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Abstract. We present the implementation of two visual pose estimation
algorithms (object-camera and face-camera) with a control system for a
low cost quadcopter for an application in a remote electronic laboratory.
The objective is threefold: (i) to allow the drone to inspect instruments in
the remote lab, (ii) to localize a teacher and center his face in the image
for student-teacher remote communication, (iii) and to return back home
and land on a platform for automatic recharge of the batteries. The
object-camera localization system is composed of two complementary
visual approaches: (i) a visual SLAM (Simultaneous Localization And
Mapping) system, and (ii) a homography-based localization system. We
extend the application scenarios of the SLAM system by allowing close
range inspection of a planar instrument and autonomous landing. The
face-camera localization system is based on 3D modeling of the face, and
a state of the art 2D facial point detector. Experiments conducted in a
remote laboratory workspace are presented. They prove the robustness of
the proposed object-camera visual pose system compared to the SLAM
system, the performance of the face-camera visual servoing and pose
estimation system in terms of real-time, robustness and accuracy.

1 Introduction

Remote labs constitute an interesting and novel way of doing labs. Anywhere and
at anytime the student can access the lab equipment and do his labwork. This
new way of distance learning can be used to increase the motivation of nowadays
students [1]. Quadcopters equipped with a camera can be used in these labo-
ratories in order to mimic the student behavior in traditional lab and increase
motivation for learning. It can be an interesting way to make the lab experience
immersive and ludic. Specifically, in remote electronics laboratories it can fly
and move in 3D space to inspect electrical instruments, consequently sending
direct visual feedback of the results of an experiment to the student. Further-
more it can also search for a teacher in the lab and move towards him, centering
his face in the image to allow remote student-teacher interaction. In this way
the student can achieve his lab-work and can also ask questions to the teacher



in case he needs to. To achieve this double objective two systems are needed.
First, a localization system that can estimate the position and orientation of
the quadcopter in 3D space with respect to an object of interest (front panel
of an electrical instrument or face of the teacher in our case). Second, a control
system that sends appropriate commands to the quadcopter in order to reach a
reference relative or absolute 3D position. Many localization systems and sen-
sors can be used in order to estimate quadcopter position and orientation in 3D
space. For outdoor environments, GPS sensors are the best solution to localize
a quadcopter. For indoor environments, artificial markers can be placed in the
scene to facilitate the task of localization [2]. These markers can also be reflec-
tive and detected by an external localization system that gives accurate position
estimate. However, the challenge in these applications is to use only available
on-board sensors. Stereo rig cameras [3] and RGBD cameras [4] have been in-
vestigated. They allow for absolute pose estimate however this comes with an
additional weight and power consumption. In this work we use the Parrot AR
Drone 2.0 [5], a low cost quadcopter equipped with two monocular cameras fac-
ing forwards and downwards, in addition to pressure, ultrasound and inertial
sensors. Using the monocular cameras available on-board constitutes a good
trade-off between weight and information recovery from the environment (3D
localization, environment recognition, etc.). However, a monocular camera alone
cannot give absolute scale pose estimate due to the well known scale ambiguity
rising from the perspective projection of 3D world into 2D images. Despite this
fact, combining the visual information with some prior knowledge of 3D world
or other sensors, that can give partial but absolute pose estimate, can overcome
this issue and allow for absolute 3D pose estimate. The well known SLAM al-
gorithm PTAM (Parallel tracking and mapping) [6] combined with inertial and
ultrasound sensors readings in order to get the absolute 3D pose estimate is
used in [7]. All the available data is processed in a Kalman filter allowing for
information fusion and delay compensation. Here, starting from [7] we propose
the object-camera pose system and use it for 3D pose estimation when the quad-
copter is exploring the 3D world to search for an instrument or for a teacher.
However, since the visual SLAM relies on corresponding points detected in the
flow of images, it will fail to give 3D pose estimate if the quadcopter is asked to
inspect an object of interest, since these points will disappear when the object
of interest occupies the majority of the image. To overcome this limitation, this
system is extended by using the object of interest as a landmark. In this way two
localization modules are available: a visual SLAM module (for localization w.r.t.
an arbitrary world coordinate system) and a localization module that relies on
detecting and localizing a planar object with respect to the quadcopter and to
the arbitrary world coordinate system (needed for controlling the remote lab ac-
tivities and sending visual feedback to the student). The first module is suitable
while exploring the environment whereas the latter is suitable when the drone
is in a short distance range from the object of interest or when it needs to land
on the electrical recharge platform. To be able to control the drone to center
the face of a teacher in the image, the position of the drone with respect to the



face of the teacher must be estimated. For this purpose, we use a deformable 3D
model of the face and fit it to the image. The paper is organised as follows: In the
second section we present an overview of the remote electronic lab LaboREM.
In section 3 we explain how detection and 3D localization can be carried out
for the purpose of remote instrument inspection. In section 4 we present the
face-camera pose estimation approach. In section 5, the 3D pose visual servoing
of the quadcopter is explained. In the final section, we present our experiments
and results.

