)×
←−
Ψπ(n)(y) , (F.21)

with the product being restricted to the x’s in the subset α, but if n > l we get an extra

phase in front,

Ψπ
n(y) =

K∏

j=1

SII,I(y, xj)×
l∏

j=1

SII,I(y, xj)×
←−
Ψπ(n)(y) . (F.22)

Remarkably, when the roots y are on shell, this difference becomes immaterial and the

flipped wave function Ψπ is found to be proportional to the outgoing one
←−
Ψ again. After

taking care of the way the determinant changes under the reordering of the y’s, we get

(−1)fα+fᾱAπαAπᾱ ×
l∏

j=1

F∏

k=1

SII,I(yk, xj)× (
←−
Ψ |Ψ̇) , (F.23)

for a multi-fermion state on the split configuration. Here, Aπα =
∏
i<j∈αAij and fα =

Fα(Fα−1)/2, with Fα the number of fermions on the subchain α, and similarly for ᾱ. The

grading factors disappear in the full amplitude, giving

Aαᾱ = AπαAπᾱ × SI,II(ᾱ,y)× (
←−
Ψ |Ψ̇) , (F.24)

after using the BAEs (F.10) and the unitarity of the S-matrix, SI,II(y, x) = 1/SII,I(x, y),

to rewrite the y-dependent factor. Formula (F.24) is the su(2) counterpart of the one given

in section 3.2 in the sl(2) grading. They both convey the same message, namely, that the

amplitude for the split configuration is proportional to the inner product 〈Ψ|Ψ̇〉 up to the

phase SI,II(ᾱ,y) for the scattering of the roots in ᾱ with the higher level rapidities y. The

overall A factors in (F.24) accounts for the difference of gradings between (F.24) and (3.14).

They can be absorbed in the dynamical parts of the hexagon form factors using the relation

between pure sl(2) and pure su(2) hexagon amplitudes [2]

hij |su(2) = Aijhij |sl(2) . (F.25)

Gaudin norm. To conclude, let us mention that we can easily obtain the Gaudin deter-

minant for the norm of the state in this simple model.

It stems from the fact that the multiparticle wave functions (F.7) are Slater determi-

nants. Hence their overlap is itself a determinant

(
←−
Ψ |Ψ̇) =

∑

n1<...<nF

←−
Ψn(y)Ψn(ẏ) = detM , (F.26)
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where M is the F × F matrix made out of the individual overlaps,

Mij =

K∑

n=1

←−
Ψn(yj)Ψn(ẏi) . (F.27)

It immediately leads to the orthogonality property of on-shell Bethe states. Namely, when

both the left and right rapidities y and ẏ are on shell, the product (F.26) vanishes, except

if the two sets are the same, y = ẏ. This is because Mij = 0 if ẏi and yj are on shell

and distinct. Indeed, plugging the ingoing and outgoing wave functions, (F.5) and (F.16),

in (F.27), with the phase (F.6) and with a2
n = i(x−n − x+

n ), yields

Mij =
K∑

n=1

a2
n

(yj − x−n )(ẏi − x+
n )

n−1∏

k=1

SII,I(ẏi, xk)

SII,I(yj , xk)

=
i

yj − ẏi

K∑

n=1

(
1− SII,I(ẏi, xn)

SII,I(yj , xn)

) n−1∏

k=1

SII,I(ẏi, xk)

SII,I(yj , xk)

=
i

yj − ẏi

(
1−

K∏

k=1

SII,I(ẏi, xk)

SII,I(yj , xk)

)
,

(F.28)

where in the last equality we used that the sum telescopes. Hence, when the two rapidities

are on-shell the term in bracket vanishes, see (F.10), and so does Mij , if ẏi 6= yj .

When the two states are the same, Ψ = Ψ̇ (or y = ẏ, with the rapidities ordered in

the same way), the matrix M is diagonal and the norm of the state is the product of the

individual norms,

(
←−
Ψ |Ψ̇) = δyẏ

F∏

i=1

‖Ψ(yi)‖2 , (F.29)

with

‖Ψ(y)‖2 =

K∑

n=1

←−
Ψn(y)Ψn(y) =

K∑

n=1

i(x−n − x+
n )

(y − x+
n )(y − x−n )

=

K∑

n=1

i
∂

∂y
logSII,I(y, xn) . (F.30)

We can use the freedom we have to rescale the individual wave functions, (F.5) and (F.16),

by some function of y to convert ∂y into ∂v in (F.30), with v = g(y + 1/y), and match the

convention used in the bulk of the paper, see (6). This choice is irrelevant for the normalized

structure constant, which is divided by the square root of the Gaudin determinant G for

the full wave function (which includes the level I and all the lower ones).38

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

38Implicit here is the assumption that the norm of the level II wave function (F.29) matches with a minor

of G, as obtained by freezing the level I rapidities u.
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