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ABSTRACT 
Since centuries, agriculture, food and biological 
systems are strongly linked to human expertise, 
albeit such knowledge has been capitalized and 
shared often at a local level, only. Since the 
beginning of the last century, swept away by 
productivism, modern agriculture and food 
production have put cumulated human knowledge 
aside. Facing new challenges like sustainability in a 
changing context, holistic approaches cannot be 
managed “manually” ab initio and there is a clear 
need for computing decision-support tools to tackle 
these new issues. Moreover, new approaches should 
be built centred on humans and for humans. The 
heart of our purpose is to shift the focus again on 
human and local expertise, guided by powerful 
computing interactive systems. 
 
INTRODUCTION 
Since centuries, agriculture, food and biological 
systems are strongly linked to human expertise, 
albeit such knowledge has been capitalized and 
shared often at a local level, only. Scientific and 
technical experts have tried to study complex food 
and biological systems for a while. Generally lot of 
heterogeneous experiments have been achieved in 
different conditions and statistical analysis allows 
extracting various characteristic features leading to 
a local or partial understanding of the system in the 
mind of the expert. Nevertheless the task is far more 
complex if a global understanding of those systems 
is needed, even if experts have sometimes partial 
intuitions on it (Perrot et al., 2011) )(Van Mil et al., 
2014)(Perrot et al., 2016). The heart of our purpose 
in this paper is to shift the focus on human, intuitions 
and local expertise, guided by powerful computing 
interactive systems. 
 

 If we refers to the cognitive human behavior, as it 
is described in the community of intelligent systems 
(Lucentini and Goodwin, 2015), a point widely 
studied is the cognitive architectures and the way 
that data is captured from the environment, stored 
and further processed. Basically, cognitive 
architectures refer to two paradigms: symbolic and 
sub-symbolic. It gives the possibility to infer, for 
some aspects, like experts decision for process 
management, data exploration, fault tolerance, 
learning, systematicity and so on, how the human 
behavior will be. It is just a question of analyzing if 
an architecture is based on a symbolic, sub-symbolic 
or mixed approach. 
Symbols, as described by (Lucentini and Goodwin, 
2015), “are entities which make reference to another 
objects by means of a totally arbitrary convention, a 
law or a class. They are a widely used form of 
representation, for example the word car is a symbol 
for a real car, because there is a convention that the 
word car in a specific language refers to those types 
of elements”.  The sub-symbolic level, is not using 
symbols as the symbolic one and is more a “bottom-
up” approach emerging from neuronal connections, 
non explicitly conscientize by the experts. 
 
Our challenge for this article is to present 
experiences led in our laboratory to guide through 
man machine interactions, the emergence of a model 
integrating symbolic and sub-symbolic human 
knowledge. It is dedicated to food and biological 
complex systems.  
 
HUMAN IN THE LOOP 
For our approach, we rely on the ability of experts to 
create patterns giving them the possibility to reason 
in an uncertain environments. Indeed, experts, faced 
with complexity when coping with their dynamic 
environment and constraints, develop a considerable 
ability to focus their attention and organize the space 
of reasoning around dynamic patterns, based more 
on experience than on rules (Ballester et al., 2008). 
Such patterns are scripts that embody in an efficient 



way knowledge of viable stereotyped event 
sequences. For example, it has been described in 
(Sicard et al., 2011) applied to a cheese biological 
ecosystem: the process is represented in the expert’s 
mind in the form of chronological standard change 
patterns and drift from standard trajectories that lead 
to defects on the cheese, like bad odours or bacterial 
contaminations. This mechanism of information 
aggregation allows the experts to anticipate the 
appropriate system state to intervene in, and, if 
needed, to correct early drift trajectories. The 
experts are thus able to manage a certain amount of 
complexity in an uncertain environment. In 
multiscale living biological global systems, patterns 
are organized in space and time (various land parcels 
and climatic conditions for example for agronomic 
problematics such wine, wheat crop..., various space 
and growth time for living ecosystems for example 
food, marine or gut ecosystems).  

 
Figure 1: An approach of human integrated in the 
computing loop. A first step is delivered by the 

expert from his symbolic knowledge and integrated 
by the computer side in the form of explicit links, 

graphs, rules,…A second step emerge from the 
iterative interaction between human and computer 
through a model exploration at different level after 

a computing step of calculus. 
 