2 Review of the remote electronics lab

LaboREM is a remote laboratory in electronics developed for first year under-
graduate students in engineering. The learning objective of LaboREM is to en-
able students to wire and test remotely electronic circuits, make measurements
and characterize each circuit by its time or frequency response. The electronic
circuits consist of operational amplifiers, active filters and oscillators. Its design
is based on a classic client-server architecture [8]. The student calls for a lab
session by simple URL addressing. A first-in first-out strategy is adopted to
give access to the remote lab to one client (student) at a time.The remote lab
application is developed using NI-LabVIEW software and the easy-to-use RFP
protocol to pilot the remote devices. The hardware setup includes: (i) a robotic
arm that mimics the student’s hand for placing electronic components equipped
with magnets on an electronic breadboard, (ii) measurement instruments and
data acquisition system (DAQ), (iii) a webcam with zoom control that mimics
the student’s eye in order that the student doesn’t feel so far away from what is
actually happening in the lab, (iv) a quadcopter (AR quadcopter 2.0) with the
role of flying in the lab for exploring the environment, inspecting electrical in-
struments and interacting with a teacher in order to increase student immersion
and motivation.

3 Object-Camera pose estimation

3.1 Quadcopter-Object relative 3D pose : A real-time and marker
free solution

Planar objects are a well defined type of objects that are widely available in
human made environments. Incorporating the information that the object of
interest is planar is of great benefit for object-camera pose estimation. The ho-
mography matrix is a matrix that relates 3D points lying on a plane to their
2D projections. Given this transform one can directly calculate the rotation and
translation matrix as done in [9]. In order to estimate the homography that maps
any plane into another plane by means of perspective projections several meth-
ods can be used. These methods are usually classified into local (feature-based)
and global (featureless) methods. Given a template image of the planar object,
local methods extract local keypoints and attribute a descriptor to each of them



both in the template image and the current image. After this step, keypoints (at
least four keypoints) in both images are matched according to a similarity metric
performed on the descriptors. Given the point correspondences, the homogra-
phy matrix is estimated using robust methods like RANSAC (Random Sample
Consensus) in order to deal with the presence of outlier correspondences. Local
methods can work well with no prior information on the homography parame-
ters. However, in some cases the robust computation may be computationally
expensive and do not work in real time. A survey about keypoint detectors and
descriptors can be found in [10]. On the other hand, the global methods use all
the information in the image and attempt to find the homography matrix that
best aligns the template patch to the test image. This process however gives
rise to NLM (non linear minimization) problems that can be solved using iter-
ative algorithms like gradient descent or LM (Levenberg-Marquardt). Thus, a
good initialization is necessary to guarantee the convergence of those algorithms.
Different similarity functions exist to measure the degree to which two patches
are aligned, the most used ones being the sum of squared distance (SSD) and
the enhanced correlation coefficient (ECC) [11]. In practice the first one uses
a brightness model in order to cope with variation of additive and multiplica-
tive change of illumination [12] whereas the latter is by definition insensitive to
those illumination changes. These methods have the advantage that they can
run in real time and give good results if a coarse estimate of the homography
parameters is known. Thus the two families of methods are complementary. The
first one is robust with no priors needed but computationally expensive, while
the second is fast and works well if a prior is available. Here, both approaches
are used in order to estimate the 3D pose of the quadcopter with respect to the
object of interest. The first approach is used for detecting the object of interest
as well as for recovering from a tracking loss. The second is used in the tracking
process. The approach is divided into two steps: detection and tracking [13].
In the detection step, template matching on a pyramid of the image is used to
search for the desired object. If the normalized correlation coefficient is greater
than α the object is declared detected. Once the detection is done, a homog-
raphy transformation is computed by using the bounding box of the detected
object to determine the object-camera relative pose. A command is then sent to
the drone in order to move it closer to the object. Template matching is used
to allow successful detection of the object despite its distance from the camera
and its size, as keypoints detector fails to detect and put in correspondences
keypoints if the object of interest doesn’t occupy a certain amount of image
pixels. However once the distance between the camera of the drone and the in-
strument is less than a threshold λ, the SIFT descriptor [14] is used to allow
more robustness to orientation changes. The object is declared detected if the
number of matched keypoints is greater than N . Once the object is detected,
the tracking stage begins. As a rough estimation of the homography matrix is
available from the detection stage, it is used as an initial solution for the next
frame and the ECC algorithm is applied to estimate the homography in this
frame. The homography estimation is propagated in this way from a frame to



the next one, and used as a prior for the ECC algorithm. However, sometimes
the ECC algorithm will fail to converge due to several reasons. For example,
communication problems between the quadcopter and the computer makes the
last estimated homography not close enough to the real solution of the current
frame, which prevents algorithm convergence. Besides, the image quality can be
degraded by motion blur or decoding/encoding problems. In this work, tracking
loss is declared if the ECC algorithm is unable to converge or if it converges
to a clearly unrealistic estimation. At each frame, we compute the 3D pose of
the quadcopter with respect to the planar object. By monitoring the estimated
traveled distance between two consecutive frames and comparing it to a thresh-
old D, we can detect a loss of tracking. Another threshold β is also imposed on
the difference of each angle of orientation (yaw, roll, pitch). If the tracking fails,
we resort back to the local method (SIFT) if the quadcopter-object distance is
relatively small, or to the template matching method in the other case, to reini-
tialize the ECC tracker as shown in Figure 1. This pose estimate is fused with
inertial measurements sent by the drone in a Kalman filter framework in order
to smooth this estimate, and to provide robustness when the visual tracker fails.
The Kalman filter is used also to compensate for time delays as done in [7]. The
homography estimation process is shown in Figure 1 while the feedback control
loop is shown in Figure 2.

Fig. 1. Homography estimation diagram. Fig. 2. Feedback control loop.

4 Face-Camera pose estimation

Human-drone interaction is an interesting way of controlling drones. In [15] au-
thors use face pose and hand gestures in order to allow human-drone interaction.
Their face pose estimation process is based on the Viola & Jones face detector
[16]. They compute a face score vector by applying frontal and side face detector
on the flipped and the original image. Using this face score and a machine learn-
ing technique they estimate the yaw angle of the face pose. The distance from
the face is estimated by the size of the face bounding box. Hand gestures are



used to give order to the drone to move to an orientation while maintaining the
distance from the face. In [17], authors also used hand gestures and face local-
ization for drone-human interaction. Their approach is unique for the fact that
it allows the drone to approach a human that is 20 meters away, by detecting
periodic hand gestures. The drone then approach the target by tracking its ap-
pearance. Once at a short distance, the drone centers the face of the subject and
detects hand gestures in order to take a picture. However, the orientation of the
face is not estimated and the user has to be facing the camera in order to take a
frontal photo. In this work, we adopt a 3D approach that models the human face
in 3D and subsequently uses full perspective projection in order to recover the
3D face pose parameters. By using this modeling and matching it with image
specific data related to the face, all the 6 pose parameters are inferred. The 3D
modeling is based on the CANDIDE deformable 3D face model.

4.1 CANDIDE 3D model

CANDIDE is a parameterized 3D face model specifically developed for model-
based coding of human faces. CANDIDE is controlled by 3 sets of parameters:
global, shape and animation parameters. The global parameters correspond to
the pose of the face with respect to the camera. There exist 6 global parameters:
3 Euler angles for the rotation and 3 for the translation (tx, ty, tz). The shape
parameters adjust facial features position in order to fit to different subjects (eye
width, distance between the eyes, face height etc). The animation parameters
adjust facial features position in order to display facial expressions and anima-
tions (smile, lowering of eyebrows). The 3D generic model is given by the 3D
coordinates of its vertices Pi, i = 1, n. where n is the number of vertices. This
way, the shape, up to a global scale, can be fully described by a 3n-vector g, the
concatenation of the 3D coordinates of all vertices:

g = G+ Sτs +Aτa (1)

G is the standard shape of the model, the columns of S and A are the shape
and animation units, τs ∈ Rm and τa ∈ Rk, are the shape and animation control
vectors, respectively.

4.2 Inferring pose parameters

In order to determine the pose from the 3D model, we have to fit this model to
the face data available in the image. Fitting the model means determining its
different parameters: pose, shape and animation parameters. In this work only
pose and shape parameters are of interest for us, however recovering the ani-
mation parameters can be an interesting way to allow human-drone interaction
based on facial expressions. Different approaches attempt to adapt the model in
different ways. However, the majority of them follow a step by step approach,
starting by estimating the shape parameters τs in order to adapt the 3D model to
different face anatomy and then estimating the pose and animation parameters.