One of the efficient coding mechanisms used by 
experts is the cognitive mechanism of ‘chunk’ 
recognition (Chase and Simon, 1973). A ‘chunk’ is 
a grouped set of clustered variables, closely related 
to each other, taken from a situation and associated 
to each other. Chunks are used to describe a part of 
a standard trajectory, directly linked to a particular 
state, which could require to be stabilized or 
corrected. These variables are acquired through the 
perceptions of experts. For example, winemakers 
anticipate the quality of their wine using mental 
chunks based on their perception of the quality of the 
soil of a parcel and its localisation, the way the 

grapevine has been conducted, etc. Nevertheless, 
chunks are not easy to handle as they are not usually 
in the form of explicit knowledge and sometimes 
refer to the subsymbolic level of the expert 
cognition. As a consequence, very often they are not 
exploited as functional knowledge to create 
computational models suitable for decision making. 
Some of the patterns can be explicit on a graph or in 
the form of rules. For the subsymbolic ones, our 
hypothesis is that it can emerge from the exploration 
of the result of a model if relevant computing tools 
and visualisation techniques are implemented for 
man-machine interactions.  
 
We propose a parallel between the approaches of 
computational cognitive (Sun, 2008)(Mc Clelland, 
2009) developed to model human cognition devoted 
to symbolic and sub-symbolic levels and the 
computing tools we develop to embed human in the 
computing loop. From this parallel, the idea is to 
build a tool able to deal with and integrate those 
different levels of human knowledge into the loop of 
modeling. Every simulation model is here a way to 
embed a part of the human knowledge on a 
biological system. The challenge of this paper is 
more precisely to present different studies were the 
use of computational models in this spirit is 
developed. It is based on human, machine learning, 
optimization and visualization. The purpose, more 
than a compilation of studies is to enhance our vision 
of “the human in the loop” through different 
experimentations. We thus focus on the knowledge 
available at the different level of human cognition. 
We observe symbolic and sub-symbolic levels and 
especially the mental patterns the experts have in 
mind. We exemplify this approach on a series of 
systems like in cheese ripening process, wheat 
culture management, wine odor prediction or 
bacteria freeze drying. Two axes are explored: food 
and biological systems exploration and food and 
biological properties 
 
The approach tested and experimented (figure 1) is 
an approach coupling (1) an algorithm enabling the 
effective description of the human symbolic 
knowledge in the form of rules, classes or links 
between variables or classes (step 1) ;(2) an 
approach of machine learning including a crucial 
optimisation step proposing different alternative of 
representation (step 2) explored iteratively through 
a visual interface. The idea is to open from this 
iterative exploration process the door to the sub-



symbolic knowledge emergence. Two ingredients 
are important for that: the way we use optimisation 
and visualization techniques. 
 
OPTIMISATION AND EMERGENCE 
The idea of optimisation takes its roots in the 16th 
and 17th centuries notion of “modernity”, when 
philosophers where advertising the issue of 
becoming “owner and master” of nature (“Discours 
de la méthode” (Descartes,1637), in a mathematical 
framework (Galilée (Martin, 2002)). Thanks to 
modern computation capabilities, managing and 
predicting natural phenomena becomes more and 
more a reachable challenge. However optimality, in 
any domain, raises various fundamental  questions, 
in particular regarding the purpose of optimisation 
(are we able to address the appropriate issues with 
the help of modern computational tools?) and the 
methods (are we able to address the right issues with 
the right tools? ).  
A subsidiary question is also: Do we not believe too 
much in computation? Improvement may be another 
perspective, more appropriate, in particular for an 
interactive/iterative process of problem solving 
involving human knowledge. 
In this work, we revisit the use of stochastic 
optimisation heuristics and in particular 
Evolutionary Algorithms, exploited in an iterative 
and interactive context, to better address complex 
questions. Evolutionary Algorithms (EAs) are 
stochastic methods that copy, in a very abstract 
manner, the principles of natural evolution that let a 
population of individuals be progressively adapted 
to its environment (Goldberg, 1989). This 
progression results in an improvement of the fitting 
of the individuals to its environment, this can be 
exploited as an optimisation heuristic: an optimal 
adaptation is reached asymptotically. 
An EA considers populations of potential solutions 
exactly like a natural population of individuals that 
live, fight, and reproduce, but with a natural 
environment pressure replaced by an artificial 
optimization pressure. Reproduction consists of 
generating new individuals-solutions using the so-
called genetic operators that, by analogy with nature, 
are called mutation if they involve one individual, or 
crossover if they involve two parent solutions. A 
fitness function, computed for each individual, is 
used to drive the selection process, is thus improved, 
and ultimately optimized by the EA. 
In an interactive context, an improvement scheme 
seems adequate and enough, as the optimisation aim 

is often not fixed and varies with interactions with 
experts. Additionally, EA are convenient for 
building interactive schemes; there is actually a 
large interest of the community into interactive EA 
(IEA). Interactions with the 
optimisation/improvement EA may take place at 
various levels (interactive evaluation of results, 
reformulation of optimisation function, 
modification of current solutions, interactive tuning 
of the parameters of the algorithm). 
 
VISUALIZATION TECHNIQUES 
Visualization is a field of computer science 
concerned with the creation and study of visual 
representations of data (Card et al., 1999). It makes 
use of our powerful visual cortex and wealth of 
experience to reach insights from data, amplified 
through human-computer interaction. For a 
visualization to be interactive, it needs to support 
human input to control some aspects of the visual 
display. Additionally, a good interaction response 
rate needs to be met to ensure real-time perception 
of task execution.  
 
Visualization can be a valuable asset in the context 
of modelling. For example, creating robust 
computational models necessitates tools to explore 
the behaviour of models and tune their underlying 
representations, but not only. From our experience 
visualization can empower modelling by bringing 
in:  

x human-computer interaction 
methodologies that facilitate the study of 
the visible and hidden roles humans play in 
modelling (Lutton et al., 2016); 

x more intuitive representations of often 
complex multiscale models (Chabin et al., 
2017). These visualizations can facilitate 
collaboration between the various 
stakeholders involved in the modelling 
process (e.g. data owners, domain experts, 
modellers, decision makers); and 

x interactive tools to explore the behaviour of 
the constructed models, and ultimately 
allowing for enrichment and modification 
(Sacha et al., 2016). 

 
 
 
 
 
 



EXPERIENCES OF HUMAN IN THE LOOP: 
 
Food and biological system exploration 
 
Explore to find a camembert-type cheese ripening 
viable trajectory. 
 
This experiment was led under the frame of a french 
ANR project (INCALIN) and a FP7 European 
project (DREAM). The challenge was to work with 
the experts and a distributed high performance 
calculation structure to discover relevant viable 
trajectories of cheese ripening (Sicard et al., 2012). 
The viability study is achieved on a space dimension 
of 5: Two control variables: relative humidity and 
temperature of the ripening chamber; Three state 
variables: the cheese mass, cheese surface 
temperature and respiration rco2. The trajectories 
are considered relevant if the cheese are in a given 
target of sensory quality at the end of the process of 
ripening and if the ripening time is reduced. 
In a first step (see Step 1, figure 1) explicit 
knowledge is described by the experts in terms of a 
constraint set, a subset of the three dimensional state 
space: cheese mass, cheese surface temperature and 
respiration level (see article (Sicard et al., 2012)). It 
can be represented as a tube including all the values 
in which the state variables should stay at each time. 
The bound values stem from the experimental limits 
and the legal norms (viability tube represented 
figure 2).  

 
Figure 2: Viability tube of the ripening process of a 
camembert type cheese (upon Sicard et al., 2009). 