From the face image, many face related data can be used to fit the 3D model.
In [18], the authors use the gray scale appearance of the image to adapt the 3D
model after estimating its shape parameter off-line. In our work, we make use of
the advancement in facial landmark detection and use these landmarks to adapt
the model and recover the 3D face pose from a set of 3D-to-2D correspondences.
The shape parameters are estimated using a frontal picture of the subject fol-
lowing the method described in [19]. We use the facial point detector in [20],
that can detect 68 2D landmarks on a face in one millisecond by a pre-trained
ERT (Ensemble of Regression Trees), given that a face image patch is available.
However, since the algorithm needs a region of interest that contains a face, the
total time for its execution from the detection of the face to the detection of the
landmarks is more than one millisecond due to the computationally expensive
face detection step. One way to reduce this time and make the process work-
ing at more than 30 fps (frame per second) is to perform a search for the face
around the last detected bounding box of the face instead of looking for the face
in the whole image. We make use of only 46 points from the 68 points given
by the landmark detector. The points were chosen to be semantic and mostly
rigid thus eliminating points along face contour. Once the 2D landmarks are
detected in the image we use state of the art pose estimation algorithms that
are based on 3D-2D point correspondences to recover the pose. This problem is
known in the literature as PnP (Perspective n Point). Many algorithms attempt
to solve this problem. The P3P algorithm [21] (perspective 3 point) can esti-
mate the pose using only 3 point correspondences. Other algorithms like EPNP
[22] (Efficient Perspective N Point) can handle any number of points. Another
approach is to use non-linear minimization techniques to recover the pose that
best minimizes the distance between the projected 3D points and the 2D points.
However, this method requires an initial guess of the pose parameters in order
to converge to the global minimum. This initial guess can be made available
using the estimated pose from the previous frame or using any closed-form so-
lution like EPNP, P3P, etc. in case it is not available. We propose to use the
Levenberg-Marquardt technique as it gives good results and fast execution time.
The face-camera pose estimation process is shown in Figure 3. The pose used to
control the drone is computed by fusing the visual pose from the 3D model with
inertial and ultrasound measurements in a Kalman filter as done in [7].

5 Visual control of the quadcopter

In order to control the 3D position and orientation of the quadcopter for the
purpose of instrument inspection, a closed-loop control is used taking as a feed-
back the pose derived from the SLAM or the homography. The control loop is
shown in Figure 2. If the objective is to control the drone to maintain a relative
position from the face, the algorithm explained in section 4 is used as a feedback
sensor for the control loop. The controlled degrees of freedom associated with
the quadcopter are the 3D translation vector and the yaw angle. Each degree is
controlled by a closed loop control system with a traditional PID controller.



Fig. 3. Face-camera pose estimation.

6 Experiments

Before presenting the different scenarios for evaluation, we begin with an evalu-
ation of the performance of the Face-Camera pose estimation. We compare the
accuracy of different techniques and their execution time on a database for pose
estimation (UPNA head pose database) [23]. The UPNA database contains 120
videos corresponding to 10 different subjects, 12 videos each, in which the subject
changes its head pose by following guided and free movement. The ground-truth
relative 3D face motion is known for all frames in all videos. We conclude that all
the techniques converge to the same optimal solution if followed by a non-linear
minimization method. As shown in Table 1 the method that yields the best pose
estimate and excecution time is the Levenberg- Marquardt method that tracks
the 3D face from a frame to the next one based on an initial estimate. In order to
evaluate the proposed implementation of 3D pose estimation and 3D pose-based
servoing, we design three different scenarios. These scenarios are the following:
behavior of the system in response to perturbations when asked to inspect an
object, autonomous visual inspection of planar object, and drone-face visual ser-
voing.
First scenario: The first experiment aims to test the quality of the homography
based visual feedback control system. To this end, we control the quadcopter in
such a way that the reference 3D pose of its on-board camera is fronto-parallel to
the planar object with a translation vector allowing a centered view. The pose
used for the visual feedback control is the homography based pose. Since the
servoing objective is to maintain a rigid link between the quadcopter and the
object of interest, any motion induced to the object will force the quadcopter to
compensate for it. We can induce such motion by a walking person that carries
the object or by giving manual kicks to the quadcopter. The quadcopter then
follows the object, centering it in the image. Figure 4 shows the response of the
system facing manual perturbations applied to the drone (5 perturbations to the
x position, 2 for y, 2 for z and 3 for the angle yaw). The objective is to see the
behavior of the system when the drone is pushed away from the reference pose
causing the visual tracking to fail. Despite the loss of tracking (red curves in
Figure 4) due to the fast kicks applied to the drone, it is always able to return