 
In a second step (Step 2, figure 1), 45 654 840 
simulations are performed on a computing cluster of 
calculus and a Pareto front of the results is explored 
visually by the experts. On the basis of this first 
exploration, new constraints are proposed, emerging 
from the visual exploration of the experts, and a new 
Pareto front is explored and iteratively, till a 
satisfying solution is found by the experts. 
This exploration applied to a cheese ripening 
process, has led us to find an original viable 

trajectory for the industry, satisfying the 
manufacturing constraints while maintaining the 
quality target for the ripening process. This 
trajectory has a 8-day ripening time, whereas the 
standard is 12 days. This trajectory was validated on 
a ripening pilot. The microbial equilibrium was 
preserved so as the cheese sensory properties (see 
figure 3). 

a

b 
Figure 3: The cheese sensory evaluation after 

having tested the emergent trajectory following the 
exploration experiments: -a- in black: cheese 
sensory evaluation at the end of the ripening 

process for the classic trajectory (day 12); -b-in red: 
cheese sensory evaluation at the end of the ripening 

process for the classic trajectory (day 8). The 
cheese sensory characteristics for the two 

trajectories (classic and optimized) are almost the 
same. 

 
Explore to find sustainable strategies for wheat 
culture. 
 
We organised a Pareto front visual exploration 
session to help a domain expert investigate various 
fertilization strategies for wheat growth. Our expert 
had a research question pertaining to azote 
fertilisation strategies. In particular, she wanted to 
find strategies that work well regardless of the 
climate or the weather. To achieve this, in a first step 
we constructed a Pareto front from simulation files 
produced by the expert using an existing soil crop 
model called Azodyn (Jeuffroy et al., 1999). This 
model takes soil characteristics and predicts the 
consequences of azote (N) fertiliser management 
strategies, in terms of daily crop growth, yield, grain 
protein content and N losses to the environment. The 
Pareto front was constructed by maximising yield, 



and both minimising loss and the final N dose. These 
objectives were selected by the experts, to help them 
answer their research question. In a second step, the 
exploration session was carried out iteratively using 
a large tactile display (figure 4) and an interactive 
visualization system coupled to an evolutionary 
algorithm (Cancino Tionca et al., 2012)(Boukhelifa 
et al., 2017) (figure 5). 
 
Besides helping the expert answer their research 
question, the objectives of this workshop were three-
fold: (a) to get feedback and evaluate our approach 
of interactive model exploration, (b) to collect data 
on expertise related to each application domain, and 
(c) to establish opportunities for automatic learning 
and user interaction leverage points. 
 

 
Figure 4: Model exploration session with a domain 

expert using interactive visualization. 
 

During this exploration session, the domain expert 
reported finding interesting fertilisation strategies 
that she did not investigate previously (thus new 
research questions). More interestingly, in 
collaboration with this domain expert, we were able 
to generate decision rules for the different 
fertilisation strategies that she explored. In the 
future, we plan to test these rules, by generating a 
new dataset based on the new findings, and re-
launching the simulation and exploration. We have 
also gathered a rich dataset on interactive model 
exploration (videos, notes and log files), which we 
plan to analyse.  
 

 
Figure 5: EvoGraphDice: The visualization tool we 

used for the exploration session. In this view the 
expert selected a view showing yield versus. Azote 
doze. The green selection corresponds to favorable 

fertilization strategies according to the ‘yield’ 
criteria.  

 
Food and Biological properties prediction 
 
Predict flavor of red wine 
In food science, sensory properties are important 
and not always easy to predict. For example the 
analysis of the aromatic component of food products 
is usually performed by separating, identifying and 
quantifying the molecules included in an extract. 
Such well-established procedure provides a list of 
key odorants but does not give any information 
about the perceptual influence of mixed compounds. 
This is a major problem for the prediction of the food 
overall sensory profile on the basis of its chemical 
content. To solve this issue, we developed an 
approach of “human in the loop”, applied to the 
prediction of the odor of 16 red wines (Roche et al., 
2017). We worked with experts, sensory databases 
and computational tools coupling fuzzy logic and 
genetic algorithms for fuzzy model parameters 
optimization. This model queries analytical and 
sensory databases in order to predict the flavor 
profile (figure 6).  
In a first step (see Step 1, figure 1) explicit 
knowledge is initially described by a panel of 4 
experts (flavorists) in the form of rules. They were 
asked to describe in basic odor qualities 4 to 15 
sensory descriptors useful to characterize red wines 
but not specific to it (e.g. bell pepper, blackcurrant 
fresh, cherry cooked, cherry stone, strawberry 
fresh). Basic odor qualities are also linked to 
analytical data by the experts in the form of 
ontologies (A. Roche, N. Perrot, T. Thomas-
Danguin, “Odor perceptual space: From odorant 
descriptors to odor qualities”, in writing).  



In a second step (see step 2, figure 1), a model is 
proposed linking all the knowledge in a model 
coupling ontologies, fuzzy reasoning to compute the 
rules proposed by the flavorits and a genetic 
algorithm performing an optimization of the fuzzy 
rules parameters using a data basis collected during 
experiments. It estimates the intensity of each 
sensory descriptor for a wine on the basis of its 
composition in terms of odor active compounds. 
After several iterations with experts, a final model is 
proposed to predict the wine sensory properties. 
Applied to a series of datasets on 16 red wines.  The 
results of prediction are in good agreement with the 
actual values with the two projections on the first 
two principal components of a PCA, statistically 
significantly correlated (Monte-Carlo test p = 
0.003). 

 
Figure 6: From analytical data to flavor perception 

of red wines: a question of human in the loop. 
 
Predict and discover knowledge of a multiscale 
involved process: a “theory building tool” applied 
to bacteria freeze drying  
In many real-world modelling case studies, the 
amount of data available is often not enough to apply 
fully automated tools such as black-box machine 
learning algorithms. At the same time, additional 
knowledge on the problem is usually available, in 
the form of implicit proficiency developed by 
experts of the domain. In such situations it is 
fundamental to allow human users to interact with 
the machine learning tools, and make their 
knowledge explicit. LIDEOGRAM (Life-based 
Interactive DEvelopment Of GRAphical Models) 
(Chabin et al., 2017) is a tool implementing this 
specific vision: The goal is to provide experts with a 
design tool for modelling complex system 
processes. In LIDEOGRAM, each non-input 
variable for a case study is modelled as a 
mathematical formula dependent on other variables 
in the problem. Interacting with a graphical 
representation of the system, users are involved in 
three steps: In a first step (see step 1, figure 1), sets 
of variables and classes grouping some or all the 
variables can be created, and a first graph of links 
between those variables and classes can be 
proposed. Starting from the relationships described 

by the user-defined graph, in a second step (see step 
2, figure 1), a machine learning approach based 
multi-linear regression will propose mathematical 
formulas, each one a different trade-off between 
complexity and fitting. This process ultimately 
creates a multi-scale model, where each part of the 
process is defined with respect to variables at a 
lower scale, following the dependencies given by 
the initial user-defined graph. In a final step, experts 
select mathematical formulas of their choice, 
iteratively, until a satisfactory result is reached. 
LIDEOGRAM has been successfully applied to a 
case study involving freeze-drying of bacteria, 
where a model developed interacting with a human 
expert was able to deliver better result than one 
obtained through a purely automatic approach (see 
Figure 7 for a screenshot of the interface used in the 
experiments).  

 
Figure 7: Screenshot of LIDeOGraM. The left side 
shows a graphical model representing the meanness 

of the local models obtained by symbolic multi-
linear regression. The top-right part is the list of 

equations proposed for the selected node, and the 
bottom-right part shows a plot of the measured 
versus predicted data associated to the selected 

equation. 
 
Computational models such a LIDEOGRAM are 
useful tools for hypothesis generation: through 
simulations, users can explore unseen scenarios, and 
ultimately exploit the model as a theory-building 
device (Sun, 2008). At the same time, this approach 
can be used to create new knowledge by 
summarizing information, in a process similar to 
chunking in cognitive models (Lucentini and 
Goodwin, 2015). While we advocate for the use of 
models to explore the implications of ideas, 
especially for assessing their sufficiency, optimality, 
and empirical adequacy, such explorations must 
nevertheless be carried out with care. Reaching 
broad conclusions from the shortcomings of 



particular models, in particular, is difficult: Even if 
a modeler can show that a model fits all available 
data perfectly, the work still cannot tell us that it 
correctly captures the processes in the tasks that it 
addresses (Mc Clelland, 2009). 
 
CONCLUSIONS 
In this paper, an approach centered on human and 
human embedded in the computing loop is 
presented. It is based on human, machine learning, 
optimisation and visualisation. Different studies 
were the use of computational models interacting 
with human are presented. Those experimentations, 
show clearly the value added of such a paradigm and 
open a road for future research in food and 
biological modelling. 
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