to a position that allows the tracking to restart. This is done by controlling the
drone based on the pose estimation procured by the Kalman filter [7] that fuses
the inertial and ultrasound measurements to have an estimate of the current
position of the drone. Two videos of this scenario are available online [24], [25].
Second scenario: In remote lab context, an interesting scenario is the fol-
lowing: the remote student will send a command to the quadcopter to go and
inspect an electrical device. After receiving this command, the server tells the
quadcopter to carry out the following tasks: it should first take off, initialize
the SLAM algorithm (by following a vertical path in order to change the height
and correctly estimate the scale of the SLAM map [7]), and initiate a search
procedure for the required instrument. After object detection, the drone moves
towards the instrument and the feedback loop uses the 3D pose based on the
homography for control. In this way the quadcopter is able to fly to inspect an
electrical instrument maintaining its position with respect to the instrument.
After the mission is over the drone is sent back home by using the pose derived
from the SLAM. The position of the landing platform is estimated by using the
homography-based pose estimation applied on the video of the bottom camera of
the AR Drone 2.0. The drone hover then at a certain altitude above the landing
platform preparing for landing. A quantitative comparison between the approach
proposed here for pose estimation when inspecting an object at close range with
the SLAM algorithm used in [7] is shown in Figure 5. It shows the superiority of
our approach and the drift of the SLAM approach due to the reasons explained
in the introduction. Figure 6 shows the first detection and the tracking of the
object of interest and its robustness in spite of problems of tracking failure. The
green cross represents the center of the image while the red cross represents the
projection of the center of the object on the image. The objective is to control
the position of the drone so that the two crosses are as close as possible. Videos
of this scenario are available in [26], [27].
Third scenario: In this scenario we test the performance of the face-camera
visual servoing system explained in section 4. The drone has to fly, detect a face,
align its line of sight with that of the subject face, and centering the face in the
image while maintaining a fixed distance with it. In this experiment the user is
in motion in order to induce perturbation to the control system. The drone has
to correct for the user displacement and the out-of-plane orientation of his face.
Figure 7 shows the experiment seen from the camera of the drone and from an
external camera. A video of the experiment is available on [28].

Table 1. Average pose errors and computation time for different face pose estimation
methods. tx, ty, tz are in millimeters, roll, yaw, pitch in degrees, time in milliseconds.

Method tx ty tz roll yaw pitch time
EPNP 11,84 7,11 12,67 0,55 3,74 2,39 0.117
Ransac P3P 12,50 7,79 18,34 1,56 6,52 6,11 0.898
EPNP + NLM 11,51 7,23 13,38 0,56 2,28 1,45 0.363
P3P Ransac + NLM 11,51 7,23 13,38 0,56 2,28 1,45 1.138
NLM 11,51 7,23 13,38 0,56 2,28 1,45 0.234

https://youtu.be/42nZTCsfQjE
https://youtu.be/Kr6TnjoByZ0
https://youtu.be/kXZH9uz9Hkc
https://youtu.be/PTMVeJizjF8
https://youtu.be/Xytlz0UdaDk


Fig. 4. Quadcopter control and estimated pose facing perturbations. For each control
loop: In green the estimation from the homography when the tracking is good, in red
estimation based solely on navigation data when the tracking fails and in light blue the
reference 3D pose. Vertical arrows indicate the time each perturbation was applied.

a) b)

Fig. 5. Estimated pose in the XY plane. (a) with [7], (b) with the proposed approach.

7 Conclusion

This paper presents the implementation of a visual servoing system of a quad-
copter in a remote lab environment to increase student immersion in the lab and



Fig. 6. Detection and tracking of the in-
strument.

Fig. 7. Third scenario experiment: Face
tracking.

hence his motivation. The objective is to allow remote instrument inspection
and remote human-teacher communication. The proposed localization system
for the first objective is proven to outperforms the SLAM system in [7] through
qualitative and quantitative experiments, allowing the quadcopter to inspect an
object and return to its base autonomously. The approach uses only the on-board
sensors available on the low cost drone. The localization system for face-camera
servoing is based on 3D modelling of the face and a state-of-the art 2D facial
point detector. The approach controls all 4 degrees of freedom (3 degrees for
translation as well as the orientation of the face). It is shown robust, accurate
and working at frame rate through qualitative and quantitative experiments.
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